• Tidak ada hasil yang ditemukan

Determining optimal virtual inertia and frequency control parameters to preserve the frequency stability in islanded microgrids with high penetration of renewables

N/A
N/A
Protected

Academic year: 2023

Membagikan "Determining optimal virtual inertia and frequency control parameters to preserve the frequency stability in islanded microgrids with high penetration of renewables"

Copied!
10
0
0

Teks penuh

(1)

ContentslistsavailableatScienceDirect

Electric Power Systems Research

jou rn al h om e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / e p s r

Determining optimal virtual inertia and frequency control parameters to preserve the frequency stability in islanded microgrids with high penetration of renewables

Masoud Hajiakbari Fini, Mohamad Esmail Hamedani Golshan

DepartmentofElectricalandComputerEngineering,IsfahanUniversityofTechnology,Isfahan,Iran

a r t i c l e i n f o

Articlehistory:

Received25January2017 Receivedinrevisedform8July2017 Accepted8August2017

Keywords:

Frequencystability Lowinertiamicrogrids Many-objectiveoptimization Renewableenergyresources Virtualinertia

a b s t r a c t

Preservingthefrequencystabilityoflowinertiamicrogrids(MGs)withhighpenetrationofrenewables isaseriouschallenge.Torisetothischallenge,theinertiaconstantofMGswouldbevirtuallyincreased usingenergystorages.However,itisimportanttodeterminethesuitablevalueofinertiaconstantfor thesesystemssuchthatthefrequencystabilityispreservedwithalowercost.Frequencydroopcoefficient ofdistributedenergyresources(DERs)andloadfrequencycontrollers’parameterswouldalsoaffectthe frequencyresponseofMGs.Hence,inthispaper,inertiaconstantistunedtogetherwithfrequencydroop coefficientofDERsandloadfrequencycontrollers’parameters.Determiningtheseparametersismodeled asamulti-objectiveoptimizationproblemand,becausethenumberofobjectivesishigherthanthree, theproblemissolvedbyamany-objectiveoptimizationalgorithm.Comparativesimulationstudieshave beendoneonanMGwithdifferenttypesofDERstoprovethatusingtheproposedstrategyfortuningthe MGparametersnotonlythefrequencydeviationishighlydecreasedbutalsotheamountofloadshedding isconsiderablydiminished.Thiswouldincreasethecustomers’satisfaction.Moreover,consideringthe inertiaconstantasaminimizationobjective,frequencystabilitywouldbepreservedwithalowercost.

©2017ElsevierB.V.Allrightsreserved.

1. Introduction

Duetotheenvironmentalconcerns,thereisanincreasinginter- estinusingrenewableenergysources(RESs)forpowergeneration.

MGswouldprovideasuitableinfrastructureforintegratingRESsto thegridatdistributionlevel.MGscanoperateingrid-connectedor islandedmode.However,inislandedmode,theywouldencounter challengesinfrequencyandvoltagecontrol.Theseproblemswould beexacerbatedinMGswithahighshareofpower-electronically interfacedDERs;duetothelowinertiaofthegrid.Infact,inlow inertiaMGs,powerimbalancesresultinrapidchangesinfrequency thatmightendangerthestabilityofthesystem[1].

Toaddressthesestabilityconcerns,somemethodshavebeen proposedtoincreasetheinertiaofMGs.InRefs.[2,3],usingsyn- chronous condensers have been proposed for this purpose. In additiontocontributingtotheinertiaofthegird,synchronouscon- denserswouldparticipateinreactivepowercontrol.Inverter-based DERswouldalsoemulatetheinertialresponseofsynchronousgen-

Correspondingauthor.

E-mailaddresses:m.hajiakbari@ec.iut.ac.ir(M.HajiakbariFini), hgolshan@cc.iut.ac.ir(M.E.HamedaniGolshan).

eratorsbyinjectingapowerproportionaltofrequencyderivative tothegrid.InRef.[4],acontrolmethodhasbeenproposedforcon- verterstoemulatethebehaviorofsynchronousgenerators.Virtual inertiahasbeenimplementedinRef.[5]toincreasethecontribu- tionofdistributedgeneratorstooscillationdamping.Toemulate the inertial behavior of synchronousgenerators, inverter-based DERsrequireatemporarysourceofenergysimilartothekinetic energyoftherotorofsynchronousgenerators.InRef.[6],theenergy storedintherotorofdoublyfedinductiongenerator(DFIG)based windturbinesandalsotheultracapacitor(UC)installedatthedc- linkofconvertersareusedasenergysourcesforinertiaemulation.

InRef.[7],HVDCtransmissionlineiscontrolledtocontributetothe inertiaofthegrid.HVDClinkswouldtransfertheinertialpower generatedbywindfarmstothemaingrid,transferinertialpower fromoneareaofpowersystemtoanotherareaorusetheenergy storedintheDClinktoemulatetheinertialresponse.UCispro- posedinRef.[8]toemulatetheinertialresponseofsynchronous generatorsin anisolatedpowersystem.Althoughsomestudies havebeencarriedoutoncontributionofinverter-basedDERsto theinertiaofMGs,tothebestofauthors’knowledge,asystematic methodfordeterminingthepropervalueforinertiaconstantin islandedMGshasnotyetbeenproposed.

http://dx.doi.org/10.1016/j.epsr.2017.08.007 0378-7796/©2017ElsevierB.V.Allrightsreserved.

(2)

Nomenclature

R Frequencydroopcoefficientofenergyresources H Inertiaconstantofthegrid

Hvir Virtualinertia

Heq Theequivalentinertiaconstantofsynchronousgen- erators

Pref-old Referencepowerofenergyresourceswithoutiner- tiaemulation

Pref-new Referencepowerofenergyresourceswithinertia emulation

f Operationfrequencyofthegrid

E TheenergyrequiredbyUCforinertiaemulation Pinertia Inertialpower

finit Frequencybeforethedisturbance fcrit Criticalfrequency

tcrit Thetimeittakesthefrequencytoreachthecritical frequency

Eavail TheenergyavailablefromUC C CapacitanceofUC

Vinit InitialvoltageofUC

Vmin MinimumpermissiblevoltageofUC Pbase Basepowerofthegrid

Vn NominalvoltageofUC Pn NominalpowerofUC fnadir Frequencyundershoot fmax Frequencyovershoot tst Settlingtimeoffrequency Obji Theithobjectivefunction

t Time

QL0 Initialreactivepowerofload

QL Currentvaluesoftheload’sreactivepower b Coefficientofloadreactivepowerdependencyon

voltage

fn Nominalfrequency tsim Simulationtime

f(t) Deviationofthefrequencyfromthenominalvalue fmin Minimumdesirablefrequency

x Vectorofdecisionvariables

n ThenumberofDERsthatparticipateinfrequency control

xup Theupperlimitvectorforthedecisionvariables xlow Thelowerlimitvectorforthedecisionvariables Objli TheithobjectiveofthelthParetooptimalsolution m Thenumberofobjectives

IdealObj Idealobjectivevector

IdealObji Theithelementoftheidealobjectivevector dl SumofthenormalizedobjectivesofthelthPareto

solution

Tg Governortimeconstant Tt Turbinetimeconstant TBESS BESStimeconstant TUC UCtimeconstant

BESS BESSramprate P˙DEG DEGramprate

PL0 Initialactivepowerofload V0 Initialvoltageofload V Voltageoftheloadbus

PL Currentvaluesoftheloadactivepower

a Coefficientofloadactivepowerdependencyonvolt- age

Kpf Coefficientofloadactivepowerdependencyonfre- quency

Kqf Coefficientofloadreactivepowerdependencyon frequency

Inadditiontoinertiaconstant,loadfrequencycontrollersand frequency droop coefficient of power sources would affectthe frequency response of thegrid. Fine-tuningthe loadfrequency controllerswouldreducethemaximumfrequencydeviationand alsobringbackthefrequencytothenominalvaluefaster.Differ- entmethodshavebeenproposedforloadfrequencycontrol(LFC) inpowersystems.InRef.[9]theperformanceofmodelpredictive controllerforLFCinNordicpowersystemwasinvestigated.Many researchershavefocused ontuningthetraditional proportional integral(PI)/proportionalintegralderivative(PID)controllersusing evolutionaryalgorithms.InRef.[10]bacterialforagingoptimization algorithmhasbeenimplementedtotunetheloadfrequencycon- trollersofanMGwithgenerationrateconstraint(GRC).InRef.[11]

ahierarchicalapproachbasedonfuzzylogichasbeenproposed toimprove the quality of frequency control. Electrical vehicles havebeenimplementedinRef.[12]forfrequencycontrol.InRef.

[13],fractionalorderPIDcontrollershavebeenproposedforLFC inamulti-areapowersystem.Anadaptiveset-pointmodulation techniquehasbeenimplementedinRef.[14]toenhancetheperfor- manceofPIloadfrequencycontrollers.Toimprovetheperformance offrequencycontrollersinathree-areathermalpowersystem,in Ref.[15]governors’frequencydroopcoefficient(R)havebeenopti- mizedtogetherwiththeloadfrequencycontrollers’parameters.

Sincethegridinertiaconstant(H),frequencydroopcoefficientof DERsandparametersofloadfrequencycontrollersallaffectthefre- quencyresponseofMGs,inthispaper,tuningtheseparametershas beensuggestedtoimprovethefrequencystabilityofMGs.Based ondifferentcriteriathatshouldbemettohaveaproperfrequency responseinMGs,asystematicmethodisproposedfortuningallthe parameters,includingR,Handthecontrollersparameters,simulta- neously.Themaingoaloftuningtheseparametersistoimprovethe frequencystabilityofMG.However,thisgoalshouldbeachieved withtheminimumcost.Hence,tuningtheseparametershasbeen modeledasamulti-objectiveoptimizationproblemwhichconsid- ersbothstabilityandeconomicaspects.Consideringthefactthat usualmulti-objectiveoptimizationalgorithms,likenon-dominated sortinggeneticalgorithmII(NSGA-II),wouldnotshowagoodper- formanceinsolvingoptimizationproblemswithmorethanthree objectives[16],a recentlydevelopedmany-objectivekneepoint drivenevolutionaryalgorithm(KnEA)isimplementedforsolving thisproblem.Finally,toselectoneoftheParetooptimalsolutions obtainedbyKnEAasthefinalsolution,astrategybasedonthemini- mumsumofthenormalizedobjectivesissuggested.Also,amethod fordeterminingthecharacteristicsoftheultracapacitorrequired foremulatingthedeterminedinertiaisproposed.

Therestofthispaperisorganizedasfollows:inSection2,the requiredequipmentforincreasingtheinertiaconstantoftheMG isstudied.InSection3,theprocessoftuningtheparametersofMG forimprovingitsfrequencyresponseisexplained.ThestudiedMG isintroducedinSection4.Then,inSection5,bysimulationstudies carriedoutinMatlab/Simulink,theeffectivenessoftheproposed methodisinvestigated.Finally,theconclusionsofthisresearchare presentedinSection6.

2. IncreasingtheinertiaconstantofMG

In this paper, the proper value of inertia constant together withfrequencydroopcoefficientofDERsandloadfrequencycon- trollersparametersaretunedtoimprovethefrequencystability.To contributetotheinertialresponse,thepowerreferenceofinverter- basedDERsshouldbealteredasfollows[17]:

Prefnew=Prefold−2Hvir.df

dt (1)

wherePref-old,Pref-new,Hvirandfarethereferencepowerwithout inertiaemulation(inpu),thereferencepowerwithinertiaemula-

(3)

tion(inpu),thevalueofvirtualinertia(inpus/Hz)andoperation frequencyofthegrid(inHz),respectively.

Theenergystoragesusedforprovidinginertialpowershould beabletocontributetotheinertiaofthegriduntilthefrequency reaches its critical value. Hence, the required energy for con- tributingtoinertial responsewithaninertiaconstant ofHvir is determinedas:

E=

tcrit

0

Pinertiadt=

tcrit

0

2Hvir.df dtdt=

fcrit

finit

2Hvirdf=2Hvir(finitfcrit) (2)

wherePinertia,finit,fcrit andtcrit aretheinertialpower(inpu), thefrequencybeforethedisturbance(inHz),thecriticalfrequency (inHz)andthetimeittakesthefrequencytoreachfcrit(ins),respec- tively.Itcanbeassumedthatthefrequencyofthegridbeforethe disturbanceequalstothenominalvalue(fn).

IncaseofusingenergystoragessuchasUCforemulatingthe inertialresponse,theircapacityandmaximumpowershouldbe designed.TheenergystoredinUCdependsonitscapacitanceand nominalvoltage.AstheUCcannotbefullydischargedanditsstored energycanbeextracteduntilthevoltagereachesaspecifiedvalue [18],theenergyavailablefromUCforinertialresponse(inpus)is:

Eavail=C 2

Vinit2 −Vmin2

1

Pbase (3)

whereC,Vinit,VminandPbasearethecapacitance(inF),initialvoltage (inV),minimumpermissiblevoltageofUC(inV)andbasepower ofthegrid(inW).ItcanbeassumedthattheinitialvoltageofUC beforethedisturbanceisequaltothenominalvalue(Vn).Basedon Eqs.(2)and(3)therequiredcapacitanceofUCforemulatingan inertiaconstantequaltoHviris:

Creq=4Hvir.

(fn−fcrit)

V2n−Vmin2

.Pbase (4)

Hence,thenominalstoredenergyofUC(inpus)willbe:

En=1

2CreqVn2 1

Pbase =2Hvir.

(fn−fcrit)

Vn2−Vmin2

.Vn2 (5) ThenominalpoweroftheUC(inpu)canbedefinedsuchthat theUCisabletoinjecttherequiredinertialpowertogridincaseof theworstcontingency:

Pn=2Hvir.max|df

dt| (6)

wheremax|dfdt|isthehighestrateoffrequencydecay(inHz/s)which happens immediatelyaftertheoccurrence oftheworst contin- gency.

InSection3,amethodfordeterminingtherequiredinertiacon- stanttogetherwithsometunableparametersofMGisproposed.

SubtractingtheinherentinertiaconstantofMGfromtheminimum requiredvalueofinertiaconstant,thevalueofinertiathatshould bevirtuallyemulatediscalculated.

3. ImprovingfrequencyresponseandstabilityofMGsby tuningH,Randloadfrequencycontrollers

IncreasingHand1/Rwoulddecreasethemaximumfrequency deviation.1/Risreferredtoasprimaryfrequencycontrolgain.On theotherhand,whileincreasingHdecreasestheamplitudeoffre- quencyoscillations,increasing1/Rabovea specificvaluewould increasetheamplitudeoftheseoscillations.Also,finetuningthe loadfrequencycontrollers,whichareresponsibleforbringingthe frequencydeviationbacktozero,improvesthefrequencyresponse ofMG. Hence,HandR wouldbetunedtogetherwithloadfre- quencycontrollerstoresultinasmoothfrequencyresponsethat

Fig.1. FrequencyoftheMGafterapowerdeficit.

doesnotviolatethespecifiedlimits.Forthispurpose,determining thepropercriteriaandusinganeffectivemethodfortuningthe parameters,suchthatthesecriteriaaremet,isofgreatimportance.

3.1. Objectivefunctionsandproblemformulation

ThetypicalbehavioroffrequencyofanMGafterapowerdeficit isshowninFig.1.Ascanbeseeninthisfigure,frequencyunder- shoot(fnadir),frequencyovershoot(fmax)andthetimeafterwhich frequencydeviationfromthenominalvaluereturnstothedesired region(tst)areimportantcharacteristicsoffrequencyresponsethat shouldbeminimized.Thesegoalswouldbeachievedbydetermin- ingthepropervaluesofRandHtogetherwiththeparametersofPID loadfrequencycontrollers(KP,KIandKD).Itisimportanttotune theseparameterssuchthatthegoalsareachievedwiththemini- mumcost.Inthefollowing,theobjectivefunctionsthatshouldbe optimizedforfinetuningtheparametersofanMGarediscussed.

ThepurposeofthefrequencycontrolinMG,incaseofapower imbalance,istominimizethemaximumfrequencydeviationwhile bringingthefrequencybacktothedesirableregionassoonaspos- sible.Itis alsoimportanttohavea zerosteadystatefrequency deviation.ThefirstgoalwouldbeachievedbyminimizingObj1and Obj2whicharedefinedasafunctionoffrequencyundershootand overshootinFig.1,respectively.

Obj1=fn−fnadir (7)

Obj2=fmax−fn (8)

wherefnisthenominalfrequency.

Thesecondgoalwouldbeachievedbyconsideringthesettling time,denotedbytstinFig.1,asthethirdobjective:

Obj3=tst (9)

where tst is the time afterwhich thefrequency deviation will remainsmallerthan2%ofthemaximumdeviationforthestudied disturbance.

Although(9)minimizesthesettlingtime,itcannotguarantee thezerosteadystatefrequencyerror;i.e.thefrequencymighthave lowamplitudeoscillationsaroundthenominalvalue.Zerosteady statefrequencydeviationisachievedbyminimizingtheintegralof timemultipliedbyabsoluteerror(ITAE):

Obj4=

t

sim

0

t×|f(t)|dt (10)

wheretistimeandf(t)isdeviationofthefrequencyfromthe nominalvalue(f(t)=f(t)−fn)andtsimisthesimulationtime.This objectivefunctionalsowouldresultin areductioninfrequency oscillations.Furthermore,itwouldaffectthesettlingtime.How- ever,sincesomeotherconflictingfactorssuchasthemaximum frequencydeviationareconsideredinEq.(10),tominimizetheset- tlingtime,itisnecessarytoconsiderEq.(9)asoneoftheobjective functions.

(4)

Fig.2.Studiedmicrogrid.

Theaboveobjectivefunctionsareminimizedbyoptimaltuning theloadfrequencycontrollers’parameters,frequencydroopcoef- ficientofDERsandinertiaconstantofMG.However,toincreasethe inertiaconstantofMG,energystoragesarerequired.Higheriner- tiaconstantwillresultinahighercostofenergystorages.Hence, minimizingHwouldbeconsideredasthenextobjectiveof this problem:

Obj5=H (11)

whereHisthesumoftheequivalentinertiaconstantoftheonline synchronousgenerators (Heq)and theinertiaconstant which is goingtobevirtuallyemulated(Hvir);i.eH=Heq+Hvir.

Totuneloadfrequencycontrollersparameters,frequencydroop coefficientofDERsandtheequivalentinertiaconstantoftheMG, theoptimizationproblemwouldbeformulatedasfollows:

Minimize(obj1(x),obj2(x),...obj5(x))

x=(KP1,KI1,KD1,...,KPn,KIn,KDn,R1,...,Rn,H) (12) S.t.fnadir>fmin

xlow≤x≤xup

Theconstraintpreventsthefrequencyfromfallingbelowthe minimumdesirablevalue(fmin).xrepresentsthedecisionvariables vector,n isthenumber ofDERsthatparticipateinprimaryfre- quencycontrolandloadfrequencycontrol.Also,xupandxloware theupperandlowerlimitvectorsforthedecisionvariables.

3.2. Solvingtheoptimizationproblem

InSection3.1,severalobjectiveshavebeenintroducedtobe minimizedforimprovingthefrequencyresponseandstabilityof

theMGwiththeminimumcost.Becauseoftheconflictingnatureof theobjectives,fortheproblemsofthistype,generallythereisaset oftrade-offsolutionsknownasParetooptimalsolutions.Thistype ofproblemscanbesolvedbymeansofmulti-objectiveevolutionary algorithmstoobtainasetofParetooptimalsolutions.

However,duetothefactthatthenumberofobjectivesishigher thanthree, ordinaryevolutionaryalgorithmswouldnot showa goodperformanceinsolvingthisproblemandmany-objectiveopti- mizationalgorithmsshouldbeusedtosolveit [16].Kneepoint drivenevolutionaryalgorithm (KnEA) isa many-objectiveopti- mizationalgorithmwhichhasbeennewlyproposedinRef.[16].

Thesuperiorityofthisalgorithminsolvingmany-objectiveopti- mizationproblemsoversomeothermulti-objectivealgorithmshas beenprovedinRef.[16].Hence,KnEAhasbeenimplementedfor solvingthemany-objectiveoptimizationproblemdefinedinthis paper.

3.2.1. Solvingprocess

Principally,KnEAisanelitistPareto-basedmulti-objectiveevo- lutionaryalgorithm.ThemaindifferencebetweenKnEAandother Pareto-basedmulti-objectiveevolutionaryalgorithmslikeNSGA-II isusingkneepointsasasecondaryselectioncriterionbesidesdom- inancerelationship.Addingthiscriteriontotheselectionprocess hasimprovedtheperformanceofKnEAinsolvingmany-objective optimizationproblems.InParetofront,akneepointreferstothe solutioninwhichasmallimprovementinoneobjectiveofsucha solutionresultsinaseveredegradationinatleastoneoftheother objectives.

ThemainstepsofKnEAforsolvingthemany-objectiveproblem oftuningofMGparametersarepresentedbelow.Moredetailson KnEAwouldbefoundinRef.[16].

(5)

1.Initialization:Inthissteptheinputparameters,includingthe populationsize(N),numberofiterations,theratioofkneepoints and theupper/lowerlimits ofdecision variables areentered.

Then,theinitialsetsofMGparametersx=(KP1,KI1,KD1,...,KP n, KI n,KD n,R1,...,Rn,H)arerandomlygenerated.

2.Calculatingthevaluesoftheobjectivefunctions:Thedynamic MGmodelsimulatedinMatlab/Simulinkisrunandtheobjec- tivefunctionsincaseofthespecifieddisturbancesarecalculated foreachmemberofMGparametersset.Forthemembersthat resultedinviolationfromtheconstraint,asapenaltymecha- nism,thevalueoftheobjectivesaremultipliedby1000.

3.Binarytournamentselection:Inthebinarytournamentselec- tion, three tournament metrics including the dominance relationship,weighteddistancemeasure,andthekneepointcri- terionareimplemented,tochooseindividualsfromtheparent setsofMGparametersforgeneratingNoffspringsetsbasedon avariation method.Infact,inthebinarytournament mating selection,twosolutionsareselectedrandomlyfromtheparent populationset.Ifoneofthesolutionsisdominatedbytheother one,thenthelatersolutionisselected.Ifnoneofsolutionscan dominatetheotherone,itwillbecheckedwhethertheyareknee points.Ifonlyoneofthesetwosolutionscanbeconsideredasa kneepoint,thenthekneepointisselectedfromtheparentset.

Otherwise,aweighteddistancewillbeusedforcomparingthe twosolutionsandthesolutionwhichhasalargerweighteddis- tancewillwinthetournament.Iftheweighteddistancesofboth solutionsarethesame,oneofthemwillbeselectedrandomly forreproduction.

4.Non-dominatedsortingandidentifyingthekneepoints:Non- dominated sorting is used to form non-dominated fronts.

Different methods have been proposed in literature for this purpose.InKnEA,duetoitscomputationalefficiency,thenon- dominatedsortingmethodproposedinRef.[19],isemployed.

Thenanadaptivestrategy,whichisthoroughlyexplainedinRef.

[16],istakentoidentifythekneepointsofnon-dominatedfronts.

5.Environmentalselection:ToselectNindividualsastheparent setsofMGparametersofthenextgeneration,environmental selectionisperformed.Beforedoingenvironmentalselection, KnEAperformsnon-dominatedsortingasexplainedinRef.[19]

toformNF non-dominatedfronts.Then,itstartschoosingthe non-dominated solutions fromthefirst non-dominated front (F1).WhenthenumberofsolutionsinF1ishigherthanthepopu- lationsizeN,thekneepointslocatedinF1arechosenasparents forthenextpopulation.Ifthenumberofkneepoints(NP1)is alsolargerthanN,thenNkneepointswithalargerdistancefrom thehyperplanearechosen.Otherwise,NP1kneepointstogether with(N−NP1)othersolutionsinF1withalargerdistancefrom thehyperplaneofF1areselected.Whenthenumberofsolutions inF1issmallerthanN,KnEAselects(N−|F1|)parentsolutions fromthesecondnon-dominatedfrontbasedonaproceduresim- ilartowhatexplainedforF1.ThisprocessisrepeateduntilN parentpopulationforthenextgenerationisfound.

Theaboveprocedurerepeatsuntilthemaximumnumberofiter- ationsisreached.Intheend,thealgorithmproducesanumberof Paretooptimalsolutionsamongwhichonehastobeselectedasthe finalsolution.TheprocedureofselectingoneoftheParetooptimal solutionsasthefinalsolutionisexplainedinSection3.2.2.

3.2.2. Selectingthefinalsolution

Whenthestopcriterionismet,theoptimizationalgorithmwill giveusanumberofParetooptimalsolutionsamongwhichonehas tobechosenasthefinalsolution.Here,ameasurebasedonthesum

ofthenormalizedobjectiveshasbeenproposedtoselectoneofthe NParetooptimalsolutionsasthefinalsolution:

dl=

m

i=1

Obj

liIdealObji

(13)

wheretheObjliistheithobjectiveofthelthParetooptimalsolution, misthenumberofobjectivesandIdealObjiistheithelementof theidealobjectivevectorwhichisdefinedasfollows:

IdealObj=

min

l=1Nobjl1, min

l=1Nobjl2,..., min

l=1Nobjml

Theithelementofthisvectorequalstotheminimumnon-zero valueoftheithobjectiveamongalltheobtainedParetooptimal solutions.

TheParetooptimalsolutionswouldberankedbasedonthed calculatedforeachsolutionandifthesolutionwiththeminimum disnotsatisfactoryforthedecisionmaker,theothersolutionscan beconsideredaccordingtotheirrank.

4. StudiedMG

4.1. Configurationofthestudiedmicrogrid

To illustrate the effectiveness of the proposed method for improvingthefrequencystabilityofMGs,amicrogridwithvarious DERsincludingwindturbinegenerator(WTG),photovoltaic(PV), dieselenginegenerator(DEG)andbatteryenergystoragesystem (BESS)hasbeenstudied.Inthissystem,PVandWTGarecontrolled toinjectthemaximumpowertothegridandarenotdispatchable.

But,DEGandBESSparticipateinfrequencycontrol.

ThestudiedMGwhichisshowninFig.2isamodifiedIEEEstan- darddistributionsystem[20,21].Aneighthordermodelisused forsynchronousgenerator.Dieselengineandgovernorarerepre- sentedbythefollowingtransferfunction[22]:

GDEG(s)= 1

(1+sTg)(1+sTt) (14)

whereTgandTtaregovernorandturbinetimeconstants,respec- tively.

ThemodelusedforBESSis[22]:

GBESS(s)= KBESS

(1+sTBESS) (15)

UCwhichisimplementedforinertiaemulationismodeledby thefollowingtransferfunction[8]:

GUC(s)= 1

(1+sTUC) (16)

Consideringthefactthattherateofchangeofoutputpowerof eachDERislimitedandthiswouldhighlyaffecttheirfrequency response,therampupandrampdownrateoftheoutputpowerof theseDERshasbeenconsideredas[23]:

BESS<20%/s, P˙DEG<40%/min

Theeffectoffrequencyandvoltagedependencyofloadsonthe activeandreactivepowersismodeledasfollows[24]:

PL=PL0(V V0)

˛

(1+Kpff) QL=QL0(V

V0)

b

(1+Kqff)

(17)

wherePL,PL0,V,V0,a,andKpfarecurrentloadactivepower,initial activepoweroftheload,loadvoltage,initialvoltageofload,voltage dependencycoefficientofactivepowerandfrequencydependency coefficientofactivepower,respectively.Also,QL,QL0,b,andKqf

(6)

Fig.3.FrequencyresponsemodelofthestudiedMG.

arecurrentloadreactivepower,initialreactivepoweroftheload, voltagedependencycoefficientofreactivepowerand frequency dependencycoefficientofreactivepower,respectively.

ThevalueofparametersofDERsandloadsaretakenfromRefs.

[8,20,22,24]andgiveninAppendixA.

4.2. Frequencyresponsemodel

Todecreasethecomputationalcostofsolvingtheoptimization problem,itisdesirabletosimplifythemodelusedforfrequency responsestudies.Inisolatedpowersystems,frequencydynamics aremainlyaffectedbyrotorandgovernor-turbinesystemdynam- ics.Exciterandgeneratortransientsaremuchfaster andcanbe neglected[8].Hence,thefrequencyresponsemodelshowninFig.3 isaccurateenoughforinvestigatingthefrequencyresponseofMGs incaseofpowerimbalances[8,22].Inthismodel,Heq andDare theequivalentinertiaconstantofthesynchronousgeneratorsand loaddampingfactor.Loaddampingfactormodelsthedependency ofloadspowerinfrequency.ReqBESSandReqDEGaretheequivalent frequencydroopcoefficientofBESSandtheequivalentfrequency droopcoefficientofDEGs,respectively.Heq(inpus/Hz)canbecal- culatedasfollows[24]:

Heq=

n

i=1

HiSi

fn.Sbase (18)

where Hi, Si, Sbase and n are theinertia constant of theith synchronousgenerator(ins),thenominalcapacityoftheithsyn- chronousgenerator(inMVA),thebasepowerofMG(inMVA)and thenumberofthesynchronousgenerators,respectively.

TocalculateloaddampingfactorfromthedetailedmodelofMG, itisassumedthatDERsdonotcontributetothefrequencyresponse.

IfapowerdeficitwiththemagnitudeofPD(inpu)occursinsuch acase,bymeasuringthesteadystatefrequencydeviation(fssin Hz),loaddampingfactor(inpu/Hz)wouldbecalculatedasfollows:

D= PD

fss (19)

Also,foronlineestimationoftheequivalentinertiaconstantof powersystemsandloaddampingfactor,somemethodshavebeen proposedinRefs.[25,26].

Fig.4whichcomparesthefrequencyobtainedusingthedetailed modelofMGandthesimplifiedfrequencyresponsemodeldepicted inFig.3,showsthat thefrequency responsemodel hasa good

Fig.4. Comparisonbetweentheresponseofthedetailedmodelandthesimplified frequencyresponsemodel:(a)incaseofa0.86MWpowerdeficitand(b)incaseof a4.5MWpowerdeficit.

accuracyincaseofbothsmallandlargedisturbances.Theopti- malparameterspresentedinthesecondrowofTable2,havebeen usedinthesesimulations.

Duetothefactthatthefrequencyresponsemodelhasagood accuracyandcalculationoffrequencyusingthismodelconsider- ablyreducesthecomputationalcost,thismodelhasbeenusedfor theoptimizationprocess.Also,thesimulationresultspresentedin thenextsectionareobtainedusingthefrequencyresponsemodel.

The upperand lower limitsof the decision variables of the optimizationproblemareconsideredas:0.0149<H<0.2pus/Hz, 0<1/R1<5pu/Hz, 0<1/R2<5pu/Hz, −5<KP1<5, −5<KI1<5,

−5<KD1<5,−5<KP2<5,−5<KI2<5,−5<KD2<5.

5. Resultsandanalysis

Inthissection,thenecessityofincreasingtheinertiaconstant ofalowinertiaMGforachievinganacceptablefrequencyresponse hasbeeninvestigatedanddifferentstrategiesfortuningtheparam- etersofMGhavebeencompared.

Astheemulatedinertiaconstantisdependentonthecapacityof theinstalledUC,increasingitwillrequireanincreaseinthecapacity ofUC.Hence,avaluefortheemulatedinertiaconstantshouldbe determinedthatisenoughforkeepingthefrequencystabilityofthe MG,incaseoftheworstcontingency,inalloperatingconditions.

Theworstoperatingconditionfromthefrequencystabilitypointof viewiswhenthesystemhastheminimumload,whichresultsin thelowestloaddampingfactor,andtherenewablesproducetheir maximumpower,whichresultsinthelowestinertiaconstant.Such anoperatingconditionforthestudiedMG,includingloadspower andrenewablesgeneration,isshowninFig.2.Theinertiaconstant, frequencydroopcoefficientofDERsandloadfrequencycontrollers parametersaretunedsuchthatthefrequencyiskeptabovefminif theworstcontingencyhappenswhenthesystemhasthelowest valueofHeqandD.Thetunedparameterswouldbefixedforallthe operatingconditionsoftheMG.

WhilelowervaluesofRresultinlowerfrequencydeviations in case of small disturbances, they might result in oscillatory frequencyresponseincaseoflargedisturbances.Hence,theopti- mizationproblemissimultaneouslysolvedforasmallandlarge disturbancetoguaranteetheacceptableoperationofMGincase ofboth small and largedisturbances.In this section,theworst contingencywhich is in thescopeof loadfrequency control(a 4.5MWpowerdeficit),isconsideredasthelargecontingencyand theminimumallowedfrequencyoftheMGbeforeactivatingthe

(7)

Fig.5.FrequencyoftheMGincaseofa0.86MWpowerdeficit.

Fig.6.FrequencyoftheMGincaseofa4.5MWpowerdeficit.

underfrequencyloadsheddingrelays(48Hz)isconsideredasfmin forthiscase.Ontheotherhand,a0.86MWdisturbanceisconsid- eredasthesmalldisturbanceforwhichtheproblemissolved.The valueoffminforthiscaseisconsideredtobe49.5Hz.tsimusedfor optimizationequals1000s.

5.1. Comparisonbetweentheperformanceofdifferentstrategies usedfortuningtheparameters

ToinvestigatethenecessityoftuningH,firstly,onlyloadfre- quencycontrollersand frequencydroop coefficientof DERsare tuned(theinertiaconstanthasnotbeentuned);thisstrategyis calledOriginalH.Then,Hhasbeentunedtogetherwithcontrollers andfrequencydroopcoefficientofDERsandthisstrategyiscalled TunedH#1.Finally,toshowtheeffectofconsideringHasoneofthe objectives,Hhasbeenconsideredasoneofthedecisionvariables tobetunedtogetherwithcontrollersandfrequencydroopcoef- ficientofDERsbutObj5 isomitted;thisstrategyiscalledTuned H#2.Aftertheterminationofoptimizationprocess,MOalgorithm achievesasetofParetooptimalsolutions.AnumberofthePareto optimalsolutionsofTunedH#1strategyaregiveninTable1.The objectiveswithsuperscript1and2arerelatedtothelargeandsmall disturbance,respectively.Obj5istheinertiaconstantoftheMGand isthesameforbothdisturbances.Therearesolutionswithhigher inertiawhichresultinlowerfrequencydeviation.However,these solutionswillimposeahighercostofenergystorages.

Here,theParetooptimalsolutionsarerankedaccordingtotheir respectivedcalculatedusingEq.(13)andthenoneischosenas thefinalsolutionbasedonitsdandthedecisionmakerpreference.

AscanbeseenfromTable1,solutionnumber7hasthelowestd andithasbeenselectedasthefinalsolution.Theparametersof theMGtunedbydifferentstrategiesaregiveninTable2.Fig.5 showsthatincaseofthesmalldisturbance(0.86MW),OriginalH couldpreservefrequencystability.However,thefrequencydevia- tionishigherthanTunedH#1andTunedH#2strategies.AsFig.6 shows,usingtheparameterstunedbyOriginalHstrategy,thefre- quencyviolatestheminimumpermissiblelimitincaseoftheworst contingencywhichisinthescopeofloadfrequencycontrollers.In fact,thisfigureshowsthatwhenHisnottuned,theoptimization

Fig.7. FrequencyoftheMG:(a)incaseof0.43MWpowerdeficitand(b)incaseof a3.22MWpowersurplus.

algorithmcouldnotachieveanysolutionthatdoesnotviolatethe minimumpermissiblelimit.Thiscertifiesthenecessityoftuning Hforachievingasolutionwhichdoesnotviolatetheoptimization constraint.

Having determined thevalueof virtual inertia,therequired powerandenergyspecificationofUCisdeterminedbasedonthe methodexplainedin Section2.Toemulatetheinertiaconstant determinedbyTunedH#1strategy,aUCwithnominalpowerof 5.87MWandstoredenergyof23.92MW.sisrequired.However, iftheparametersdeterminedbyTunedH#2strategyaregoingto beused,aUCwithnominalpowerof6.01MWandstoredenergy of31.83MW.swillberequired.FromFigs.5and6itcanbefound thatusingtheparameterstunedbytheTunedH#1andTunedH#2 strategies,thefrequencyofMGismaintainedwithinthepermissi- blelimitsincaseofbothlargeandsmalldisturbances.Usingthe parameters obtainedby TunedH#2strategy, MGexperiences a smallerfrequencydeviationincaseofbothlargeandsmalldistur- bances.However,TunedH#2strategyhasledtoaUCwithahigher capacity.Consideringa200D/kWcostofinstallationforpowerand a10kD/kWhcostofinstallationforenergy[8],theUCinstallation costwillbe1240kD and1290kD fortheTunedH#1andTuned H#2strategies,respectively.

Itisalsoworthmentioningthatacomputerwitha24GBRAM anda2.93GHzCPUwith24coreshasbeenusedforsolvingthe optimizationproblems.Theoptimizationprocesselapsed832,965 and1385sfortheTunedH#1,TunedH#2andOriginalHmethods, respectively.

5.2. PerformanceofTunedH#1andOriginalHstrategiesfor differentpowerimbalances

InthestudiedMG,loadfrequencycontrollersshouldkeepthe frequencyabove48Hzincaseofpowerdeficitslessthan4.5MW andloadsheddingmightbetriggeredforthelargerdisturbancesto keeptheminimumfrequencyabove47Hz[8,27].Here,theunder- frequencyloadsheddingmethodproposedinRef.[21],hasbeen implemented.However,accordingtotherequirementsofthestud- iedMG,thethresholdsforactivatingtheloadsheddingstepshave beenalteredtothefollowingvalues:48,47.8,47.6and47.4Hz.In thissection,somecasestudiesarecarriedouttoinvestigatethe frequencyresponseofMGwiththedesignedparameters.

5.2.1. CaseI:a0.43MWstepincreaseindemand

Fig.7(a)showsthefrequencyresponseofthesystemincaseofa 0.43MWstepincreaseindemand.ItisclearthatbothoftheTuned H#1andOriginalHstrategiescouldmaintainthefrequencywithin

(8)

Table1

ThevalueofobjectivesforanumberofparetooptimalsolutionsobtainedbyKnEA(superscript1and2refertothelargeandsmalldisturbance,respectively).

Obj11 Obj12 Obj21 Obj22 Obj31 Obj32 Obj41 Obj42 Obj5 d

1 1.36 0.05 0.008 0.00 37.7 20.4 589 2.8428 0.1888 32

2 1.51 0.06 0.011 0.00 35.8 16.0 706 3.5431 0.1688 50

3 1.68 0.06 0.014 0.000 37.1 16.9 766 4.0333 0.1499 51

4 1.74 0.07 0.007 0.003 36.9 35.1 599 4.7951 0.1441 73

5 1.90 0.07 0.022 0.000 25.3 15.1 1701 1.6329 0.1303 62

6 1.38 0.05 0.000 0.026 41.3 44.5 506 10.61 0.1858 290

7 1.63 0.06 0.000 0.00 39.6 43.7 602 8.8980 0.1540 28

8 1.61 0.06 0.0589 0.005 97.1 40 2719 3.040 0.1566 207

IdealObj 1.34 0.05 0.0005 0.0001 25.3 9.4 390 0.5120 0.1272

Table2

ParametersofthestudiedMGtunedbasedondifferentstrategies.

1 Req DEG

pu/Hz

1

Req BESS

pu/Hz

H

pus/Hz

KP1 KI1 KD1 KP2 KI2 KD2

TunedH#1 0.5682 0.7058 0.1540 −2.0719 −0.0721 −1.7581 −0.1249 −0.0030 −0.5424

TunedH#2 1 0.9924 0.2000 −0.1530 −0.2496 −0.7481 −1.9500 −0.0039 −1.9280

OriginalH 1 0.9168 −1.3220 −0.0362 −0.7673 0.3896 −0.0017 −0.1215

Fig.8.FrequencyoftheMGincaseofthelargestPVunitoutage.

theallowedlimits.However,usingTunedH#1,MGwillexperience asmallerfrequencydeviation.

5.2.2. CaseII:a3.2MWstepdecreaseindemand

ItcanbefoundfromFig.7(b)thatasaresultofa3.2MWstep increaseinthedemandofMG,theperformanceofOriginalHstrat- egyhas beensignificantly deteriorated and thefrequency goes considerablyabovethepermissiblelimit.However,usingTuned H#1strategythefrequencystabilityofMGincaseofthispower surplushasbeenpreserved.

5.2.3. CaseIII:largestPVunitoutage

TheoutputpowerofPVunitsmightchangeasaresultofchanges inthetemperatureandsunirradiance[28].Fig.8showsthefre- quencyresponse ofthestudiedMGwhen thepowergenerated bythelargestPVunitfallsfromthemaximumvalue(2.6MW)to zero.UsingtheparametersobtainedbyOriginalHstrategy,fre- quencygoesconsiderablybelow48Hzandunderfrequencyload shedding shouldbecarried outin this case topreventthefre- quencyfromfallingbelowtheminimumacceptablevalue.Onthe otherhand,usingtheparameterstunedbytheTunedH#1strat- egy,thefrequencyismaintainedwithinthepermissiblelimitsand underfrequencyloadsheddingisnotrequired.

5.3. Loadshedding

Inthissection,thefrequencyresponseofthestudiedMGwith theparameterstunedusingtheproposedTunedH#1strategyis investigated,fordifferentcontingencieswhichrequireloadshed- ding,andcomparedwiththeOriginalHstrategy.

Table3demonstratesthatincaseoflargepowerdeficits,using theparameters obtainedby both strategies, the load shedding schemewassuccessfulinstoppingthefrequencydecline.However, usingtheparameterstunedbytheTunedH#1strategy,loadshed-

Fig.9.FrequencyoftheMGincaseofa4.5MWpowerdeficitwhentheloadhas increasedby30%.

dingisavoidedinmanycasesandintheothercasestheamount ofloadsheddingisconsiderablylowerthanwhentheparameters tunedbyOriginalHstrategyareused.Inthisway,abetterqualityof servicewouldbeprovidedforthecustomersandtheirsatisfaction levelisincreased.

5.4. RobustnessofMGusingtheparameterstunedwiththe proposedmethod

Inanypowersystem,loadchangeswiththetimeandthiswould changetheoperatingpointofthesystem.But,astheemulatediner- tiaconstantdependsontheinstalledcapacityoftheUC,itcannotbe increasedtothevalueshigherthanthedesignedvalue.Fig.9shows thattheparametersdesignedfortheminimumloadconditions,are abletomaintainthefrequencystabilityincaseoftheworstcon- tingency(a4.5MWpowerdeficit)whentheloadofsystemhas increasedby30%.Tosupplytheloadinthiscase,another8MVA DEGhasbeenconnectedtothe69KVbusofthesystem.Itshouldbe mentionedthatforabetteroperationoftheMG,theparametersof thesystemexceptHwouldberetunediftheoperationconditions changedconsiderably.

Also,itispossiblethatthereisaninaccuracyintheparameters estimatedformodelingthesystem.Eventheparametersofthesys- temmightchangebytime[29].Hence,itisimportanttoinvestigate theperformanceoftheMGincaseofparametersvariations.Fig.10 showsthat,usingTunedH#1strategy,MGhasanacceptablefre- quencyresponseincaseofa4.5MWpowerdeficitwhenthetotal HandDoftheMGare10%higher/lowerthanthenominalvalues.

Furthermore,asshowninFig.11,10%decrease/increaseinthetime constantsofDERs(TBESS,Tg,TtandTUC)doesnothaveaconsiderable effectonthefrequencyresponseofMG.

(9)

Table3

PerformanceoftheMGincaseofseverpowerdeficits.

Pd(pu) 0.10 0.15 0.20 0.25 0.30

OriginalHstrategy Pshed(pu) 0.0198 0.0809 0.1490 0.2053 0.2593

fnadir(Hz) 47.51 47.41 47.40 47.39 47.39

TunedH#1strategy Pshed(pu) 0 0 0 0.0152 0.0829

fnadir(Hz) 49.61 49.14 48.48 47.40 47.54

Fig.10.TheeffectofchangeinHandDonthefrequencyresponseofMGincaseof a4.5MWpowerdeficit.

Fig.11. TheeffectofchangeinthetimeconstantsofDERsonthefrequencyresponse ofMGincaseofa1.5MWpowerdeficit.

6. Conclusion

Inthis paper,improvingthefrequency stability oflow iner- tiaMGswasinvestigated.Ithasbeenshownthatfine-tuningthe loadfrequencycontrollers’parametersandfrequencydroopcoef- ficientofDERs,couldnotsolelyguaranteethefrequencystability oflow inertiaMGs.Hence,tuningtheinertiaconstanttogether withloadfrequencycontrollers’parametersandfrequencydroop coefficientofDERshasbeenproposedin thispaperforimprov- ingthefrequencystabilityoflowinertiaMGs.Infact,tuningthese parametershasbeenmodeledasamulti-objectiveoptimization problemwhichconsidersbothtechnicalandeconomicconcerns.

Becausethenumber ofobjectivesishigherthanthree,a many- objectiveoptimizationalgorithmhasbeenimplementedforsolving thisproblem.Additionalfindingfromthestudiescarriedoutinthe paperare:

1.KnEAhasagoodperformanceinsolvingtheoptimizationprob- lemdeterminedinthispaper.

2.TuningtheparametersoftheMGwiththeproposedMOmethod hashighlyimproveditsfrequencyresponse.

3.ComparingtheproposedTunedH#1strategywiththeOriginal Hmethodcertifiesthenecessityofdeterminingthepropervalue ofinertiaconstantinlowinertiaMGs.

4.Usingtheparameterstunedbytheproposedmethod,MGhasa goodperformanceincaseofchangesintheoperatingconditions ofMGanditsparameters.

AppendixA.

TheparametersofthestudiedMG:

KBESS= 1,D= 0.012pu/Hz,H= 0.0149pus/Hz,TBESS= 0.1s,

Tg=0.08s,Tt= 0.4s,TUC= 0.2s,Pbase= 21.5MW,Kpf

= 0.012pu/Hz,Kqf= 0.010pu/Hz,a= 1b= 2.

References

[1]F.M.Uriarte,C.Smith,S.V.Broekhoven,R.E.Hebner,Microgridrampratesand theinertialstabilitymargin,IEEETrans.PowerSyst.30(November(6))(2015) 3209–3216.

[2]N.Mendis,K.M.Muttaqi,S.Perera,Managementofbattery-supercapacitor hybridenergystorageandsynchronouscondenserforisolatedoperationof PMSGbasedvariable-speedwindturbinegeneratingsystems,IEEETrans.

SmartGrid5(March(2))(2014)944–953.

[3]Nahid-Al-Masood,R.Yan,T.K.Saha,N.Modi,Frequencyresponseandits enhancementusingsynchronouscondensersinpresenceofhighwind penetration,in:IEEEPower&EnergySocietyGeneralMeeting,Denver,CO, 2015,pp.1–5.

[4]S.D’Arco,JonAreSuul,O.B.Fosso,AVirtualSynchronousMachine implementationfordistributedcontrolofpowerconvertersinSmartGrids, Electr.PowerSyst.Res.122(May)(2015)180–197.

[5]T.Shintai,Y.Miura,T.Ise,Oscillationdampingofadistributedgenerator usingavirtualsynchronousgenerator,IEEETrans.PowerDeliv.29(April(2)) (2014)668–676.

[6]M.F.M.Arani,E.F.El-Saadany,ImplementingvirtualinertiainDFIG-based windpowergeneration,IEEETrans.PowerSyst.28(May(2))(2013) 1373–1384.

[7]E.Rakhshani,D.Remon,A.MirCantarellas,P.Rodriguez,Analysisof derivativecontrolbasedvirtualinertiainmulti-areahigh-voltagedirect currentinterconnectedpowersystems,IETGener.Transm.Distrib.10(May (6))(2016)1458–1469.

[8]L.Sigrist,I.Egido,E.LobatoMiguélez,L.Rouco,Sizingandcontrollersettingof ultracapacitorsforfrequencystabilityenhancementofsmallisolatedpower systems,IEEETrans.PowerSyst.30(July(4))(2015)2130–2138.

[9]A.M.Ersdal,L.Imsland,K.Uhlen,Modelpredictiveload-frequencycontrol, IEEETrans.PowerSyst.31(January(1))(2016)777–785.

[10]S.Mishra,G.Mallesham,A.N.Jha,Designofcontrollerandcommunicationfor frequencyregulationofasmartmicrogrid,IETRenew.PowerGener.6(July (4))(2012)248–258.

[11]Z.A.Obaid,L.M.Cipcigan,Ma.T.Muhssin,Fuzzyhierarchicalapproach-based optimalfrequencycontrolintheGreatBritainpowersystem,Electr.Power Syst.Res.141(December)(2016)529–537.

[12]M.H.Khooban,T.Niknam,F.Blaabjerg,T.vDragiˇcevi ´c,Anewloadfrequency controlstrategyformicro-gridswithconsideringelectricalvehicles,Electr.

PowerSyst.Res.143(February)(2017)585–598.

[13]S.A.Taher,M.HajiakbariFini,S.FalahatiAliabadi,FractionalorderPID controllerdesignforLFCinelectricpowersystemsusingimperialist competitivealgorithm,AinShamsEng.J.5(March(1))(2014)121–135.

[14]A.Ketabi,M.HajiakbariFini,Anadaptiveset-pointmodulationtechniqueto enhancetheperformanceofloadfrequencycontrollersinamulti-areapower system,J.Electr.Syst.Inf.Technol.2(December(3))(2015)391–405.

[15]J.Nanda,S.Mishra,L.C.Saikia,Maidenapplicationofbacterialforagingbased optimizationtechniqueinmultiareaautomaticgenerationcontrol,IEEE Trans.PowerSyst.24(May(2))(2009)602–609.

[16]X.Zhang,Y.Tian,Y.Jin,Akneepointdrivenevolutionaryalgorithmfor many-objectiveoptimization,IEEETrans.Evol.Comput.19(December(6)) (2015)761–776.

[17]J.Morren,J.Pierik,S.W.H.deHaan,Inertialresponseofvariablespeedwind turbines,Electr.PowerSyst.Res.76(July(11))(2006)980–987.

[18]Y.Brunet,EnergyStorage,Wiley,Hoboken,NJ,USA,2011.

[19]X.Zhang,Y.Tian,R.Cheng,Y.Jin,Anefficientapproachtonondominated sortingforevolutionarymultiobjectiveoptimization,IEEETrans.Evol.

Comput.19(April(2))(2015)201–213.

[20]S.A.Pourmousavi,M.H.Nehrir,Real-timecentraldemandresponsefor primaryfrequencyregulationinmicrogrids,IEEETrans.SmartGrid3 (December(4))(2012)1988–1996.

[21]A.Ketabi,M.HajiakbariFini,Anunderfrequencyloadsheddingschemefor hybridandmultiareapowersystems,IEEETrans.SmartGrid6(January(1)) (2015)82–91.

[22]I.Pan,S.Das,Krigingbasedsurrogatemodelingforfractionalordercontrolof microgrids,IEEETrans.SmartGrid6(January(1))(2015)36–44.

(10)

[23]V.Black,CostandPerformanceDataforPowerGenerationTechnologies, NationalRenewableEnergyLaboratory,Golden,CO,2012.

[24]P.S.Kundur,PowerSystemStabilityandControl,McGraw-Hill,NewYork,NY, USA,1994.

[25]L.R.Chang-Chien,Y.S.Wu,J.S.Cheng,Onlineestimationofsystemparameters forartificialintelligenceapplicationstoloadfrequencycontrol,IETGener.

Transm.Distrib.5(August(8))(2011)895–902.

[26]B.Polajˇzer,D.Dolinar,J.Ritonja,Estimationofarea’sfrequencyresponse characteristicduringlargefrequencychangesusinglocalcorrelation,IEEE Trans.PowerSyst.31(July(4))(2016)3160–3168.

[27]A.Ketabi,M.HajiakbariFini,Adaptiveunderfrequencyloadsheddingusing particleswarmoptimizationalgorithm,J.Appl.Res.Technol.15(February(1)) (2017)54–60.

[28]A.Ketabi,M.HajiakbariFini,Anunderfrequencyloadsheddingschemefor islandedmicrogrids,Int.J.Electr.PowerEnergySyst.62(November)(2014) 599–607.

[29]M.HajiakbariFini,G.R.Yousefi,H.HaesAlhelou,Comparativestudyonthe performanceofmany-objectiveandsingle-objectiveoptimisationalgorithms intuningloadfrequencycontrollersofmulti-areapowersystems,IETGener.

Transm.Distrib.10(September(12))(2016)2915–2923.

Referensi

Dokumen terkait

Part I reviews research on basic concepts in consumer fi nance such as fi nancial capability, fi nancial well-being, risk toler- ance, retirement savings, fi nancial education, fi