• Tidak ada hasil yang ditemukan

Frequency Analysis and Rainfall-Runoff Simulation Based on the Tree Sequence of Vine Copula

N/A
N/A
Protected

Academic year: 2024

Membagikan "Frequency Analysis and Rainfall-Runoff Simulation Based on the Tree Sequence of Vine Copula"

Copied!
16
0
0

Teks penuh

(1)

Homepage: https://jwim.ut.ac.ir/

University of Tehran Press

Frequency Analysis and Rainfall-Runoff Simulation Based on the Tree Sequence of Vine Copula

Mohammad Nazeri Tahroudi1 | Rasoul Mirabbasi Najafabadi2

1. Department of Water Engineering, Shahrekord University, Shahrekord, Iran. E-mail: [email protected] 2. Corresponding Author, Department of Water Engineering, Shahrekord University, Shahrekord, Iran. E-mail:

[email protected]

Article Info ABSTRACT

Article type:

Research Article

Article history:

Received: November 01, 2022 Received in revised form:

November 17, 2022 Accepted: January 23, 2023 Published online: April 14, 2023

Keywords:

Canonical Structure, Conditional Density, Four-Dimensional copula, Tree Structure,

Zayandeh-Rood.

Rainfall-runoff simulation is one of the most important challenges in the management of water resources in each basin, considering the climatic changes and the increase of extreme values in recent years, especially in different regions of Iran. In this study, the rainfall and runoff values in the statistical period of 1993-2019 were used regarding the rainfall-runoff simulation in the Qale Shahrokh sub-basin in the Zayandeh-Rood Dam basin. In this study, the Vine copula-based simulation approach was used to simulate and joint frequency analysis the flow discharge in Qale Shahrokh station given by the rainfall in Chelgerd, Meyheh and Marghmalek stations. By analyzing the tree sequence of vine copulas and using internal rotated copulas, D-vine copula was selected as the best copula based on the studied statistics. By using the best copula and the conditional relationship c(u4|u1,u2,u3), the flow discharge simulation was done given by rainfall of the upstream stations. The simulation results showed an error rate equal to 18.57 (m3/s) based on the RMSE statistic and the efficiency of the model was 0.86 based on the NSE statistic. The results of the simulation of flow discharge values given by rainfall in the upstream stations showed that the proposed approach has simulated the average of observed values with high accuracy. By considering the condition of rainfall occurrence in the frequency analysis of flow discharge in Qale Shahrokh station, the joint return period curve and the conditional probability of occurrence in this sub-basin were obtained.

Using this curve, it is possible to estimate the flow discharge values of the studied station with high accuracy along with different return periods and different probability of occurrence. Considering the fact that the proposed method is based on the condition of rainfall in the region as well as the marginal distribution according to the data, it has no implementation limitations and is somehow specific to the studied region.

Cite this article: Nazeri Tahroudi, M., & Mirabbasi Najafabadi, R. (2023). Frequency Analysis and Rainfall-Runoff Simulation Based on the Tree Sequence of Vine Copula. Journal of Water and Irrigation Management, 13 (1), 259-274.

DOI: https://doi.org/ 10.22059/jwim.2023.350666.1027

© The Author(s). Publisher: University of Tehran Press.

DOI: https://doi.org/ 10.22059/jwim.2023.350666.1027

(2)

نا هﺎﮕﺸ اد تارﺎﺸ ا

یرﺎﯿآ و بآ

Homepage: https://jwim.ut.ac.ir/

:ﯽﯿوﺮ !ﻟا #ﺎﺷ ۹۹۳۱ - ۲۳۸۲

-

! " #

|1

2

1 .

: .

[email protected]

2

"#$% % # .

: .

[email protected]

!"#

$ %&

: (

& '( )* +

)

* ) +, 10: / 08 / 1401

)

* - . 26 : / 09 / 1401

)

* /0 ) 1 03 : / 11 / 1401

)

* 23 # 25 : / 01 / 1402

45

$6#

: 7

4 * 5

67 67

8 96 67

:;<

. 9= 5

>?

@ = -

" B + C DE F>GH I >>JK = L#K = >7 &

= '

C* 5 MG6N B # 9* O P .Q R#B & S= Q T &

>? =

@ = -

= R#B U & 9GH R#B D

@ = +

L = 1398

- 1372

= . <6

>? #W P :;< = 6?

>? = P E :>GXK

T&

@ = Y#H Z = U & 9GH 6% L =

6%

[GF\ > G5 &

:;< 67 * #K :>GXK = . <6 <6 P &

:;<

:;< G7 &

D-vine

] =

&

= # = # ^ N6 K = :;<

= .

= 4 O= K = :;< >

c(u4|u1,u2,u3)

>?

Z = L = +

@ = Y#H 6%

>? _ 6 . ` a Q b = &

= = = O7 D>

57 / 18 c9 6

> d =

] =

" RMSE

86 / 0

] =

>? _ 6 . NSE

6% @ = Y#H Z = L = +

>( Q b = &

e #6

>? b = QH = K & + :>GXK @ = Y#H Z P6E W = .Q

Q = X U & 9GH 6% L = Y#H E T&

4 Y#H " F6B

X P <6 = . :f B R#B P L = + #K

6%

9* O #

Q = = F& b = QH = = >( @ . = MG6N Y#H " F6B MG6N &

P = L#K

] =

+O @ = Y#H Z T&

P> 5

> B S #K = c 6

g &

6 6 X h>& Q

= I ?^

+O i6N 9* O #

.Q

: 83 # j K .`

>

?^

Ma

= ) 1402 .(

GXK

>

: E

?>

@ = - 6?

=

* #K 67 :;<

P .

>= Q 13

) 1 ( 259 - 274 . DOI:https://doi.org/10.22059/jwim.2023.350666.1027

:

K I 6 % m

. . % # ©

(3)

1 .

&'

"

&

7

>

=

@ = Y#H C DE

&

B O7

>

: [ 7

* C>=

K

= L Z + '

K

( .

>

C

=>

+ =

P ( := H QH =

*#?H = C&

I %7

&

[ 7

*

>

:

T&

P> 5 B 4 =

>

&

= R .Q

P 6 = 6%=

&

e

@ #L#

&

<G6N

= #7 n 7 M9R I#H Z + ` & Q 6E .

a (

&

&

>

o#*

[ = pb#F9

J6 5

>

6%=

M>f#K

# GXK

>

: J6 5

>

T&

P> 5 GXK

>

: 6%=

=

>

J6 P

>

DE = &

C

QH (>

C =

>

&

R T .Q

K P GXK G$%

>

: J6 5

>

b F6B K a 6%= 67 =

J6

>

&

E ;K

#K S= #K .Q e?K S

J6 5

>

=

#4 6%

=

"

J6 5

>

& 6%=

>

o#*

[

6%= 67

Q <6 &

)

Salvadori and De Michele, 2007

.(

"

&

7 = 6 q

@

&

J6 5

>

=

&

=

&

>

o#*

[ X

>

e Q%

E 9

#K S= #K . S

9FaK ) (CDF

=

#4 <6 6%

# Q

. P X Q

#K S

&

B

>

=

"

. =

#K rs S J6

>

= S #K B

>

\

>

"

(

>

. S #K F >J6

)

Favre et al., 2002

(

>J6 S #K )

Yue et al., 2001

#K ( S J6

>

+ B )

Adamson et al., 1999

.(

Favre et al.

)

= (2004

#4 ft7 Ib

P

#K Y#

S

&

>=

1 -

> B S #K

= # 7 [ = 2

-

=

Q%> >= := H uR >J6 C>= Q* B 3

-

& 6 (

#K S B

>

= 6%= "

=1

>

P J6

>

&

E ;K D>

<6

= . # = ?G\

P 6 S= #K &

:;<

L K P D=

R = :>GXK DaK

( &

J6 5

>

6%&

GXK

>

:

&

>

o#*

QE H <6 # )

Xiao et al., 2008

( .

Favre et al.

) (2004

= f#K

>

M 6%=

=

>

P = (>

[ t>

TaB :;< t>

<6 >J6 &

.

Zhang and Singh

) ( 2006

=

#K S 9=

t> [>( = TaB

>

t I t> [>( =

>F :;< S= #K ` I t> TaB ` . <6 2

Salvadori and De Michele

) (2007

7 =

"

&

&

>

o#*

[ g

:;< S= #K <6

. #=

Ib F6B ? X

4

&

Q =

MG6N .

Kao and Govindaraju

) (2008

[

>F >\ S= K

# 7 3

Q t( S #K

= # 4

H

=

#K S

@ =

&

B

#F <6 .

Pham et al.

) (2018

S= #K P = a [

# < "

&

>

o#*

[ P>=

@ =

&

N?K

>

+ v 9K

= <6 6 .

_ 5 P

9OH ` ^ "

>

Q

"

DE C

&

#K 6>

a

QE E ;K " <6

@ = - N?K

>

v 9K

% 6(

>

: b = = GXK

>

: E

&

>

o#*

[ .

Zhang

et al.

) (2018

% 6(

>

: @ :;< = 6?

=

#K S " F6B 9=

R +K R ^

= +O

=>

Luhon

5

>

P f#K

>

M =

. # ^ CN= Q R :;< = 6? @ GF^

Wang et al.

) (2019

i7 + SPI

@ = 16

6%

4

"

&

2011 - 1961 = 9* O

;N

&

[ 7

*

#&

(I I )

# 6 5

>

P <6 6 = N6 = .

P

#K S

B

>

6 = P J6 Q<L

>

[ 7 I W Q =

* 6 . = I _

e #6 K

P [ 7

*

# L " F w4

= \ 6 9* O # T

K P B # " F

# L

.Q U v

Nazerui Tahroudi et al.

) (2021

" 7 P 5 t> = Q L

>?

. = :;< = 6?

= ` H 4 * 5 9= :;< S= #K <6 = &

(4)

>?

^x t> L 7 8 >&

I 9* O = Q?% b = QH >( @ 6

` a #7 = > P

. =

Dastourani and Nazeri Tharoudi

) (2022

= :;< S= #K <6 =

>?

. 67 ( Q= d = o sF( > o sF(

= FNK

>

P QE

>

&

o sF(

X MG6N Ib F6B = MG6N

&

= y>K . Q

_ 6 :;< #$K <6 >= &

>?

.Q g >F4 := H

Khashei-Siuki et al.

) (2022

>? Q L v 9K >N?K >J6

SL >

6%

&

#&

#

= T=) I#*

>

L = (r?4 1363

K 1398 = P6E W

j 6 = Q^

= I #f

&

4 * 5 :;< S= #K . <6 &

6 = N6 = P

#K S

B

>

6 = P :;<

GXK

>

: E

Q =

T&

?

>

6?

= :;<

g a

X g = n#;7 y>K &

?>

>J6 .

Khozeymehnezhad and Nazeri-Tahroudi

) (2020

E :>GXK Q L D>

T&

Q b = 6% &

7 =

&

z B R#B

5

>

. <6 :;< S= #K

&

{tf DN i7 :;< = 6? @ w><GK = n#;7

6% 8qB . g 6% &

Tabatabaei et al.

)

>? :;< S= #K <6 = (2022

= 6?

> = ( 6 @ 9 #K = ` H

. C ( ? =

:;< S= K <6 = &

d|K

>

6% := +6 &

> = = `# # 9 #K ( 6 #$K . g ( 6 = 6? C ( ? =

Pronoos Sedighi et al.

) (2022

D>

C& '(

&

>? " QH = = #7 :;< = 6?

>J6

>?

L = -

_ 6 . 67 ( & 7 R#B # = C& '(

QH &

>? " Q>9OH :;< = 6?

> |K .

Nazeri Tahroudi et al.

) (2022

6?

= * 5

:;< 4 P &

= ( C [ 7

* (

>

C =

>

+

= #?F R#B

5

>

<6

.

#?F =

= #?F b

&

10 30 60 = # ^ J6

>

W 6E . &

>=

>

D = T

K

>

>

P

= #?F = +O I G=

= D

[ #K

:= H QH =

*#?H FNK

>

P . T&

P> 5 6 _ GXK

>

: 4 " F6B

=

#4 e #6

" F6B Y#H

#?F

= 250

>G 6 +

% =

>

>

P +O I G=

9* O # =

>

C 50 .Q " f

= L#K = C& '(

&

" 4 MG6N &

@ = >7 > I >>JK 5 MG6N w4 &

@ = a }^ = I >>JK P .Q @ = # * (

Q MG6N w4 B &

QXK D> = + d|K

>

C>( .Q H QXK L = + >=

d|K

>

@ = Q b = &

R#B &

#K

= # ^ & T6%>

= . = [ D

>

Z Q >J6 5 * g = > P :

E 4 . > = W @ = Y#H

"

&

(

>

C

=>

R B " B

=

#4 6%

H <6 #

>

9OH pb#F9 L 7 6%&

&

"

= I #f + 9K

>>

P = g =

# . = P " B [

"

(

>

C

=>

&

>

o#*

[ K

=

?>

E

&

&

>

o#*

[ 9H #=

= = P iH

#=

H

>

w

>

Q%

8 & ] P = . 9* O

:;< = 6? g R B

>? Q L P &

L = +

6% @ = Y#H Z = = &

R#B Q b = a 6 P . =

67 67 = PFR

:;<

>? = P # 7 &

E :>GXK T&

9GH 6% L = @ = Y#H Z = U &

6%

= &

R#B U & 9GH R#B ([GF\ G5 > ) Q b = _

1398 - 1372 . 67 (

(5)

2 . ! # )

9* O P G> ) @ = ( > d = c9 6 ) L = &

6 ( 6 ] >+ = j

1398 - 1372 D = R#B Q b = SH U & 9GH R#B = + = . <6

R#B L 7 SH U & 9GH 6% + L 9* O #

. <6

&

6% @ = &

= . <6 D> G5 > [GF\ a =

7 z B

.Q

= = = 6B % = D> U & 9GH R#B 1397

# L S= 6 #G>

= \

: .Q SH

) 1 (

Q>9H#

6%

= &

a #L# 6 >&

. &

Figure 1. The location of rain gauge and hydrometric stations in Qale Shahrokh sub-basin

2 . 1 . * #

:;< S= #K e #K 6=

Sklar

) ( 1959

E 9 .

:;<

&

9= #K 6%&

c> K =

#K S= #K S

> B [ 9=

#K S= K S J6 5

>

a )

Nelsen, 2006

( S= K . :;<

6%= 67 Q H =

>

P J6 5

>

E ;K

&

= K = # ^ [ GF^ @

=

"

6%=

(

&

J6 5

>

& j Q

= .

` * C& '(

&

)Joe

(1997 Kurowicka and Cooke

) ( 2007

& #K # 5

#K

&

J6 5

>

~#G= <6 =

&

5 67 Q<L ` = -

:;<

"

.

=

, … ,

* 5 S= K = E ;K & >J6 T&

, … ,

W

= * 5 P . > = I #f

: =

1 1 2 1 1 2

( , ..., n) n( n). ( n | n). ( n | n , n)... ( | , ..., n)

f x x f x f x x f x x x f x x x (1 O=

P DaK K

>

=

>*#K = J6

>

&

6 .Q

#K GF^ &

S T&

= FR #4 B 6E :

>

J6

>

&

K 6%= 67

.Q &

:;<

&

= L 6%= 67

g &

. &

:;< [

#K S J6 5

>

B =C

>

&

#K S Q7 #

U(0,1) [0,1]

.Q

#$K

= t

>

#K &

S J6 5

>

B =F

>

&

F1(x1), …, F2(x2)

= #K I #f

# 6 # )

Nazeri Tahroudi et al., 2022c

:(

(6)

1 1 1

( , ..., n) { ( ), ..., n( n)}

f x x C F x F x (2 O=

:;< 7 = =

&

) 9= 5C

{tf { = v#E O= Q+>+B ( 9=n

: #

1 1

1 1 1

( ,..., n) { ( ),..., n ( )}n

C u uF F u F u (3 O=

1( )

n n

F u

> B S #K S= #K ]# 9

* 5 S= K = L#K = . 6%&

T&

= f

+

F

DE 6 #>(

* 5

&

B

>

6 #>(

F1,…,F2

a # H <6 =

>

6 =

= { 7 =

* 5

&

:;<

J6 n

1...n(.) >

= c

: #

1 1 ... 1 1 1 1

( , ..., n) n{ ( ), ..., n( n)} . ( )... n( n)

f x x c F x F x f x f x (4 O=

:;<

&

9= 5

`#

>

Q F&

&

6%=

%

= . = 6 " • # ^

[

:;<

5 9=

9 = 6%=

=

>

P &

:;< Q<L 9H Q

>

Q = v <K I

. 6E

&

= 9=

_ ( C>=

K

@ QH

&

6 :;<

=

>

D := H L#K C&

=

)

Nazeri Tahroudi et al., 2022d

(.

:;<

&

P 6%= MG6N Y # Q<L

&

MG6N q(

T&

= P> 5 6B

Kb = 9= =

= K " • # ^ 10

9=

"

.

* B [

P :;<

d

9=

e #K

d(d - 1)

:;<

K 67 : = 67

. #

= Y O+

#K Q7 S J6 5

>

Q7

* 5 S= K : J6 5

: ?K >

= P 5

* 5 4

.Q

;N '

Q7 P

e #K

Bedford and Cooke

) (2001

. 67 &

P 8 O9

7 q(

)

D-vine

(

67 P

88 96 )

C-vine

(

>

# . :;<

R-vine

Y# = Q?%

C

= D

P :>*

L M>4 &

6% &

K

* #K

&

# T& E 8 O9

q(

C>=

K

= . DE #W C

Y# K

* #K :;<

R-vine

# <

L g . &

= [ G #4 Q7

P TW

R-vine

::;< [

D-vine

Q7 & Q . = 6 ?* • B T-1

C-vine

Q7 & Q

Ti

= ' [

= 6 ?*d-1

= . Q7 ?*d-1

Ti

>

. #

=

#K S Kb = 9=

:= H 9K L#K

* #K Q<L :;<

P F #L

= . " • # ^ 240

* #K

= MG6N Q* B

_ ( 9=

#L )

Aas et al., 2009

(

= .

& = [F &

[ E "

>

E 9 =

P TW 6<

]t . # :;<

TW P &

%=

>

6%

9K Q

DaK

&

P F Q<L :;<

=

>

& .

"

f 7 @ =

DaK g * 5

. &

P &

C

^#Fa D> D

TW P

. = I ;N

&

^#Fa pt• : = Q P F

#K #K 67 =9

. ) : 2 ( = Z#= I ;N [

P _ ( 9=

&

Q7 5

Tj

j=1,…,4

K

>

: .Q Q7

Tj

-6 j -5

.Q ?* j

?* c%5 = ?* &

wG96 = #F

* 5 :;< Q<L .Q

= # ^ ?* " •

14|23

= wG96 :;< * 5

C14|23(.)

Q .

` FK DaK

:>GXK

&

e #K

n(n-1)/2

?*

* 5 B

>

J6 &

>

9K M .Q Q7

Tj

= e+E 9K

>>

P

c%5 =

&

?*

Q7 &

Tj+1

R Q

. F&

#4 ) :

2 ( &

?* #

Tj

)

Tj+1

?K = :

# ( K #f K P

?*

&

Tj

[

= ~ 6

= I #f [ ?*

Tj+1

= 6 L#K . #

>

* #K 67 = Q<L @ " F^

:;<

R pt

>

Q%

=

DaK

&

Q<L MG6N :;<

[F .

(7)

Figure 2. A D-vine with five variables, four trees and ten edges. Each edge may be associated with a pair

copula (Aas et al., 2009).

Bedford and Cooke

) ( 2001

[ * 5

#K S 9=n

:;<

= TW &

:;<

D-vine C-vine

* 5 . n ;67

f(x1,…,xn)

= Z#=

:;<

D-vine

= I #f 6 #

# :

1

, | 1,..., 1 1 1 1 1

1 1 1

( ) { ( | ,..., ), ( | ,..., )}

n j

n n

i i j i i j i i i j i j i i j

k j i

f xk c F x x x F x x x

     

 

(5 O=

Q7 8 9 j

Q &

?* "#Bi

L Q7 & &

. # :;<

D-vine

&

>

h

&

>

h

[ Q7

&

Tj

= =

>

C F :;6 ?*

. # [ P :;<

TW Q7 &

Tj

[

= ;X = Q E

n - j

.Q :;6 ?*

: ) 3 ( [ :;<

C-vine

J6 _ ( =

>

* 5 . &

n

9=

= Z#=

[ :;<

C-vine

Q

= { : =

1

, |1,..., 1 1 1 1 1

1 1 1

( ) { ( | ,..., ), ( | ,..., )}

n j

n n

i j i j j j j i j

k j i

f xk c F x x x F x x x

 

(6 O=

:;< <6

C-vine

Q P F

<>

=

[ J6

>

n 7 J6

>

G>

: 9K = =

^#Fa

5 .Q T B &

>

P O F;K Q P F

>

T

# 6E P

J6

>

:;<

C-vine

H

>

) F&

#4 :

) 3 ( J6 =

>

1 ` a (Q .

Figure 3. A C-vine copula with 5 variables, 4 trees and 10 edges (Aas et al., 2009)

(8)

2 . 2 . +" , ! - " ./ 0 1/

&2

9= GB S= K N6 r(

P

* 5 S= K 67 4

= FNK

>

P

= + L = =

6% @ = + = L#K Q b = &

* 5 . <6 4

#K

= I #f : ? X

O=

7 (

1 2 3

4

1 2 3 4

4 1 2 3

1 2 3 4 , ,

( , , , )

( | , , )

u u u

C u u u u c u u u u

u u u u



   

u1

u2

u3

= c>K K 6% G;< ] >+ @ = +

&

u1

u2

u3

u4

L = D>

U & 9GH 6%

. =

= = Q #F

u1

J6 Q<Ld

>

` a :B : #

O=

8 (

 

 

 

. . .

1 1

1

2 2|1 2 1

1

| 1,...,1 1 1

: 0;1 , 1,...,

: :

: |

: | ,...,

i i d j

d d d d d

First Sample w U j d

Then u w

u C w u

u C w u u

M

= 9K

>>

P

#K S= #K S 4

Cj|j-1,...,1, j = 1…,d

& 67 Q<L :;<

>

Q . P [ K I ?^

=

S= #K <6 =h

#K S= K S 4 W # g

6B = &

#K

= I #f

6 =

# ]# 9

)

Nazeri Tahroudi et al., 2022b

= .(

I ^t4 C>=

K

Czado

) (2019

?=

>

>

.

2 . 3 . ) 2

qL

>

>

P ) O7 I 9=

(RMSE

c R C

- ) M>G K (NSE

9>

I ^t4

Akaike (AIC)

>9

) P D>= I ^t4 (BIC

&

_

= 6%&

6 = N6 P

>? _ 6 % + :;<

<6 -

# )

Nash and Sutcliffe, 1970; Zhang and Singh, 2006

.(

O=

9 (

2 1

1 ( )

N

i i

i

RM SE p p

N

O=

10 (

2 2 ln( ) A IC m L

O=

11 (

2 1

ln 1 ( ) ln( )

N

i i

i

BIC N p p m N

N

O=

12 (

2 1

2 1

( )

1

( )

N

i i

i N

i ave

i

p p

N SE

p p

 

pi

pi

= c>K K

>? + = = = K & +

. =

9K N

&

9Km

& 6 (

= " F6B S= K + • B L

.Q "

pave

K & + e #6 = = = D>

:B . =

` a C& '(

= I #f : { = ft7 )

4 ( . =

(9)

Q b = & 6% @ = L = &

9* O # & >J6 Q<L 6%?F& =

] = K = :;< N6 P &:;< =

= & >9

G7 &:;< = c 6 67 * #K N6

>? (c(u4|u1,u2,u3)) >J6 5 4 * 5 =

@ = -

Figure 4. Flowchart of research steps

3 . 4 5

>? Q L 9* O P E :>GXK

T&

R#B SH U & 9GH R#B L 7 L =

6% @ = &

Q b = &

1398 - 1372 >* I >>JK #F . <6

&

= # =

I #f :

) 5 ( & >J6 P>= 6%?F& . = 9* O #

= ( = F&

(10)

` #6%>&

&

>

D

= I #f :

) 6 ( : = L#K = . = )

6 ( & >J6 P>= 6%?F& #L #K

9* O #

> |K ` #6%>& . &

9* O # D>

& >J6 ( S #K Q& ? &

9* O #

. =

Figure 5. Observed values of rainfall (mm) and flow (m3/s) in the studied stations

Figure 6. Correlation, scatter cloud and histogram of the initial values of rainfall (mm) and flow discharge

(m3/s) in the studied stations

(11)

6% @ = + = [GF\ > G5 &

= c>K K o

R_Chel R_Mey

R_Mor

o U & 9GH 6% L = + =

Q_Qal

<6 " L & 67 9* O P . #

T^ P :;< MG6N

R C

= # D

:;< 67 & 67 .QE H Q* B x &

&

= MG6N

] =

= & >9

AIC BIC Log Likelihood

N6 c 67 67

:;< MG6N & 67 = = . #

D-vine

c R =

AIC=-743.7 BIC=-716.7

Log

Likelihood=377.8

= # ^ :;< 67 = _ 6 . N6 K = :;<

D-vine

:>GXK 5 9=

+O 9* O # = D>

" L { )

1 ( : ) 7 ( 67 = _ 6 . g

D-vine

<6 = &

:= H 6%?F& " Q7 #L#

Q7 ?K C DE = #L & >J6 Q<L P>= *#?H P &

€<B 6 K 6%?F&

" #g K 6%?F& + = 6 = . # :;< G$% [ D>E

D-vine

N6

? F& . = " L #4

) 1 ( #6 t :;< Q iN 180

[ E L

= # ^ :;<

&

N6 G7 #6 t :;< .

180 #6 t # 7 :;< L C #( = L#K = =

& >J6 Q<L 6%=

:= H MG6N I L

D> :;< S= #K # P . = .Q q(

C DE P #=b =

Q7 " #g K + C DE " = F6^ D> Kb = &

. &

T&

P> 5

_ 6

] =

& >9

AIC BIC Log-Likelihood

Q7 FK

&

= # :;<

:;< cN6 #6 t G7 &

180 [ E L

= # ^ :;< <6 . N6 K = :;<

&

G7

" QH = I L FK " #g K + #K

>?

C DE &

. &

:;< <6 = :B Q

D-vine

:;<

g G7 &

" L )

1 ( . =

Table 1. The structure of D-vine in the correlation analysis of the studied values Par Tau

Copula Edge

Tree

0.16 0.14

Clyton-180 R_Mey, Q_Qal

T1 R_Mor, R_Mey Frank 0.67 5.58

1.02 0.61

Clyton-180 R_Chel, R_Mor

0.06 0.57

Clyton-180 R_Mor, Q_Qal | R_Mey

T2

2.39 0.61

Frank R_Chel, R_Mey | R_Mor

0.09 0.40

Clyton-180 R_Chel, Q_Qal | R_Mor, R_Mey

T3

Figure 7. The tree structure of the selected D-vine in the 4-D analysis of the studied values

(12)

3 . 1 .

:;< QH = Q L

>? = ` H cN6 &

+ <6 = U & 9GH 6% L = +

6% @ = Q b = &

6 ( G;< ] >+ = # + :;< S= #K 4 * 5 <6 = .

>? ( L = ) 6%=

= 9= .

> |K :;<

9= 5 :;< 4 * 5 = = cN6 &

L = + <6 = 6= . 67 (

c (u4|u1,u2,u3)

C>( = ` H L = + P>FNK >=

d|6

= L = + H Q= d = 6= #W P = . = # & 6 ( +

c (u4|u1,u2,u3)

+

C>= . ? X :;<

#X + P K

= L = W6 # + = = =x

L = L + . #

? X

@ = I >>JK = j 6 L = 4 Q* B &

:;< S= #K <6 = 6 P . =

6% @ = Y#H Z = L = + = #

>? Q b = &

= _ 6 : I #f

) &

8 (

) 9 ( ) : = L#K = . g 8

(

>? " & #K

= :;< = 6?

Q 6% #K =#7

I >>JK

= " P > >= >F Z + . & C #( K & &

>? =#7 P>= 8t67

>? K & + #L

>? " .

= :;< = 6?

>? @ = + " F^ :>*

&

= B Z + g =#7 _ 6 Q 6% #K ) : = L#K = . & C #( =#7

9 D> ( & #K

>? O7 D>

B :;< = 6?

57 / 18

> d = c9 6 D> " c R . =

>?

B 9* O # D = R#B L = >J6 5 86

/ 0 >F4 B = L#K = . = 95

>? f -

) : 9

( T # 5 & #K C>= # P 5 >FNK

>? >FNK = +

L . #L @ = + Y#H Z =

6% L = + e #6 9* O #

B 56 / 47 + = ^ P #= > d = c9 6

>?

B 80 / 47

>? + >F .Q = > d = c9 6

= #

= = B K & + e #6

>= = :;< S= #K 4 * 5 = r( . =

" > P>= 6%= 67 &

= # =

#W ? X

= . <6 L = Q = &

+O @ = = c 6 L = 4 Q =

9* O #

` I &

10 20 50 100 *

Q = Q . 67 (

T&

Q = L = +

&

K 100 { = = *

: ) 10 ( g .

Figure 8. Simulation and observation values of flow discharge given by the rainfall in upstream stations

(13)

Figure 9. 95% confidence intervals of simulation and observation values of flow discharge given by the rainfall

values in upstream stations

) : = L#K = 10

( Q = = & #K L = 4 Y#H MG6N Ib F6B MG6N &

= U & 9GH 6%

#L

Q = = .

K <f 9* O # :X L = + MG6N &

300

>J6 > d = c9 6

>J6 [K Q = I <K . = >J6 5 Q = =

T&

Q* B Q P

[K

= ^ [ >J6 E 9 Q = # ^

* B # Q* B

T&

>67 MG6N Ib F6B = = [

H = &

= #K Q = = L = P>FNK = G Q* B # ^ g MG6N " F6B MG6N &

) : = L#K = . 10

( K L = + 4 Y#H " F6B * Q = = & #K

T K 50 C& f #L " & * Q = Y#H W6 a . =

& #K

C& L = + Y#H " F6B C DE = " F6B K . =

50 L = + C& * D f

r( #= L#K := H * Q = +K

p ? = Q= d e = L#K = _ 6 . >

9* O # +O = T B C>= L = @ = W

50

= > d = c9 6 9* O # +O e #6 #4

I >>JK > MG6N I 9* O = L#K = .Q%> W6

@ = ( S #K #&

) &

Khalili et al., 2016;

Tahroudi et al., 2019

DE > % ?L (

= uO C

@ = #L :>*

= B &

T&

#7

: #= & #7 QN >%= ~ 7 F67 S= Q ` D* #L# e = L#K = q* . & #7

] %B C>( C>= XO ) : . #

10 Ib F6B = L = K >>JK Q = & ( MG6N

e K &

T&

>J6 5

q(

= .Q Q = " • #4 10

" F6B = * 99

/ 0

K 09 / 0 I 9* O Q D P . = L = #K

. et al Nazeri Tahroudi

)

2022 a , b

. & D> (

Figure 10. The return period of the flow discharge given by the occurrence of rainfall corresponding to the

conditional probabilities

(14)

4 . 7 8

>? 9* O P E :>GXK

T&

6% @ = L = U & 9GH R#B Q b = &

1398 K 1372 :;< <6 = :;< = PFR #W P = .QE q( I #f P # 7 &

9= 5 &

67 * #K P # 7 ] = &

& >9

AIC BIC Log-Likelihood

:;< & 67

&

C-vine

D-vine R-vine

T&

Q* B P> 5

&

:+6%

& >9 = L#K = .QE H = # &

g :;< G$% [ D>E

D-vine

= c :;< # ^ :;< 67 67 = _ 6 . N6 K

&

:;< = #

D-vine

?* N6 = G$% [ D>E €<B P>^

>J6 Q<L 6%?F& K = &

K &

€<B Q7 P 7 T& .

:;< E 9 N6 = P> 5 Q* B #6 t &

180 6%= 67 L

I >>JK :

>? Q .QE H = # &

6% @ = + = L#K = L = + &

<6 = Q b = :;<

D-vine

:;<

#6 t G7 &

180

>? _ 6 .QE I #f [ E L

>= L = + 86

O7 D> >( " f 57

/ 18

>? . #= > d = c9 6

Q>+E#

67 67 w>H N6 = G>* SH & 6 ( D>

:;<

D-vine

wE# " P . =

I >>JK e #6

>? b = QH = &

>F4 B 95

Y#R# P D> f

> |K 8 & .

E :>GXK Q L 4 * 5 S= #K <6 C& '( P Gf T&

Z = L = 4 Y#H " F6B

6% @ = Y#H Q b = &

4 * 5 <6 = =

c (Q_Qal| R_Chel R_Mey, R_Mor)

= = . = g MG6N Ib F6B = L#K = " P >

. P>FNK L = + #K

>J6 5 = L#K = >(

H = #=

>? b = Q>9OH Y#H Z L = Y#H " F6B =

+O & = iN & #F g = P .Q #7 = C DE = L#K = t> Q #K

@ =

= . = >< 6E H <6 # B &

P P :;< L 9* O

:;< #K D> #K #K &

>•>( <6 GB &

C DE 9= 5 Q* B P :;< = Q?% #K #K :;<

@ . =

>? >(

@ = -

= S #K <6 :>*

T& &

J6 Q<L = c 6 67 *#K P> 5 & >

. F>GH >E JL Q X h>&

5 .

! &: ;<

C& '( Q FB v f Q FB QXK d P ) # E

F { 4 6E = (INSF

"

4005011

"

.Q ` a

6 .

>

+ # ) 1. Dependency model

2. Archimedean functions 3. Non-Archimedean function 4. Plackett

5. Cascade of simple building blocks 6. Chain law

7. Drawable vine trees 8. Canonical vine trees 9. Nested trees

(15)

7 .

* @ 2

&

>

h

#

# e #K SE ‚ 9K

% . #L

8 . *

Aas, K., Czado, C., Frigessi, A., & Bakken, H. (2009). Pair-copula constructions of multiple dependence. Insurance: Mathematics and economics, 44(2), 182-198.

Adamson, P.T., Metcalfe, A.V., & Parmentier, B. (1999). Bivariate extreme value distributions:

an application of the Gibbs sampler to the analysis of floods. Water Resources Research, 35(9), 2825-2832.

Bedford, T., & Cooke, R. (2001). Probabilistic risk analysis: foundations and methods.

Cambridge University Press.

Czado, C. (2019). Analyzing dependent data with vine copulas. Lecture Notes in Statistics, Springer, 222.

Dastourani, M., & Nazeri Tahroudi, M. (2022). Toward coupling of groundwater drawdown and pumping time in a constant discharge. Applied Water Science, 12(4), 1-13.

Favre, A. C., El Adlouni, S., Perreault, L., Thiémonge, N., & Bobée, B. (2004). Multivariate hydrological frequency analysis using copulas. Water Resources Research, 40(1).

Favre, A. C., Musy, A., & Morgenthaler, S. (2002). Two‐site modeling of rainfall based on the Neyman‐Scott process. Water Resources Research, 38(12), 43-1.

Joe, H. (1997). Multivariate models and multivariate dependence concepts: Chapman and Hall/CRC.

Kao, S. C., & Govindaraju, R. S. (2007). A bivariate frequency analysis of extreme rainfall with implications for design. Journal of Geophysical Research: Atmospheres, 112(D13).

Khalili, K., Tahoudi, M. N., Mirabbasi, R., & Ahmadi, F. (2016). Investigation of spatial and temporal variability of precipitation in Iran over the last half century. Stochastic Environmental Research and Risk Assessment, 30(4), 1205-1221.

Khashei, A., Shahidi, A., Nazeri-Tahroudi, M., & Ramezani, Y. (2022). Bivariate simulation and joint analysis of reference evapotranspiration using copula functions. Iranian Journal of Irrigation & Drainage, 16(3), 639-656.

Khozeymehnezhad, H., & Nazeri-Tahroudi, M. (2020). Analyzing the frequency of non- stationary hydrological series based on a modified reservoir index. Arabian Journal of Geosciences, 13(5), 1-13.

Kurowicka, D., & Cooke, R. M. (2007). Sampling algorithms for generating joint uniform distributions using the vine-copula method. Computational statistics & data analysis, 51(6), 2889-2906.

Li, F., & Zheng, Q. (2016). Probabilistic modelling of flood events using the entropy copula. Advances in Water Resources, 97, 233-240.

Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I-A discussion of principles. Journal of Hydrology, 10(3), 282-290.

Nazeri Tahroudi, M., Ramezani, Y., De Michele, C., & Mirabbasi, R. (2022a). Application of Copula Functions for Bivariate Analysis of Rainfall and River Flow Deficiencies in the Siminehrood River Basin, Iran. Journal of Hydrologic Engineering, 27(11), 05022015.

Nazeri Tahroudi, M., Ramezani, Y., De Michele, C., & Mirabbasi, R. (2022b). Application of copula‐based approach as a new data‐driven model for downscaling the mean daily temperature. International Journal of Climatology. DOI: 10.1002/joc.7752

Nazeri Tahroudi, M., Ramezani, Y., De Michele, C., & Mirabbasi, R. (2022c). Trivariate joint frequency analysis of water resources deficiency signatures using vine copulas. Applied Water Science, 12(4), 1-15.

(16)

Nazeri Tahroudi, M., Ramezani, Y., De Michele, C., & Mirabbasi, R. (2022d). Multivariate analysis of rainfall and its deficiency signatures using vine copulas. International Journal of Climatology, 42(4), 2005-2018.

Nazeri Tahroudi, M., Ramezani, Y., De Michele, C., & Mirabbasi, R. (2021). Flood routing via a copula-based approach. Hydrology Research, 52(6), 1294-1308.

Nelsen, R. B. (2006). An introduction to copulas, ser. Lecture Notes in Statistics. New York:

Springer.

Pham, M. T., Vernieuwe, H., De Baets, B., & Verhoest, N. (2018). A coupled stochastic rainfall-evapotranspiration model for hydrological impact analysis. Hydrology and Earth System Sciences, 22(2), 1263-1283.

Pronoos Sedighi, M., Ramezani, Y., Nazeri Tahroudi, M., & Taghian, M. (2022). Joint frequency analysis of river flow rate and suspended sediment load using conditional density of copula functions. Acta Geophysica, 1-13.

Salvadori, G., & De Michele, C. (2007). On the use of copulas in hydrology: theory and practice. Journal of Hydrologic Engineering, 12(4), 369-380.

Sklar, M. (1959). Fonctions de repartition an dimensions et leurs marges. Publ. inst. statist.

univ. Paris, 8, 229-231.

Tabatabaei, S. M., Dastourani, M., Eslamian, S., & Nazeri Tahroudi, M. (2022). Ranking and optimizing the rain-gauge networks using the entropy–copula approach (Case study of the Siminehrood Basin, Iran). Applied Water Science, 12(9), 1-13.

Nazeri Tahroudi, M., Pourreza-Bilondi, M., & Ramezani, Y. (2019). Toward coupling hydrological and meteorological drought characteristics in Lake Urmia Basin, Iran. Theoretical and Applied Climatology, 138(3), 1511-1523.

Wang, R., Zhao, C., Zhang, J., Guo, E., Li, D., Alu, S., & Dong, Z. (2019). Bivariate copula function-based spatial–temporal characteristics analysis of drought in Anhui Province, China. Meteorology and Atmospheric Physics, 131(5), 1341-1355.

Xiao, Y., Guo, S., Liu, P., & Fang, B. (2008). A new design flood hydrograph method based on bivariate joint distribution. IAHS Publications-Series of Proceedings and Reports, 319, 75-82.

Yue, S., Ouarda, T. B. M. J., & Bobée, B. (2001). A review of bivariate gamma distributions for hydrological application. Journal of Hydrology, 246(1-4), 1-18.

Zhang, D., Yan, M., & Tsopanakis, A. (2018). Financial stress relationships among Euro area countries: an R-vine copula approach. The European Journal of Finance, 24(17), 1587-1608.

Zhang, L., & Singh, V. (2006). Bivariate flood frequency analysis using the copula method.

Journal of Hydrologic Engineering, 11(2), 150-164.

Referensi

Dokumen terkait

This strategy combined the frequency domain analysis with disturbance rejection control technology to the coordinated system in thermal power units, is a new boiler-turbine

The aims of this research were to analyze settlement growth using polygon fragmentation and its effect to river discharge in Upper Ciliwung Watershed.. The Ciliwung river discharge

As given by Chen, at the plane 𝑥 = 0 near the wall let the ions enters in the sheath region from the bulk plasma with some velocity 𝑢0.Let we assume that temperature of all the positive

The status of green roof control media without zeolites B2 at category “B” indicates that the water was lightly polluted Table 3.. The greenroof water in media with zeolites B1, are not

Capillary Shock Time From the results of the above readings on the capillary shock value in each different soil medium and the variations in rainfall intensity, which are also

Joint Common Phase Error and Channel Estimation for OFDM-based WLANs in the Presence of Wiener Phase Noise and Residual Frequency Offset Yong-Hwa Kim, Jong-Ho Lee and Seong-Cheol

Methods: The research was carried out in several stages, namely collecting the Lombok tourism dataset, text prepro- cessing, text weighting using the Term Frequency-Inverse Document

Recently, a study on how frequency of verbs in news section is influenced by the characteristics of the news text has been done Oktavianti & Ardianti, 2019, resulting in verbal verb