• Tidak ada hasil yang ditemukan

Spatial Analysis of Agricultural Water Distribution to Specified the Surface and Groundwater Resources in the System of Environmental-Economic Water Accounting’s Physical Supply Table, Study Area of Abshar Irrigation District

N/A
N/A
Protected

Academic year: 2024

Membagikan "Spatial Analysis of Agricultural Water Distribution to Specified the Surface and Groundwater Resources in the System of Environmental-Economic Water Accounting’s Physical Supply Table, Study Area of Abshar Irrigation District"

Copied!
17
0
0

Teks penuh

(1)

Online ISSN: 2382-9931

Journal of Water and Irrigation Management

Homepage: https://jwim.ut.ac.ir/

University of Tehran Press

Spatial Analysis of Agricultural Water Distribution to Specified the Surface and Groundwater Resources in the System of Environmental-

Economic Water Accounting’s Physical Supply Table, Study Area of Abshar Irrigation District

Farhad Behzadi1 | S. Mehdy Hashemy Shahdany2

1. Water Engineering Department, Faculty of Agricultural Technology, University College of Agriculture & Natural Resources, University of Tehran, Tehran, Iran. E-mail: [email protected]

2. Corresponding Author, Water Engineering Department, Faculty of Agricultural Technology, University College of Agriculture & Natural Resources, University of Tehran, Tehran, Iran. E-mail: [email protected]

Article Info ABSTRACT

Article type:

Research Article

Article history:

Received: February 2, 2023 Received in revised form:

February 14, 2023 Accepted: March 25, 2023 Published online: April 14, 2023

Keywords:

Spatial analysis of surface water distribution,

Abshar Irrigation District, Flow Hydraulic Simulation, Environmental-Economic Water Accounting.

This study aims to investigate and specify surface and groundwater sources portions in the physical supply table of the environmental-economic water accounting method (SEEWA-Water) in the Abshar Irrigation District through the developing hydraulic simulation model of flow in the main & lateral canals, spatial analysis of surface water distribution process, and water extraction analysis from exploitation tube-wells located in the district. For this purpose, the simulation of water distribution within irrigated units was conducted by developing the integral-delay simulator model in MATLAB. Then, spatial analysis of surface water distribution adequacy was carried out in GIS under different operational scenarios. The simulation results of surface water distribution indicated the decreasing trend of the adequacy of surface water distribution and delivery from upstream to downstream catchments. The spatial analysis results showed the share of surface and groundwater separately for 59 villages with rights and then for each village according to the main crops. The results showed that the surface water distributed in each sub-channels upstream and downstream villages provided 35-48 percent and 60-49 percent of agricultural demand, respectively. The spatial analysis (the water resources portions based on the main crops of the cropping pattern) reveals the customized components in the physical supply table in the SEEA-Water accounting method for an irrigation district, surface & groundwater water resources share, and distribution losses in Abshar Irrigation District.

Cite this article: Behzadi, F., & Hashemy Shahdany, S. M. (2023). Spatial Analysis of Agricultural Water Distribution to Specified the Surface and Groundwater Resources in the System of Environmental-Economic Water Accounting’s Physical Supply Table, Study Area of Abshar Irrigation District. Journal of Water and Irrigation Management, 13 (1), 105-121. DOI: https://doi.org/ 10.22059/jwim.2023.354716.1046

© The Author(s). Publisher: University of Tehran Press.

DOI: https://doi.org/ 10.22059/jwim.2023.354716.1046

(2)

نا هﺎﮕﺸ اد تارﺎﺸ ا

یرﺎﯿآ و بآ

Homepage: https://jwim.ut.ac.ir/

:ﯽﯿوﺮ !ﻟا #ﺎﺷ ۹۹۳۱ - ۲۳۸۲

!" #

$ %"&

' ( %" )* + , -)

- / ,0!%

12 34

5 67%

|1

2

1 .

!"

# $

% #

. :' % [email protected]

2 .

!"

# $

% # .

:' % [email protected]

: !"

) *+ ,- .

# $

%

&

#

% ' : 13 / 11 / 1401

# $

%

&

( ) : 25 / 11 / 1401

# $

%

&

*+

% , : 05 / 01 / 1402

# $

%

&

# -.

: 25 / 01 / 1402

/0 1 2 :

45 % 6# 7!84#

9:% :; <

5!4 -

>?@

! ' A

'! A

% B C!- !) .

8D E B ! % 45 F G!@ # H ) '"- 5 I%

I! J#

%K!

:; <

9:%

5!4 - ) >?@

SEEWA-Water ! ' A 4 (

E '" 6# ' N @ OD '! A )

E % B C!- !) 7!84# P 8D )

% Q 9A 45 % 6#

) . 6R ! ' A @

'! A 6S I%

'! A E '" 6# P 8D E ) !$ I! % 6#

- $?

-

!TJ#

U!4 MATLAB 45 % 6# 9% O 7!84# 9 V 6D

U!4 W8?X )6% 94#GIS

'! A Y% ? . A N Z 45 % 6#

; ' A 4 # 9 [ ) !$ 45 7%64# % 6# 9% O ) \ - ]

I!% + C! O# ' ! K% 45 F 7!84# Y% ? . 6 9 59

' .; ?

Y% ? . 6R _X ? ) 9 6$- 8D V[6>4 C! O# ' `a

% 6# 45 A

P E ) 9 I!% + 9 [ @ P G '

b!# # 35 - 48

D 49 - 60 e .# D I! J#

N Z 7!84# Y% ? .9 6R % . A

O-f ' 6 ) 8D E B A I! J#

:; < %K!

9:%

5!4 - >?@

F ! ' A C%

' V O8# ! % 45

! ' A % 6# )

. 6R !

: 3.

N .g ) A RA ) .H K )

1402 .(

84#

! 7 6#

% '

6S

@ #

! G F 45

%

! E B

J#

! I H >

:;

% 9:

4

! 5 -

>?@

'"- 5 6 ' A ! OD

! 9% % '% . 13

) 1 ( 105 - 121 .

DOI:https://doi.org/ jwim.2023.354716.1046

: A

# $ V ? ': f

. . :%6 ©

(3)

1 .

":

'" 6# h . !:

'? % E ;

) K % K % A i) '8 . 9 B B '" 6#

9 ! 6 6 O? 9% % )

' Y% ? .9 A ) K I% !

W"e ) )

C T G F I% 9!R) .9 6 6 j iX ' h6 Vk 7l : 7;

'R!

B C T

' .9 6T m6e '

6 - : T n6@ ' + )

C% G I% T + i% K H

7 @ O! R 9% 4 b $% H e .# K G I% g ?

A I% .9

' 9% % . ' 9 - ; ' K%

9% 4 K! 6B6 e o 5 N $ ) Q 6 j )

9 6R 'Z!?

7 6P % A % + ' ! 9% % K R#

pf V e C% '

X 7D ; Y% ? .9 7% # # !; R?;

$ F!R># !-6? )

! V6@ K! %

: 9 ! X F I% ' %

! ) 6

'?T B 9

'

% ) 6 6T

!

Z#

% g ) @ S B Q 9!) ' F8P '" 6# 9% % 6T q8# V ! Z# I?

I!

'?A U # Vk 7l : ' 6 ) 7; ' % 9 F 'Z!? I% ' Vk 7l :

84# !

! 7

! R?:

9% % b- @ '

F) '? 6!+

8!84# 6Q Q 6 j % G% # A

' F) '? 6!+

F) 6A 9 ! B A P R?B >?@ p ' I?T + IRe ' ' )

S )

K) iX !-6? %

% ' 9:% 685 ) 5!4

) ! @ 'B6# 6 K!

Karimi et al., 2020

.(

V6@

i. !-6? % S 6 j % I?

I% ' ! 9% %

F?:! ?: O? bB6 # !;

? + )

! R>#

! F

! ' 6S

!+

'Q a % 9% % N6 O

W8?X ) 6 A

F?:! ' '8RB F) :; )

) '? 6S I!R) ' . A

F?:!

:; ) U 6# W8?X ) 6 r5

i) *+

'? % '" 6# 78 ) 6 I%

A s ' 9 6Q Q O? 8 H ) .9

% A '?A 'e6; %t6- !) )

% B )

7 @ E ? E ? e 7 "#

9D ) p i) 6 R % K i% K O V

'" B ) !

Karimi et al., 2013

' :; .(

F) 6S 'Q a % B ?% % 6R

) iX W8?X )

9:% %t6- !) 6 6 ) < + >?@ 5!4

!:O#

) F) $% %

) 64 ? % :; 6Q Q.

' ' 9 V Pk '? S 'Q a % 9% % 9! OA % .# !O K 6 P

) 6A

Razavi et al., 2020

'l V Pk .(

A % ' I% :; 6Q Q O?

F!R>#

! !

V R!R># 9!"5@ N P K! # ) 7@ ; '

)

Peranginangin et al., 2004

'Q ( R ) . 'Q ' 9 n6e6 I% $ % R :; 6Q Q .(

6S 7 @ . 4 C% g ?

) 6A

Momblanch et al., 2018

'B6# j- .(

'% 9T % C% Z% :; ?T 9!R) '

b j

% % R i. 6#

? K! V !!u# . A '?A '.5 C%

>?@ P R?B g 9:% U!4

!pJ#

j

'Q a % 9% % 9 B I%6 % C% n6e6 I% 6 '

RA I%

% :;

'

>?@ " 6A '?:% $ % + '" 6# " I? S B V 6D -

:; F?:! I% P R?B

. 6A '? S

(4)

I! I%

! F?:

:;

9:%

5!4 -

>?@

SEEA-Water

% C U 6# ' 9 ? <

R) 78 iX -

!+ G.4# ? 'Q a % 9% %

+!

A '

8R"- 6?

% 'Q a Pk

) V

! t6-

%

>?@

'l . ) '" 6# ? < I%

! F?:

) :;

8 @ -

\ 6RP ' O? ?

6) ) 9

- A 6 7

E B

'?T A E B ' A

SEEA-Water

P ' 9

! I E ; ' 6 6Q Q 7

! F?:

8 :;

% 'Q a A

.9 6Q Q

SEEA-Water

` O I!

88R- :;

%

% 9 % 'Q a v 6 '

( 8)) 2006

A K '

6 P

? I!

88R- +

! 9 A )

Vardon et al.,

(.2019

8 H ) 6Q Q

SEEA-Water

w ) R) )

>?@

- )

! t6-

% 94#

% C 6Q Q

. s ?

% ':

9 : ) .9 E6 G 8RP G 5 ' 9 r!e6# ' N [

' 6R < I% ) '" 6# V x U 6# 6Q Q I% B

'" 6#UN

A i) *+

' 6T

6 ' N @ t + ) V % e ! 7R"- 6? G 5 . ) 6T E B I%

'l U 6# < I% A

) 78

Gan et al., 2012

(

"#

!!

I R

! 9 Vk "#

! I 4 >?@

! U

% 9:

6Q Q

SEEA-Water

% C uB 6;

!

% B 6#

"#

% W 6A '

! F?:

)

>?@

9:%

5!4 ' 6 ' B

'? S 6A

.

' N @ I!- 6 ' ) Q i) *+ C% Y% ? X ' '- . I%

!+

:; F?:!

SEEA-Water

.9 6R ) ! ' A C% ?% % g !.

V e '!B6#

6 j H ) N Z '!D6# ' I! X 'B6# 6#

'B6#

%

* + 9:% U!4 ` t )1

' (EEA

4 7!8.#

) '"- 5 6 4 ' g !. v K

G!@ # H ) ?% % g !. CQ6 ) )

b8B h # I% 9!"5@ N P i) O? 6 .

g ' 9 A !+ 6 j '!D6#

1 - 7!84#

B '

"#

!!

I :;

) r5

C%

6 ' A '!D6#

r5 CQ6 ?% % ) #

'e6;

)

%j+ V 6D 7.?: 9% % G K%

y 2 - F) I! Q 7!84#

) B '

"#

!!

I

:;

) '

V 6D ' [

+EEA

! '

' V 6D ' )

/ ' ' 6S G!@

#

9@ i% K 8>

>?@

/ 4

! U 9:%

'!D6# ) I? S . 6A O?

6 j

% I ' N @ I!- i) *+

'l C%

6 C!R?:! <

E B ) ? +

I! J#

-

%K! H >

) < 2

PSUTs

9:% :; ( 5!4

-

>?@

)3

SEEWA-Water

( C% 4

'! A '% + :; E B ! 6 V Pk z X? '% + ) ! ' A % B !- !)

E ' OD ! ' A . 6R 45 % 6# ) X? # "- 5 ' 6R 6 P

F G!@ #

'! A '! # ! % 45 E % B C!- !)

9A k! '"- 5 45 % 6# )

Q ) ' A 4 @

.9 V 6D ' A 45 % 6# 9% O 7!84# K!

2 .

< %

=

2 . 1 .

= 34

% K% 'e6; @ ! ' A E ; 9; : ( OD ? o A) K$ '% a)6 9A

; ' A 21

? ) K)

# 8D . A J

I!

A ) ! ' A I%

(5)

4 J 4 I! . A

I! J#

{Q 8D E '?A ! ' A I%

9 ' 6S 9" ' e @ iA6+ 94# H ) 9 B 9A 32000

' ) ? ) V Pk

'.5 9 A AjT ; e ; E ; OD

21 E ; ? ) K) A | ; (9

*% '8RB .9 '}% F?:! ' 6 K Z ' A I% )

C!+ ! 9A ) '}% I% . A

)

E ? 9A A

RZ; ! F)

C% 'B 8D E '?A ! ' A .

; E6 ' 69

; 9! x ? 68!

16 b" ? '! p

10 ; E6 ' 'B P E '?A 61

; 9! x ? 68!

300 # 2400 ; K! '! p ?!- 180

? 68!

RB .9 45 i )

E E6 r5 % 6# 7%64#

U 6# 8D ) 60

N Z !$

' ! ' V 6D ?

. 6A g

RB V Pk ? A

W!"e 8RP ! ' A ' A I%

; 9 ) ' Z 30

# 40

' % B D

7%64# % 6# E .? ) . 6A

I%

!+ < ?: ! % ' '?: 7 I% 9 B 9

' 64 E ; '

; ' [ 9A e ; 102

; b" ? 6!8!

9000

; Q '.8;

! ' A 7T A O

; ' A I% 4 ?A FZ;

8 9A 7 D

! % 4

' A )

!

% 'e6;

' 'B6# . A I%

' I% 8D H ) i) *+

! % 45 F I!!"#

I! J#

V[6>4 ! 9

! ' A A ! I!RX# ' N @ N I!- j- A

N O? ' A I% 9 6$- b- ] V[6>4 9 K

. A V % ' 8%[

i) *+

i) *+ I%

RB ? 7 @ 'Q a % V Pk 6B N P F I% ' Z 6? # 6 ! V "- 5 A

F `a 7.?: ; ) "@ ! ! . I! J#

. 6R _X

i!

# ' .; < ' h6 V Pk 6B6 V Pk _X F _X 7 @ )

) A

' N [ . 6 '}%

' 9 r!e6#

' 6S

! ' 4

! _- T N 7 A 9 6$- b- ] V[6>4

N V ] A k@ !+ K T 9 K

. A O? V

2 . 2 . > ? % <

@= AB

N Z <

i) *+

) 7 A 7;

1 ( ' V 6D %6>#

'l I% .9 A

!+ 8D N g

9A K! 45 % 6# 64 ! ' A C% :; 6Q Q C%

! % 45 N ) F I!!"# 'Z!? ' A 4 ! % I! J#

!

N ? I% . A 8RP 8" 9!"e % ' N @ E

! ' A % 6# E .?

U% A 6T 8RP % .9 V 6D 7R?4

Z% ?:

'

' B W8?X ) ?% % !- !)

F) I! Q f 7 6P I!!"#

p ' A

' 6S 'l

9!"e 6 9 B N [ V @ 8RP % ? I% . 6A N Z N K- V 6D

' 9

E 7 A) % 6# E .? ' 7%64# 9% O % ! ' A ( P 8D )

'! A 7D ; Y% ? 9 V 6D ! % 6#

8RP %

! ' A 8D E

'! A 7 A 9!"e 8RP %

W8?X U% A % 6# E .? ' 6B6

- P 7> C% W8?X ) ' ~

) - 'l ' . A '

6S 7!84# 'l

(6)

8RP % ' 4 _T A U 6? . ' A

O? ( % 6# 7%64# 9% O ) A

N K % . + ':% . 7!84# Y% ? .9 V 6DGIS

_T A U 6?

9% O

W8?X )6% 94# ) !$ ' 7%64#

.9 6R F)

Figure 1. Schematic of the research methodology including different components and the interconnections

2 . 3 . %" )* 0) %D&% 2 E&% F 1 SEEA-Water

H ) 8 6Q Q

SEEA-Water

w ) R) )

>?@

- )

! t6-

% 94#

% C s ? 6Q Q

.

% ':

9 : ) .9 E6 G 8RP V x G 5 ' 9 r!e6# ' N [

'" 6#

' 6R < I% ) 6# 78 U 6# 6Q Q I% B

'"

A i) *+

6T '

6 ' t + ) V % e ! E B I%

N @ . ) 6T

% I 6Q Q

% '>X A 7%•

)

ESCAP, 2017

:(

W- - _T A D6# )

!O 7 "# V S

! I 4

! U

% 9:

iX )

>?@

'.5 @

'"- 5 6 E '

+!

9 9 % H ) '

% 9:

4

! 5 '

! 9 j . ) 'l

- % C +

%

$ %

'?

9 ! '8; # Z%

( :; ?T Z% " '8; ) j

F!R>#

A @ ! '

% K

*# ?

% C KZ#

% ' 84#

! 7

! 9 6 9!"e ' 9 : ) )

'.5 ) 9% % '"- 5 6

H ) G.4# ? + '" 6#

%

# . ) N Z

'?:) 6Q Q 8D

SEEA-Water

'P6RZ

? ? E B 7@ ; ' 9

) - '

N6RP '.5 % ?- )

RB 6 ) -

. %6># ' ; b- @ C%

"#

!!

I

R

! 9 Vk "#

! I 4 >?@

! U

% 9:

6Q Q

SEEA-Water

% C uB 6;

!

%

"# B

% W '

(7)

! F?:

)

>?@

9:%

5!4 ' 6 '? S ' B 6A

.

! F?:

>?@

N R# U 6#

% I

- "

! 9 ) -6#

! P R?B '

' 6 .?:

! F % ]

! .?:

! F 9 U # n6 ) O?

% 'Q a 6A

.

- ; ' iX 9:%

5!4 iX % 7 A ) 9 A !T• % 9 B ' 9 % )

' V P $%

' T )

% 'Q )

% [ # O s T ) )

%

! ( . ' 6 :; E B {!# ' 8

SEEA-Water

'DkT 7%• E B ' b- @ 6A

)

ESCAP, 2017

:(

W- - E B I! J#

H >

) %K!

PSUTs

:(

) '?A . 'Q ' / 6A

H 4 45 F?:! % U 6# / 6A

) '!8X# 9:% U!4 ' >?@

I! ' 6$Q 6A

F?:! % '- >?@ W8?X ) . 6A

- : 6- ? E B '

RB ' )

[ . ' h6

% )

% D '

% ' ) 6 T

' e ke

% 9 4 '

! U

% 9:

8X#

! ' 6A

. +

z - : % !) >?@ :; E B E B

:;

) #

!

>?@

V Pk '

PSUTs

i # )

-6+

>?@

:;

>?@ A

% 'Q a .

' 'B6#

I%

' I% # "- 5 R8@

i) *+

# ' 4 'l

F I!!"# 9 B < C%

45

E B ) ? + G!@ # 9 B ! % E B I! %K! I! J#

PSUTs

h6 V 4!e6# ' j- 6A

E B % '

PSUTs

' . A ) 6T 'l % A 9 B 8 V 6D 6Q Q g

SEEA-Water

) E B

O? I! J#

! K

% ) ' (PSUT

% E B )

A : W- - E B H >

! K%

- 'e P E B

! K

% z -

# E B

%

` E # '

% B ) 7T

! F?:

>?@

' 4 .

N R#

% B ) E B

) ;

! K%

g )

- "

! 9 - F?:! 6S >?@ )

9:%

5!4 - A 'l .

E B G 5 I! J#

E B %K!

PSUTs

!%J#

78 U 6# A 6Q Q

SEEA-Water

R#

% K

! I ) - "

! 9 )

% ' I! J#

iX )

W-supply

N Z ( 6A

- "

! 9 )

% ' i!

#

RB O>#

! '

% ?:) K R? ke iX )

W-sanitation

( . 6B

- H >

)

Water use

( n6RZ ' 9

% C - "

! 9

>?@

4

! U

% 9:

%

% - "

! 9 )

>?@

% 9 .

- # J

! I )

Water supply

( B T n6RZ ' )

% ok 6A '

% C - "

! 9

>?@

% Z '

7 A ' ' 9

% C - "

! 9

>?@

%

$ 'e P 6A

# H > U 6# \ "@ '

%

% 9 W8# 6 6A

.

' 'B6#

% I '?

R)

! 9 ' 9

?T

SEEA-Water

N R#

V O8#

9 ) ' 4 E6 A

' A ) 6#

% - " '

! 9

>?@

' I! J#

9 : 6A

. I%

H > N6 O

W- ! -

' % C - "

! 9

>?@

O?

# 6A E6>4 6A 7D ; %

- I% '

% W8#

6A ' 6 P E € X #

! % o "#

V O8# 9 V O8#

. ! ' A C%

- B

% ) 4 ' h6

! U

% 9:

E B _X PSUT

H >

% )

!

"

6#

% ]

! ( K!

I! J# J ) ) 45

%

! 9 6 ] s T

! ( . A

- B

% ) iX

>?@

E B

< K PSUT

) n6 J

I! J#

A ) '!O>#

A /

:+

CR ke

% ]

! ( . ?:)

(8)

' 9 N [ ! I%

N6 O ' 9 6

'B6# s T

%

* . 6A @

% I T• ' mk5D

! A

;

! '

% ' ' A s T 6#

% G X #

! ) O:R# ' o "#

. 6A N6 O I% ' 6A 9@

! ' 4 ? '?A 9. 5 pf

'.5 '"- 5 6 !: . A

i) *+

)

% I T•

%

» K « 6R "

' 6A 9@ . !

» s T 9 6 «

ƒKB R :;

)

'? - " N

»

! « ' :;

. %

2 . 4 . 34

$ 0) 2 " =

=

' 45 F I!!"# 6S I! J#

' 9 N [ ! ' A ) ; ! !

'! A % B C!- !)

E ) I% . ! N Z ' A P 8D '"- 5

- $? e % E -

4 !TJ#

) '! A (ID

% 6# F?:! 8D E % B O?

A )

Van Overloop et al., 2010

.(

7 A iX ' % 6# F?:! 8D E ) 6 j E 1

- 9T 6 % % B iX 2

- iX

9 4

. A I% n6RZ ' 8D '>X C% iX ) E

- $?

-

!TJ#

' 9

# P E ) 8D '>X I% . %

!TJ#

) ( τ

!T• r5 )

AS

( % B) E iX

„ (9T 6 % ' 6A

I!% + 9R ' U. % B % B z6 7.? 9

!!u# ) . 6A

F!S # r5

9 [ z6 C% !-6# ' Z

' U. E iX I% 6A 6 P

I% 6 P j

7RP z6 .

A

%

• E GRP E C% z6 9P ' 9 C!# R ! z6 9P '

9 C% K )

Schuurmans et al., 1997

( .

!TJ#

9 4 iX ' 6 j z6 9 ; A

r5 # !!u# bB6 ! . 6A

!TJ#

? + # r% # 9T 6 % % B iX ' 9

'? S % B iX I% F ; '- " . 6A

' V 6D ) '5 1 'l ( : 6A

'5 1 (

   

canal in

q tq t 

' '

iX 9T 6 %

% B ) ( /

' iX

!T•

) ( /

) (sec

!TJ# τ

) (sec

. A iX C% (N iX ) 9 4 KX

7RP iX

- $?

E 7 A 6A . V !!u#

9; : r5 . ) #

W8?X ) KX

AS

g ( )

B T

E ' V 6D '5 ) 2 ( 6;

6;

` 7 @

! 9 )

Schuurmans et al., 1997

:(

'5 2 (

     

        1    

s canal out

s canal out canal out

s

A dh t q t q t

dt

A s h s q s q s h s q s q s

A s

 

' 9; :

r5 ) !T•

m2

( GRP h

) (m

B T iX

4 9

) ( /

. A iX 7 A ' E C%

% B 9T 6 % iX

4 9

E A

8 G!O8#

'l V[ "

A iX ) 8 @ ' 9 . %

94D Z E Z

E '"- 5 6 e % E O? ' i) *+ I%

A

ID

A '" 6#

g V Pk

!

) 74 A

E ) 1390 - 1400 N Z (

9 . ' 9 r!e6# ' N [ '

7!- E T 6 R ' A '?O) Q ' 4 % 6# !T )

(9)

' 6S N P

!pJ#

Y% ? U% A I%

) *+

i % 6# 8 A "

E ) g '-

RB '.5 9 A A

. ! N Z OD Z

E G! 5# K! '% + )

64#

%8

' 8!

'

$

! ) @ E

% 6# F?:! 8D '

Z b% e 6 P N Z

9 . .

% ':

.

%

A

! ' A .

% )

# _T A ) %

% '

!

$

! I V "

5T ) (RMSE

e

% b 5T

`+

) (CRM

!

$

! I 5T G85 ) (MAE

O?

A . E #

! ' A g

) 64#

%8 ' 8 ,!

$

! )

E 9

… '- Z A '

% . A

! ' A

% . )

A .

% ':

A . E

u#

!!

!TJ#

o 5

% . '! A

% .

! ) !$ ' 8%64# A Z

A . E E6 r5 % 6# 7%64#

U 6# 8D ) 38

!$

- ({Q) 6 B 'T A 8D E -

20

!$

-

'T A 8D E E (9 ) - RA

P ) U 6# '

77 N Z !$

' ! ' V 6D ?

7 A ! ' A - RA iX % 6# F?:! '"- 5 I% . 6A 58

P '.5 U 6# '

58

I! J# 8D E @ !$

. 6A

I%

i) *+

Y + 6%

8

'% + 9- ; )

"@

~ '.5

'"- 5 6 )6$- '

E6 ( 4 74 ) ! ' A ' _!>X# W8?X 10

'?Aj E S

'?

A 9 '

' V 6D 8 V P 6%

+ E F

% . 6A

6%

E

' E 8D e .# 7 K!

- _X F % _X ' .; 6S A

!$ '}% ) -

9. 5 - ;

' 6%

K! + ' A '

20 i% K D

F )6%

! ' A ' K!

' b!# # Y + 15 30 i) D i)

% '?

I!P - E ;

K!

!!u# !$ ) 74 e .#

9 . E U 6# 45 % 6# % )

'" 6#

A _T A U 6# i) *+ I%

% 8RP

» % 6# 9% O 45

« _T A . A N Z )

9% O

% + ' V 6D '5 ) 3 ( W% "#

6A )

Molden and Gates, 1990

:(

'5 3 (

1 1 D

T R R

PA Q

T R Q

 

,

' _T APA

( D ) % 6# 9% O V T

)

(s

"#R

7

!$

) E @

8D

!$ ) ' 8%64# QD

) ( /

) e .# QR

.9 ( /

'Q ) . _T A 9% O '

100 C% K D 685 . 6A #

~ I% .9 '. g E ; D6#

! ' A U 6#

Molden and

Gates

) $ ! ' '? ' (1990

) 685

90 100 PA( )

(

@ 7 E6 @ )

80 90 PA( )

W!"e (

)

80 PA

( % 6# F?:!

A 7 @ 'l 9 )

Afrasiabikia et al., 2017

.(

3 . H I 0

3 . 1 .

? % - 7

34 $" ?

$ 5 &

=

' 6S Z 94D e % E Z

' A % 6# E .? ' '! A O?

'" 6# % B C!- !) '"- 5 I% A

_T A )

RMSE CRM

' 4 MAE

6

%

@ 9 .

% I

% g

A

! '

150 V 6D

9 ' ) 7 A

' E 8D 64#

%8 '

$

! ) E6 E 8D r5

E '"- 5 6

! A

(10)

6 .

% I g 75

% I 150 Z

75 94D Z O?

A . R) 6 ' i!+

#

'?O A Z E ' V 6D 6

5T 8D E @ !$ ) ' 8%64#

N Z A .

Z Y% ? '

MAE

Z 87 / 0 94D

Z 23 / 1 b" ? '! p

A . .

! '

% I _T A OD 9 'B6#

' I%

' .

% 6 j ' .

! ' K

% C A j-

6#

?!

'Z 9 ' E 9@

'l R

% . _T A CRM

) Z

94D Z

' b!# # 002 / 0 - 007 / 0 - A 'B6#

'

% I '

?

% I

! K ODCRM

A .

% F

% I

_T A

; 9@

7 @ E6 @ E 7;

Z 94D Z 9 . 9%

! K _T A RMSE

Z 91 / 0 94D

Z 09 / 1 b" ? '! p ' 9 .

3 . 2 . 34

34

' 6S '! A ! ' A % 6# E .? ' 45 % 6# 9!"e

e

E N ) C! O# ' 6B6 6 B 'T A (9 ) - RA 'T A) 8D )

6# P (({Q) E U

!- 45 % 6# 7%64# % . A z X? Y% ? 9 N Z A '

V 6D '5.

) C! O# ' )

'.5 ( !$

! 9 [ '!; ' ) I!% + 9

(9 ) ? @ ) !$ 7 6S ) 8

(E _T A !

' % 6# 7%64# 9% O 7%64# 9 B . A N Z W8?X )6%

iX % 6#

! 9 [ ) I!% + 9

9% O _T A (9 ) - RA 'T A 8D E 9

iX ) 7 A iX I% Y% ? 'DkT . ? @ ' 4 6 6 j ) 2

( 'l .9 A R)

I% ' 6

) !$ # 9 [ ) !$ 7%64# 9% O - K 6$- )6% 'R) 9 % R E A I!% +

\k 9 9 [ E ? 9!) ' 9 6

< 6

F) I! Q

? 6

E ) !$ F!S # ) '

T 6 Y% ? . )

' 9 8RP %

' A

7%64# ' A % 6# 9% % W"e ;

! 6 '

*%

! @ ) !$

9

I!% + ' ' A 9 W8?X )6%

F E .9

Figure 2. Regional operational appraisal results for the off-takes located at the (A) upstream, (B) midstream, and (C) downstream regions of the North main irrigation canal (Right Canal), Abshar Irrigation District

(A) (B)

(C)

(11)

R) ' 6 i!+

# ! A

!+ N I!- :; 6Q Q C%

' 6S 9% % 6!A .#

N ) F I!!"# 'Z!? 45 % 6# 64 ! ' A C% % 6# _!>X#

! % 45 I! J#

! E N ? I% . A

8RP %

U% A 6T ! ' A 45 % 6# E .?

8RP % .9 V 6D 7R?4

Z% ?:

' B ' W8?X )

?% % !- !) F)

I! Q pf 7 6P I!!"#

' A

' 6S 9!"e 6 9 B N [ V @ 'l . 6A N Z N K- V 6D

' ' 6S 8RP % 7!84# 'l ' 4 _T A U 6? . ' A

9% O ) A

) W8?X )6% C! O# ' ( % 6# 7%64#

N O? S 6 K

Y% ? . A N Z GIS

_T A U 6? % . + ':% . 7!84#

94# ) !$ ' 7%64# 9% O

W8?X )6%

.9 6R F)

! ' A 4 45 % 6# 7!84# Y% ? '

6 P E B V 4 8D

PSUT

?T

SEEA-Water

'" 6#

/ + Y% ? I% .9 A O? i) *+ I% A 64

I! J#

' 45 4

) 6S ) >?@

4 )

% ' ! ' A r5 W8?X

SEEA-Water

' 6 P .8# >?@ iX % C%

( 6A ' V 6D _X G!@

' . % R

! % F G!@ ' 4 I! J#

iX % Q V Pk 6 j >?@ )

) -

'.5 9 A 6 j V Pk A jT OD

-

! ' A 4 @ . A O?

g

RB V Pk "# 6 j A

5269 /GRP F Q 'R!

/G!RP 7@ ; GRP) G!RP 2

€ ; # ? 300

( ?

?A 4 ' @ ! ' A I% 4 )

- g g ? V Pk -

I!

2 / 0 - 65 ?!-

!u? '! p 9A ! % K! ' 4 < . A

I% ' ! ' A 4 A 6 V 6D

Q '%[ ' 'B 'B P ; '%[ ':% . ' N )

K Q GIS

! 4 ) @ )

% C! O# ' ! % 9A 8 K! A _X iX

_X >?@ ) A

.

! % F G!@ ' 4 I! J#

iX % V Pk ! ' A )

Q ) . A O? ! ' A 4 @

g RB V Pk "# 6 j A

5269 /GRP F Q 'R!

/G!RP

!RP 7@ ; GRP) G 2

€ ; # ? 300

@ ! ' A I% 4 ( ?

' g

?A 4 g ? V Pk )

I!

2 / 0 # 65 !u? '! p ?!- < . A

9A ! % K! ' 4 6 V 6D I% ' ! ' A 4 A

P ; '%[ ':% . '

Q '%[ ' 'B 'B N )

K Q GIS

R) . A _X ! 4 ) @ ) ' 6

7 A ) 3 ( 7 @ 9%‡

iX 45 % 6# 9 E 9 [ )

@ ) !$ K! 8D )

D E ) 9 [ C% K 9!"@6 ' P 8

R?P 7 @ !] G % b 4 ' #

' A % ' 9 r!e6# ' N [ .9 % 8 I!R) K! % 6 ! )

F?:! 6A )

45 7%64# % 6# E .?

'

*%

E ' A

! ) 6T 8RP 6 '? 6!+ F) '

9% % I% . ?:! 6T ' A e ; E ;

b % 6# 7%64# ! )

45 ' ) I! J#

45 iA6+ 94# % ' P e € ' A bB6 (9 A

' A N P 7!-

' 7%64# % + 45 % 6# 9% O F Q 6

' '?: !

(12)

A ! % .

R) 6 I% €?: K! ! ' A 8RP % Y% ? ' 6

)

9% % 6 '

E .? ) V O8# i) IRe # 9 e 7%64# % 6#

4 I% @ $?: ) . % i) K! ! % ' )

Figure 3. Spatial Distribution of surface water distribution – based on the adequacy indicator values within

the Abshar Irrigation District

3 . 3 .

$ "& E ' (

$ %"& % D F %" )* < PSUT

SEEA-Water

R) ' 6 i!+

# R- W% "# # A <k# i) *+ I% A A E B W8?X )

!Q PSUT

!!u# E B

# E B ) W8?X KB g

I% H ) # "- 5 4 i) *+

- ! ' A

) -

. 6A W% "#

I! J#

! K

% :.# iX '

! F 6A y E iX

% B ) >?@

D6#

! W 6#

%

% C 9" D ' 9" D

%

$ %

! I N iX . ) 6 T

% B )

% ' >?@ '

4

! U

% 9:

6A 8X#

! ' 4 '

! U

% 9:

D6#

! W iX .

E B % ) I! J#

%K!

?T

SEEA-Water

9!8 @ ' 7 @ ) ! ' A C% g !. V Pk 7!R # !

7%• m A ' 9 E6>;

A .

3 . 3 . 1 . -E)!

' ( %

) ,0!% ="*%

Supply of water to other economic units of

which ) ,0!% @K ( Within the economy

(

-

) iX

goes to Agriculture

' 4 O? 7 @ :(

' A )

% !

(13)

- iX s A ) ) ?" D

Goes to Manufacture Industry

7 @ :(

! ' A g !. O?

?T - 9:! !

SEEA-Water

A A '" 6# K% 'e6; g !. ' .9 O? 7 @

- ) $ T H > iX

goes to Households

7 @ :(

! 9:! ! ' A g !. O?

?T

SEEA-Water

' A A '" 6# K% 'e6; g !.

.9 O? 7 @

- '!O># iX ) $ T A

Reused water

7 @ :(

! 9:! ! ' A g !. O?

?T

SEEA-Water

A A '" 6# K% 'e6; g !. ' .9 O? 7 @

- ) ke :+

Wastewater to sewerage

'? :(

' A ) % ' 9 O? 7 @ !

F?:!

) I! J#

A A '!O># :+

.

- CR

% ) A

Desalinated water

O? 7 @ !] :(

' A )

% !

3 . 3 . 2 . -E)!

M @K N"4 = ) -)

Into the environment 0 O P E? @K (

) Total returns (

- o !-6#

- )

Hydroelectricity power generation

' 4 7 @ :(

! ' A ) % ' !

o g !. CQ6 ) ! -

. ?:) !: ) 6# t % 6T !:

- ) ! iX %

irrigation water

(:

'R) ' A ) 7 @ ! .9 E6>;

- ) " O? 6 iX %

Mine water

(:

7 @

! 9:! ! ' A g !. O?

?T

SEEA-Water

'" 6# K% 'e6; g !. ' A A

7 @ .9 O?

- ) A iX %

Urban runoff

(:

7 @

! 9:! ! ' A g !. O?

?T

SEEA-Water

A '" 6# K% 'e6; g !. ' A

.9 O? 7 @

- C T 9 B H > iX % ) ?" D

Cooling water

(:

7 @

! g !. O?

?T - 9:! ! ' A

SEEA-Water

A A '" 6# K% 'e6; g !. ' .9 O? 7 @

- ) E .? F?:! !: 9 A V O8#

Losses in distribution because of leakages

(:

7 @

' 4

! 'R) ' A )

! .

- ) A '!O># ke :+

Treated wastewater

'? :(

' A ) ' 9 O? 7 @ !

F?:! % )

I! J#

A A '!O># :+

.

- ) H > % iX %

Other

(:

'?

' A )

@ 9P kP ' ! < + ' N

.. ) .

. % R

) Q * R% 0 O @K To inland water resources

(

- ) 45 iX %

Surface water

(:

'R) ' A )

! 7 @ A ' )

' 9 E6>;

i ) K!

7 @ )

! U 6# % . % A E

) '! A . A A I!RX#

- ) ! % iX %

Groundwater

(:

€ ' A ) 7 @ ! 6B h A ' 9 E6>;

E )

'! A ) E ) '! A V Pk ( ! %

! 6X ' •6O A

- ) s T 9 6 iX %

Soil Water

(:

€ ' A ) 7 @ ! 6B h A ' 9 E6>;

E )

(14)

'! A ) E ) '! A )

V Pk ('P K r5 A

! '%[ ' •6O A ! )

'P K % - ) % iX %

other sources

:(

' 6 RP ' A

) ' ! I% D T 6 % !

.9 < K

3 . 3 . 3 . ) ,0!% ="*% 5 @K Within the economy

(

@K % ' ( ) ,0!% =

4. Supply of water to other economic units of which (

I! J# 6S

% ) ;

>?@

! K U 6# ' 9

% C

>?@ ; ; '

%

$ I! J#

'e P . 6A

6# V O8#

% 9 p ' 'e P . 6A

% ) ;

>?@

\ 6RP

% G 8D ' A N Z

6A

6#

% G E ) ( ! ' A C% \ 6RP) '-6- %

! 6 )

% 7

%

$

! K . 6A N Z C# ' '?:

' ) 6

' ) Q % 6

! ' A 8D E F?% T S 6 V Pk 6#

) . 6R 9 p !

'

? A E .? 'O!x ! % 6# E .? kP 8D E E € 6 P CQ6 ?" D s A

! ' A 4 @ % j] % D % ) < + ) X? I! J# K ˆ A V T H >

A '?A '- K! !

.9 ' 4 7 @ 8D E KB I% I! A

3 . 3 . 4 . ) -) M @K into the Environment

(

) $ :0 % 0) - % 4 S 6 Losses in distribution because of leakages

(

- F?% I% U # V Pk -

) ! ' A C% :; ?T -

7 @ V 6D '

!

9 E >4? % y

1 -

! 9 ' 4 ! ) g

E6 Z# ) 2

- '! A 9 K!

E )

< O? ! E .? % 6#

/ ) E ) 9 I!RX# P .

) Other (

9R:@ I%

V O8# ' 6#

E ) ( 'B C% 'B ) 8D E

) P ) E ) ' 'B

' 6R A ( Q 'B J

6#

1 -

<

? )

'

*%

<

' 9 [

) )

!- !) 6T r5 F!S # -

) b8] ' 7! r5 F!S #

' A )

% % 6 ! 6A

- O?

6A 2 - F i ? ? 9

C!- !))

F!# ( )

' A ) FZ; I% ' 4 I! !+ F?% . A !

9 ' 4 7 @ 6!A ' V O8#

y 1 -

!+

$?:%

)

! ' K Z

`;

) ! ? -

% B !- !) ) ? + -

% B GRP 9P -

' @ '

! V Pk X '

V 6D 'S4-

$?:% I% . A )

! ' A ' 8D ) ! ' A C% 7%64# k h . %

8D

? E ) B T N R# K! (' 'B 'B

? ) I R ) E

) " 7 @ )

i ) " .#

P 8D ) )

) E !: E6 ?x O; !- !) '

*%

B )K%

.# 74 E

) i ) ! 6A b> ( )

2 - ! E

) '! A ' % B C! % !)

9!8 @ '! A % B C!- !) ) ? +

E ) ! I% . A

E ) 6#

E )

(15)

'! A ) P

HEC-RAS; SOBEK, CANALMAN, SWMM

% ( E ) ' ) A e %

' RP 6

< ? % % ?:) % B % )

A 7D ; 9 9 V[ "

. A (

kP ' 9 r!e6# ' N [ 'l

6 'X:

E B A I! J#

' A O? 6 %K!

! )

) E B ) 1

' 4 % . ( '.5 A

'"- 5 6 I%

i) *+

'l ' 'B6# .9 A I%

' H )

8D '

< !

.# :; )

V Pk 9% % 64 F!R># V @ 6 )

!

F!R># % K! '% 9 !

I! J#

45 C! O# ' V[6>4 C! O# ' A ! %

s T 9 6 6#

' 6 P R- % )

pf .#

. 6A Z 9% %

Table 1. The modified version of the Physical Supply Table (physical units) of PSUTs in SEEA-Water frameworkfor irrigation and drainage districts & its customized and calculated parameters for the Abshar

Irrigation & Drainage District per individual crops

4 .

? 0 O

F?:! ' Z :; )

' 6 P

!+ F ) K % ' 'Q a % 9% % N6 O

RA

RB) 6 j F?:! 7!: ?+

'.

< K 9 p )

) V Pk ( O! R

F) F!R># 6B6 9!"e 7 ) 6? % !-6? '

)

_T A % R • X# iX 6T ? ! ) ) )

' 9 I! Vk 7l : X

9:% P R?B >?@ ) W8?X G ( 5!4

' V 6D ? I% . % R 9% % ' !

' N @ % I!- i) *+ I%

'l C!R?:! < C%

' 6S ! % 45 F G!@ #

+!

>?@ :; <

- 9:%

5!4 4 X? 7!- . 6R ! ' A C% 4

?% % g !.

'" 6# '!D6# kP ) ! ' A X? :; < I% $ )

4 CQ6 ?% % ) #

' 6S U # 9!"5@ N P i) RB V Pk )

' 4 A A

'! A % ' A S? W!"e 8RP ' A

8RP 6 V e 6 ! )

) i% K ? 6:4

. 6A

Wheat Melon Squash Onion Beans Clover Gardens

9240 277 462 2310 1925 327 970 15511

59.5706 1.7858 2.9785 14.8927 12.4105 2.1082 6.2536 100

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

20.9806 0.6290 1.0490 5.2451 4.3710 0.7425 2.2025 35.2197

20.9806 0.628963761 1.049029811 5.24514906 4.370957546 0.74249513 2.20250848 35.2197

3.87804784 0.116257495 0.193902392 0.96951196 0.807926633 0.1372426 0.40711108 6.5100

10.5467 0.3162 0.5273 2.6367 2.1972 0.3732 1.1072 17.7045

20.9806 0.6290 1.0490 5.2451 4.3710 0.7425 2.2025 35.2197

14.4247 0.4324 0.7212 3.6062 3.0052 0.5105 1.5143 24.2145

1.6390 0.0491 0.0819 0.4097 0.3415 0.0580 0.1721 2.7513

4.9169 0.1474 0.2458 1.2292 1.0244 0.1740 0.5162 8.2539

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

20.98060 0.62896 1.04903 5.24515 4.37096 0.74250 2.20251 35.21970

49.8510 1.4944 2.4925 12.4627 10.3856 1.7642 5.2333 83.6838

Cropping Pattern Cultivate d Are a (ha) Cropping Pate rn Cultivate d Area De ns ity (%)

6. Total supply of water ( = 4 + 5 ) (MCM) 7. Wate r cons umption ( = 3 - 6 ) of which (MCM) 5. Total returnes ( = 5.a + 5.b )

Into the e nvironme nt

Hydroelectric power generation Irrigation water

Mine water Urban runoff Cooling water

Losses in distribution because of leak ages (MCM) Treated wastewater

Other ( Losses in distribution not because of leak ages)

Operational Losses (MCM) - Drained to ENV.

5.a. To inland water resources

5.a.1. Surface water (Total Losses (MCM)) 5.a.2. Groundwater

5.a.3. Soil water

5.b. To other sources (e.g. sea water) 4. Supply of water to other economic units of which:

Within the e conomy

4.i. goes to Agriculture 4.ii. Goes to Manufacture Industry 4.iv. Goes to Services 4.v. goes to Households 4.a. Reused water

4.b. Wastewater to sewerage (Drainage Canals (MCM)) - Drained to Econ.

4.c. Desalinated water

B. Phys ical supply table (phys ical units) Agriculture 1-3

Total

(16)

8RP % '"- 5 6 ! ' A

'! A O?

Z% ?: % B C!- !)

' B ' W8?X ) F) ?% % !- !)

pf 7 6P I!!"# I! Q ' ' A

6S

9!"e 6 9 B N [ V @ 'l 8RP % . A N Z 7 @ N K- V 6D

9!"e

' % 6# 7!84# ! ' A % 6# E .? P 8D )

'! A Y% ? . 6R F) ! ' A 4 45 F?:! 8RP

o 5 45

b ' A 4 ! % 9A # .9T I R 64 ' P ; ) ! !

P 8D F?:! V O8# % . 'Z!?

'! A 45 % 6# % . ':% . A

9A ! % % .

$- ' 'B6# A ! . ' .; % . A K! 9 6

9 p % 6# % . 9 A U 6# A

' 'B P ) ; C! O# ' ! ' A %j+

' Y% ? . A 9

I!>>X? W8?X V :8B ? A 6 ?

9 A 84

! ' A I%

'l C!R?:! < ' ? i) *+ I% A

9 ' 'l 7 @ ( C% ) F g :; E B '! #) i) *+ I% 8D H ) ' %

'B ' 'B P ) ; /9 6$- P V[6>4 / ) ? C! O#

$% H . A

' A 9% % ? 9% % ' n6e6 I% ' 9% P I% ?% % 6 % % ) ! )

6X X E "# '8RB ' ! ' 9 6 !-6? [ 9%6- )

'l < ! A

' i) *+ I%

C! O ' F I!!"# 6S 6 ! ) ; G 5 ' ?% % ) ;

F!R># B '.5 % 84 !

% B 9!R) A '?A >X ? 6 7! @ I% # pf #

% K

.

5 . B -4

= 1. European Environment Agency (EEA)

2. Physical Supply Use Tables (PSUTs)

3. The System of Environmental-Economic Accounting for water (SEEA-Water) 4. Integrator-Delay (ID) Model

6 . F V 1

)

!

‰ ' 6

„ "#

U 6#

6

% : 6B

.

7 .

Afrasiabikia, P., Parvaresh Rizi, A., & Javan, M. (2017). Scenarios for improvement of water distribution in Doroodzan irrigation network based on hydraulic simulation. Computers and Electronics in Agriculture, 135, 312-320.

ESCAP, U. (2017). Environment Statistics and System of Environment-Economic Accounting (SEEA): national assessment report.

Gan, H., Wang, Y., Lu, Q., Vardon, M., & Chanchai, A. (2012). Development and Application of the System of Environmental–Economic Accounting for Water in China. International Water Accounting: Effective Management of a Scarce Resource. Edward Elgar Publishing Inc., New York, 139-161.

(17)

Karimi Avargani, H., Hashemy Shahdany, S. M., Hashemi Garmdareh, S. E., & Liaghat, A.

(2020). Determination of Water Losses through the Agricultural Water Conveyance, Distribution, and Delivery System, Case Study of Roodasht Irrigation District, Isfahan.

Water and Irrigation Management, 10(1), 143-156. (In Persian)

Karimi, P., Bastiaanssen, W. G., & Molden, D. (2013). Water Accounting Plus (WA+)–a water accounting procedure for complex river basins based on satellite measurements. Hydrology and Earth System Sciences, 17(7), 2459-2472.

Molden, D. J., & Gates, T. K. (1990). Performance measures for evaluation of irrigation-water- delivery systems. Journal of Irrigation and Drainage Engineering, 116(6), 804-823.

Momblanch, A., Pedro-Monzonís, M., Solera, A., & Andreu, J. (2018). Water accounting for integrated water resources management: Experiences and recommendations. In Advances in Chemical Pollution, Environmental Management and Protection, 3, 63-96. Elsevier.

Peranginangin, N., Sakthivadivel, R., Scott, N.R., Kendy, E. and Steenhuis, T.S., 2004. Water accounting for conjunctive groundwater/surface water management: case of the Singkarak–

Ombilin River basin, Indonesia. Journal of Hydrology, 292(1-4), 1-22.

Razavi, S., Davary, K., & Davary, A. (2020). Water balance challenges in IRAN and provides a framework for improving it. Journal of Water and Sustainable Development, 7(3), 88-93.

Schuurmans, J., Schuurmans, W., Berger, H., Meulenberg, M., & Brouwer, R. (1997). Control of Water Levels in the Meuse River. Journal of Irrigation and Drainage Engineering, 123(3), 180-184.

Van Overloop, P. J., Negenborn, R. R., De Schutter, B., & Van De Giesen, N. C. (2010).

Predictive Control for National Water Flow Optimization in The Netherlands. Intelligent Infrastructures, 42, 439-461.

Vardon, M., Keith, H., & Lindenmayer, D. (2019). Accounting and valuing the ecosystem services related to water supply in the Central Highlands of Victoria, Australia. Ecosystem Services, 39, 101004.

Referensi

Dokumen terkait