• Tidak ada hasil yang ditemukan

, Ivo Ugleˇsi ´c

N/A
N/A
Protected

Academic year: 2023

Membagikan ", Ivo Ugleˇsi ´c"

Copied!
9
0
0

Teks penuh

(1)

ContentslistsavailableatScienceDirect

Electric Power Systems Research

jou rn al h om e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / e p s r

Simulation of three-phase transformer inrush currents by using backward and numerical differentiation formulae

Amir Toki ´c

a

, Viktor Milardi ´c

b,∗

, Ivo Ugleˇsi ´c

b

, Admir Jukan

a

aFacultyofElectricalEngineering,TuzlaUniversity,Tuzla75000,BosniaandHerzegovina

bFacultyofElectricalEngineeringandComputing,UniversityofZagreb,Zagreb10000,Croatia

a r t i c l e i n f o

Articlehistory:

Received28November2014

Receivedinrevisedform31March2015 Accepted24May2015

Keywords:

Three-phasetransformerinrushcurrents Numericaloscillations

L-stability

Extremelystiffsystem Backwarddifferentiationmethod

a b s t r a c t

Thispaperpresentsasimplifiedmodelofathree-phasetransformerdevelopedinthestate-spaceform usingthelineargraphtheory.Thealgorithmforgeneratingthecoefficientmatrixesofthestate-space equationisdescribed.Stiffdetectionproceduresofdifferentialequationsystemsthatdescribethethree- phasetransformerinrushcurrenttransientsareexplained.Itisshownthatthetime-domaintransient responseofthree-phasetransformersmathematicallydescribesextremelystiffsystems.Thenumerical integrationmethodsbasedonstrongstable(AandL)backwarddifferentiationformulaeareusedtosolve extremelystiffdifferentialequationsystemsarisingfromthestate-spaceformulationofthetransformer inrushcurrenttransientequations.Acomparisonofthemeasuredandsimulatedthree-phasetransformer inrushcurrentsshowedverygoodagreement.Theproposedprocedureofmodelingandthesimulation methodareusefultoolsthatcanbeappliedtootherelectricaltransientswhereextremelystiffsystems appear.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

Thetransformerisoneofthemostimportantelementsofpower systems.Itisimportanttomakeavalidtransformermodelinthe observedtransientelectromagneticphenomena.Therearediffer- entmodelsoftransformersdependingonthefrequency spectra oftransients[1].Accordingto[2],thetransformerinrushcurrent belongstothelow-frequencytransients,frequencyupto1kHz.The transformerinrush currents are low-frequency electromagnetic transientsthatoccurduringenergizationofunloadedtransform- ers.Dependingonthetransformerparameters,residualfluxand themomentofswitchingon,themagneticfluxcanreachatwice highervalueincomparisonwiththeratedoperatingvalue.

Whenthe transformer is switched on and the value of the residualfluxisnearthepointofsaturation,thereductionofthe transformerimpedancetowindingresistanceandlowinductance mayoccurin thesaturationregionofthemagnetizationcurve.

Adirectconsequenceofthisscenarioistheironcoresaturation andtheproductionoftransformerinrushcurrents.Inrushcurrents, whichmaybeseveraltimeshigherthantheratedcurrents,can reducethepowerqualityduetovoltagesag[3],causethefalse

Correspondingauthor.Tel.:+38516129976;fax:+38516129890.

E-mailaddresses:amir.tokic@untz.ba(A.Toki ´c),viktor.milardic@fer.hr (V.Milardi ´c),ivo.uglesic@fer.hr(I.Ugleˇsi ´c),admir.jukan@untz.ba(A.Jukan).

operationofprotectiverelaysorfuses[4],damagethetransformer windingsduetodevelopedmechanicalforces[5]andinsomesce- narioscauseharmonicresonanceovervoltages[6,7].

Significantworkhasbeendoneondevelopingthetransformer models for the inrush current analysis. Several approaches to themodelingofthetransformerinthetimedomainsuitablefor inrushcurrentsimulationsaregiveninpapers[8–15].Ingeneral, atransformermodelcanbeseparatedintotwomainparts:the transformerwindingsandthetransformerironcore.Thefirstpart hasa linearand thesecondonehasa nonlinearcharacter.The time-domainmodelingoftransformersispossibleusingthenodal approach(usedinEMTP-basedprograms)orstate-spaceapproach (usedinMATLAB).

Inadditiontotheproblemoftransformermodeling,itisvery important to pay special attention to the choice of simulation algorithm. Thesolutionalgorithm dependsonthechoiceof the appropriatenumericalmethodusedinthesimulationprocedureof themathematicalmodel.Forexample,theEMTP-basedprograms usethecompensationmethodtosolvethesystemsolution[16].

ThesystemisfirstsolvedusingThevenin’sequivalents,ignoringthe nonlinearelements.Apossibleproblemofacompensationmethod isthattheThevenin’sequivalentcannotalwaysbedetermineddue topossiblefloatingnetworkformulations.Inaddition,specialprob- lemsmayariseduringthesimulationofthetransformertransients.

The main purpose of this paper is to present a simplified techniqueofthethree-phasetransformermodelingwithsuitable http://dx.doi.org/10.1016/j.epsr.2015.05.020

0378-7796/©2015ElsevierB.V.Allrightsreserved.

(2)

Rp1 Ls1

Rm1 Lh1

Rm2 Rm3

3L0

1:1

Rp2 Ls2 1:1

Rp3 Ls3

Lh2 Lh3

L12

L31

L23

Fig.1.Three-phasetransformercircuitmodel:(a)thestartingmodelwhichincludemutualcouplingbetweenphases,(b)theequivalentcircuitmodel.

solutionalgorithmbasedontheuseofstronglystablenumerical methods.Theproposednumericalmethodwasfoundtobestrongly stableandaccurateforthethree-phasetransformerinrushcurrent simulations.

Thereminderofthispaperisorganizedasfollows:inthefol- lowing section thesimplified circuit model of thethree-phase, three-leg,two-windingtransformerisexplained.Analgorithmfor generatingthestate-spaceequationsdescribingthethree-phase transformerinrushcurrenttransientsisdevelopedinSection3.The characteristicsoftheappropriatedsolutionmethodbasedonback- warddifferentiationformulae(BDF)ornumericaldifferentiation formulae(NDF)aredescribedindetail.Thetransformerinrushcur- rentmeasurementsandnumericalsimulationresultsarecompared inSection4.ThepaperisconcludedinSection5.

2. Simplifiedtransformermodelingprocedure

Thesimplifiedcircuitmodelofthethree-phase,three-leg,and two-windinglaboratorytransformerwithastar-starwindingcon- nectionisshowninFig.1.Theparametersofthecircuitmodelscan beobtainedfromstandardopen,positiveandzerosequencetests.

Theproposedtransformermodelincludesphase-tophasemutual coupling.Thiscircuitmodelwithadditionalzerosequencemag- netizinginductanceisthecommonsimplifiedrepresentationofa three-phasetransformerininrushcurrentsimulations[16,17].

LabelsinFig.1are:Rpiwindingresistances,Lsiwindingleakage inductances,Rmi corelossresistors,Lhicorehystereticinductors andL0zerosequencemagnetizinginductance,i=1,2,3.

TheselfinductanceLs=Lsi andmutual inductanceLm=Lij are calculatedfrompositive(Lp)andzero(Lz)sequencevalues:

Ls=Lz+2Lp

3 (1)

Lm=Lz−Lp

3 (2)

Thestarting model of thetransformeris shownin Fig.1(a), whiletheequivalentcircuitmodel,whichincludemutualcoupling betweenphases,isshowninFig.1(b).

Inthispartofthepaper,particularattentionwillbedevoted tothe modeling of the nonlinear hysteretic inductor,Fig. 1(b).

Normally, thenonlinearsingle-valuedmagnetization(−im)or nonlinearmulti-valuedhysteresis(−ih)characteristicsof iron corematerialsaretypically modeledby piece-wiselinearfunc- tionsorsomeothernonlinearanalyticalfunctions.Commonways ofmodelingthesenonlinearcurvesaretouseapiece-wiselinear function[18]orapolynomial[19],arctg[20]orhyperbolicfunc- tion[21].The useof nonlinearanalytical functionsinmodeling nonlinearelectricalcomponentsgenerallyextendsthesimulation timeofdynamicsystemsbecauseoftheNewton–Raphsonitera- tivemethod,comparedtotheuseofapiece-wiselinearmodel.In addition,theuseofcurve-fittingextrapolationtechniquescanlead toproblemsinmodelingthenonlinearinductanceorhysteresisin asaturatedarea.Ontheotherhand,theuseofapiece-wiselinear modeliscloselyrelatedtotheappearanceofunwantedovershoot- ingeffects[22].

(3)

Fig.2. (a)Nonlinearhystereticinductor,(b)state-spacemodel.

2.1. Modelingofhystereticironcoreinductor

Inthispaper,amodifiedapproachtohystereticinductormod- elingisused,alreadyshowninthepaper[23].Hystereticinductor isdefinedbyasetofpointsofonebranchofthemajorhysteretic loop:

(ih1,h1), (ih2,h2), ..., (ihp,hp)

wherepisthetotalnumberofthesampledpointsof the(half) majorhysteresisloop.Itcanbeseen[24]thatthefinalexpression formagnetizingcurrentofthekthpiece-wiselinearregionofmajor loopintermsoftheactualfluxis:

ih= 1

Lhk+Shk (3)

wherethereare,respectively:

Lmk=hk+1hk

ihk+1−ihk ,Lmk= sgn ()k

sgn ()k−1Lmk, Lhk=Lmk−Lmk

Ik= 1

Lmkk, Shk=sgn ()×

Ihk−Ik

, 1≤k≤p−1

Finally, the nonlinear hysteretic inductor Lh in Fig. 2(a) is modeledthroughlinearinductorLhk inparallelwithanartificial currentsourceShk,Fig.2(b).

Thedevelopedhystereticinductormodeltakesintoaccountthe specialoperatingconditionsoccurringduetothefactthattheoper- atingpointinoneparticularcaseliesoutsidethemajorhysteresis loop.Thedevelopedmodelhasaspecialsubroutineforeliminating thepossibleovershootingeffect[22,23].

3. Solutionprocedureforthethree-phasetransformer inrushcurrentcalculations

Thedevelopedmodelsofnonlinearhystereticinductorsarevery suitableforthedevelopmentofstate-spaceequationsystemsthat describelow-frequencythree-phasetransformertransientssuchas transformerenergization,Fig.3.Anarbitraryintegrationmethod couldbeappliedinastate-spaceform.IntheEMTP-ATPelements arestronglydependentontheintegrationstep;thisfactbecomes apparentwhenatrapezoidalnumericalruleisappliedtotherele- vantbranch.

Itshouldbenotedthatsomeauthorsreportedsomenumeri- calproblems(numericaloscillations)duringthesimulationofthe transformertransients[25–27].Intheseworks,thecauseofthe numericalproblemiscitedas‘stiffsystem’or‘nonlinearityofmag- netizingcurve’.However,theseworksdonotexploreindetailthe causesofunwantednumericaloscillations,whichisoneofthemain goalsofthispaper.

3.1. Modelingofthethree-phasetransformertransients

Thealgorithmprocedureforgeneratingstate-spacematricesis presentedbelow.Thestandardstate-spaceequationthatdescribes transformerinrushcurrentanalysisis:

dX(t)

dt =AX(t)+BU(t)=F(X,t) (4) The input vector contains the system voltages and current sourcesgeneratedfromnonlinearhystereticinductors:

U(t)=

e1 e2 e3 Sh1j Sh2k Sh3l

T

(5) Inordertoreachasolutionofthestandardstate-spaceequation (2),andtogeneratethematrixofAandBcoefficients,thetheory oflineargraphswillbeused[24,28].

First,thepropergraphtreeisdefinedasaseriesofbranches thatconnectallthenodesanditdoesnotcontainanyloop.The remainingbranchesofthegraphmakeacotree,i.e.theconnecting branchesofthegraph.

ForelectricalcircuitmodelinFig.3,anappropriategraphwith aproperlydefinedtreeoracotreecanbeformedasinFig.4.Then, thevariablesofthesystemaredefinedasacurrentthroughthe inductancesthatbelongtothegraph cotree.It shouldbenoted thatthegraphinFig.4containstheinductorcutset(markedinred) whichreducesthedimensionofthestatevectori.e.thedimension ofthewholesystem.

Atthebeginning,thestatevectorisdefinedas:

X˜(t)=

iL1 iL2 iL0 ih1j ih2k ih3l

T

(6) Customizedequationsofthestatespacecanbewrittenas:

L˜d ˜X(t)

dt =A˜X˜(t)+BU˜ (t) (7)

wherecoefficientsofmatrices ˜A, ˜Band ˜Lareunknown.

Theelementsof matrix ˜A areobtainedinstages, columnby column.Hence,allvoltagesources areshortcircuited,while all currentsourcesandinductorsaredisconnected,excludingonlythe inductancethroughwhichthe1Astepsourcecurrentflows.Inthe firstthreecolumns,currentsaretakenthroughordinaryinductors, whileinthelastthreecolumnscurrentsaretakenthroughartificial linearhystereticinductors.

Theanalogousprocedureisusedtodeterminethecoefficientsof matrix ˜B.Inthefirstthreecolumns,allcurrentsourcesandinduc- torsaredisconnected,whileallvoltagesourcesareshortcircuited, excludingonlythevoltagesourceacrosswhichthe1Vstepsource isconnected.

Thelastthreecolumnsaretreatedbyanalogyprovidedthatall inductorsandcurrentsourcesaredisconnected,excludingonlythe currentsourcethroughwhichthe1Astepsourcecurrentflows.

Elementsofthematrices ˜Aand ˜Bare,respectively:

A˜=

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

uL1

iL1=1 uL1

iL2=1 uL1

iL0=1 uL1

ih

1j=1 uL1

ih

2k=1 uL1

ih 3l=1

uL2

iL1=1 uL2

iL2=1 uL2

iL0=1 uL2

ih1j=1 uL2

ih2k=1 uL2

ih3l=1

uL0

iL1=1 uL0

iL2=1 uL0

iL0=1 uL0

ih1j=1 uL0

ih2k=1 uL0

ih3l=1

uh1j

iL1=1 uh1j

iL2=1 uh1j

iL0=1 uh1j

ih

1j=1 uh1j

ih

2k=1 uh1j

ih 3l=1

uh2k

iL1=1 uh2k

iL2=1 uh2k

iL0=1 uh2k

ih1j=1 uh2k

ih2k=1 uh2k

ih3l=1

uh3l

iL1=1 uh3l

iL2=1 uh3l

iL0=1 uh3l

ih1j=1 uh3l

ih2k=1 uh3l

ih3l=1

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

(4)

Fig.3.Equivalentcircuitmodelfortransformerinrushcurrentsimulations.

B˜=

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

uL1

e1=1 uL1

e2=1 uL1

e3=1 uL1

Sh1j=1 uL1

Sh2k=1 uL1

Sh3l=1

uL2

e1=1 uL2

e2=1 uL2

e3=1 uL2

Sh

1j=1 uL2

Sh

2k=1 uL2

Sh 3l=1

uL0

e1=1 uL0

e2=1 uL0

e3=1 uL0

Sh1j=1 uL0

Sh2k=1 uL0

Sh3l=1

uh1j

e1=1 uh1j

e2=1 uh1j

e3=1 uh1j

Sh1j=1 uh1j

Sh2k=1 uh1j

Sh3l=1

uh2k

e1=1 uh2k

e2=1 uh2k

e3=1 uh2k

Sh

1j=1 uh2k

Sh

2k=1 uh2k

Sh 3l=1

uh3l

e1=1 uh3l

e2=1 uh3l

e3=1 uh3l

Sh1j=1 uh3l

Sh2k=1 uh3l

Sh3l=1

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

Sincethelineargraphforthemodelcontainsinductorcutset, theelementsofmatrix ˜Lareobtainedinacompletelydifferentway accordingtotheredefinedandgeneralizedproceduredescribedin thepaper[22].

Theprocedureinthepaper[22]couldnotsolvethescenario oftheappearanceoftheinductorcutset,theproblemhasbeen solved by inserting artificialelements in the original model of thesystem.Thecurrentsourcesareconnectedinseries,inevery branchofthecotreecontainingtheinductances.Inductancesinthe treeremainedintheoriginalpositionswithoutaddingthecurrent sources.Allotherelementsareremovedfromtheelectriccircuit.

Thenmatrix ˜Lisobtainedinstagesbytype,sothattheelementsof thefirsttypeareobtainedwhilemaintainingthecurrentsource ofthefirstinductance ofthecotreeuntil allcurrentsources of theremaininginductancesofthecotreearedisconnectedfromthe electriccircuit.

The coefficients of the first type are obtainedas equivalent inductancethatisseenfromcotreebrancheswherethereisthe firstinductanceofthecotree.Analogously,thecoefficientsofother typesareobtainedasequivalentinductancesthatareseenfrom

othercotreebranchesinwhichthereareresidualinductancesofthe cotree.Thesignsofthecoefficientmatrix ˜Lareobtaineddepend- ingonthecorrelationofthevoltageinductancesinthebranches ofthecotreewiththecorrespondingcurrentthroughtheinduc- tances.Thedetailedprocedureforobtainingthecoefficientsofthe elementsofthementionedmatrixisdescribedinRef.[24].

Whenthematrices ˜A, ˜Band ˜Larecalculatedaccordingtopre- viouslydescribedprocedures,thentheshift ˜X=KX,whereKisa diagonaltransformationmatrix,i.e.

K=

diag(ki,i)

i=1,2,...,6 (8)

withelements:

ki,i=1, i=1,2,3, ki,i= 1 Lhi(j,k,l)

, i=4,5,6

becomes the state vector containing thecurrents of the linear inductancesandmagneticfluxesonthenonlinearhystereticinduc- tances:

X(t)=

iL1 iL2 iL0 1j 2k 3l

T

(9) Moving to themagnetic fluxes as state variables is suitable because, as integrals of the corresponding voltages, they are changedmoresmoothlythanthecorrespondingcurrents.

NowEq.(7)iswrittenintheform:

L K˜ dX(t)

dt =A K˜ X(t)+B U˜ (t) (10) Thefinalequationobtainedtheformofastandardstate-space equation(2),wherethematrixofthesystemisobtainedas

A=(˜LK)−1A K˜ (11)

Inductor cutset

Ls1L12L31

Rm1 Lh1j

Rm2 Rm3

iL1

iL2

ih1j

3L0

Ls2L23L12

Ls3L31L23

ih2k ih3l

iL0

Sh1j

Lh2k

Sh2k

Lh3l

Sh3l

u2

iL0

iL0 u3

e1(t)

e2(t) e3(t)

Rp1

Rp2

Rp3

L12

L23

L31

iL2

u12

u23

iL3

u31

iL1

Fig.4. Orientedgraphfortransformercircuitmodel.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

(5)

B=(˜LK)−1B˜ (12) Thematrices ˜A, ˜B, ˜LandKareobtainedaccordingtotheabove describedprocedure:

A˜=

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎣

−2(Rp+Rm) −(Rp+Rm) 0 Rm 0 −Rm

−(Rp+Rm) −2(Rp+Rm) 0 0 Rm −Rm

0 0 −3Rm −Rm −Rm −Rm

Rm 0 −Rm −Rm 0 0

0 Rm −Rm 0 −Rm 0

−Rm −Rm −Rm 0 0 −Rm

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎦

B˜=

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎣

1 0 −1 Rm 0 −Rm

0 1 −1 0 Rm −Rm

0 0 0 −Rm −Rm −Rm

0 0 0 −Rm 0 0

0 0 0 0 −Rm 0

0 0 0 0 0 −Rm

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎦

L˜=

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

2(Ls−L13) Ls+L12−L13−L23 0 0 0 0 Ls+L12−L13−L23 2(Ls−L23) 0 0 0 0

0 0 3L0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

,

K=

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

1 0 0 Rm 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1

Lh1j

0 0

0 0 0 0 1

Lh2k

0

0 0 0 0 0 1

Lh3l

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

Thepreviouslywrittenmatrix ˜Lisvalidforageneral(unsym- metrical)caseofmutualcouplingbetweenphases.

InthecaseofLm=Li,j,(i,j=1,2,3,i=/ j)thefollowingrelationis obtained:

LP=Ls−Lm (13)

Nowthematrix ˜Lcanbewritteninthefollowingform:

L˜=

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

2Lp Lp 0 0 0 0 Lp 2Lp 0 0 0 0 0 0 3L0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

FinallythematricesAandBare:

A=

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

Rp+Rm

Lp

0 0 2Rm

3LpLh1j Rm

3LpLh2k Rm

3LpLh3l

0 Rp+Rm

Lp 0 Rm

3LpLh1j

2Rm

3LpLh2k

Rm

3LpLh3l

0 0 Rm

L0 Rm

3L0Lh1j

Rm

3L0Lh2k

Rm

3L0Lh3l

Rm 0 −Rm Rm

Lh1j

0 0

0 Rm −Rm 0 Rm

Lh2k

0

−Rm −Rm −Rm 0 0 Rm

Lh3l

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

B=

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎣

2 3Lp − 1

3Lp − 1 3Lp

2Rm

3Lp −Rm

3Lp −Rm

3Lp

− 1 3Lp

2 3Lp − 1

3Lp −Rm

3Lp

2Rm

3Lp −Rm

3Lp

0 0 0 −Rm

3L0 −Rm

3L0 −Rm

3L0

0 0 0 −Rm 0 0

0 0 0 0 −Rm 0

0 0 0 0 0 −Rm

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎦

Itshouldbenotedthat,ateveryintegrationstep,thematrixA isafunctionoftheoperatingpointpositionwithinallthreemajor hysteresisloops,i.e.:

A=A(j,k,l) (14)

3.2. Backwardandnumericaldifferentiationformulae

Beforetheapplicationofanyappropriatenumericalmethodfor theefficientsimulationofthesystem,itisnecessarytodetermine thecharacteroftheanalyzeddifferentialequationsystem(4).The equationsystem(4)canbenonstiff,stifforanextremelystiffsys- tem.Ingeneral,asystemisstiffiftheeigenvalues(timeconstants) oftheJacobiansystemdiffersignificantlyinmagnitude.

Inthisregard,theconceptofstiffnessisintroduced,whichisa specificcharacteristicofthesystemofdifferentialequationsrelated exclusivelytosolvingthedifferentialequationsystemusingappro- priatenumericalmethods.Thepracticalmeasureofstiffnesscanbe definedviathefollowingquantitativeparameters:stiffnessratio andstiffnessindex:

= max

i

Re

(i)j,k,l

min

i

Re

(i)j,k.l

(15)

=max

i

Re

(i)j,k,l

(16)

where (i)j,k,l, i=1,2,...,dim(A(j,k,l)) are eigenvalues of state matrices A= A(j,k,l)calculated withineveryintegrationstep.

When1,itisastiffsystemandwhen→∞,itisanextremelyor verystiffsystem.Inothercasesitisanonstiffsystem.Thenumeri- calintegrationofstifforverystiffsystemsbyexplicitnumerical methods shouldbeavoided, becausethesemethods requirean extremelysmallintegrationsteptoensurenumericalstability.

Stiffequationsystemsrepresent problemsforwhich explicit methodsdonotwork[29].RegardingthesecondDahliquistbar- rier,therearenoexplicitA-stablenumericalmethods,andimplicit multistepmethodscanbeA-stableiftheirorderisatmost2[29].

ImplicitA-andL-stablenumericalmethodsarerequiredforthe numericalintegrationofthesekindsofsystems[29,30].

(6)

Thenumericalmethodsofthesecondorderofaccuracyandtheir specificcharacteristicswillbepresentedinthefollowingtext.The trapezoidalmethodiscertainlythemostwidespreadoneinthe simulationsoftheelectricalsystems.Thismethodisveryeasyto implementbecauseitissimple,A-stableofthesecondorderand hasthesmallesterrorconstant.Thetrapezoidalmethodappliedto thestateEq.(2)isasfollows:

Xn+1=Xn+t

2 [F(Xn,tn)+F(Xn+1,tn+1)] (17) However,afundamentalweaknessofthetrapezoidalmethodis associatedwiththeoccurrenceofspuriousnumericaloscillations.

Namely,thetrapezoidalmethodisstablebut notstrongstable;

moreprecisely,ithasnocharacteristicsofL-stability,sothatdur- ingthesimulationofextremelystiffsystems,thismethodcangive erroneousresults.Whenusingthetrapezoidalmethod,theampli- tudeandfrequencyofthenumericaloscillationsdependonthe parametersofenergystorageelementsand theintegrationstep size,whichisexploredindetailinthepaper[22].Theconclusion isthatthismethodisadvantageouslyusedforthesimulationof nonstifformoderatelystiffsystems,whileitshouldbeavoidedin thesimulationofextremelystiffsystems.

Toovercometheseproblems,itispossibletouseimplicitback- wardEuler’smethod,sinceitisL-stable.However,thismethodisof thefirstorderanditisinsufficientlyaccurateincomparisonwith thetrapezoidalmethod.Theintegrationstepsizemustbereduced toachieve thesameaccuracy asthetrapezoidalmethod,which increasesthesimulationtime.

Ontheotherhand,thebackwarddifferentiationformulaeofthe pthorder(BDFp)arethefollowing[29–31]:

p m=1

1

m∇mXn+1=tF(Xn+1,tn+1) (18) BDFparemoreaccurate,andareA(˛)-andL-stable.L-stability propertiesofthesemethods dampouttheresponseof thestiff andextremelystiffcomponents,i.e.BDFsuppressesthenumerical oscillations.

Thenumericaldifferentiationformulae(NDFp)arefine-tuned BDFpwiththefollowingrelations[32,33]:

p m=1

1

m∇mXn+1=tF(Xn+1,tn+1)+ pp

Xn+1X[0]n+1

(19)

where parameter p=

p

m=11

m, the starting value Xn+1[0] =

p

m=0mXnand aretheoptimallychosenadditionaltermsthat retainmaximumpossiblestability,reducethetruncationerrorand allowlargertimestepsize.NDFparealsoA(˛)-andL-stable.

ThetruncationerrorofBDFpcanbeapproximatedas εBDFp= 1

p+1hp+1X(p+1) (20)

whilethetruncationerrorofNDFpcanbeapproximatedas

εNDFp=

p

m=1

1 m+ 1

p+1

hp+1X(p+1) (21)

Itisclearthattheintegrationstepensuresa givenaccuracy.

ForthesamedefinedtoleranceofBDFpandNDFpmethodi.e.from εBDFpNDFp,aconnectionbetweentheintegrationstepsusedin thesetwomethods,hBDFpandhNDFp,wasobtained:

1

p+1hp+1BDFp=

pp+ 1 p+1

hp+1NDFp (22)

-15 -10 -5 0 5 10 15

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Magnetizing current [A]

Magnetic flux [Vsec]

Fig.5. Transformerhysteresisloop.

Ifthepercentageofthechangeinintegrationstepsofthesetwo methodsismarkedwith:

ıp%= hp+NDFp1 −hp+BDFp1

hp+BDFp1 ·100% (23)

thefollowingvalueisobtained:

ıp%=

1/(p+1)

pp+

1/(p+1)

1/(p+1)

−1

·100% (24)

NDF2isL-stablemethodofthesecondorder,soitsrelationship isı2%=26%.ItcanbeconcludedthattheNDF2isabout26%more efficientthantheBDF2,andbecauseofthatNDF2isthepreferred methodinthispaper.

4. Three-phasetransformerinrushcurrents:

Measurementsandsimulations

Thedevelopedthree-phasethree-leggedtransformerequiva- lentcircuitmodelisusedforinrushcurrentanalysis(Fig.4).

Theelectricalsystemparametersare(i=1,2,3):

•sourcevoltages:ei(t)=311cos(ωt+i120−155)V;

•ratedsystemfrequency:f=50Hz;

•transformerpowerrate:Str=2.4kVA;

•transformerratio:Up/Us=0.38/0.5kV;

•shortcircuitvoltage:uk%=3.0%;

•windingresistance:Rpi=1.5;

•positivesequenceinductance:Lpi=1.0mH;

•zerosequenceinductance:Lzi=0.9mH;

•corelossresistance:Rmi=4626;

•zerosequencemagnetizinginductance:L0=5.0mH.

ThemajortransformerhysteresisloopisshowninFig.5.

The presented measurements of three-phase transformer inrushcurrentswereperformedwithMI7111—Power Analyzer (samplerate:256S/period)andwithFLUKE434/5—PowerQuality Analyzer(themaximumsamplingrate200kS/s).

Theaccuracylevelsofthesedevicesare:MI7111—PowerAna- lyzer0.1%plus1digitandFLUKE434/5—PowerQualityAnalyzer 0.1%.

The moment of switching on (T0=3.10ms) was estimated, althoughtherewasdissipationbetweenphases(3:05ms,3.12ms, 3.15ms).Thesourcevoltagewassinesignaloffundamentalfre- quency (50Hz) although there were distortions of the phase voltages,i.e.THDofphasevoltageswere2.62%,2.80%and2.83%, respectively.

(7)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 -60

-40 -20 0 20 40 60 80 100

Time [sec]

Current [A]

ph 1 ph 2 ph 3

Fig.6. Inrushcurrentsimulation,trapezoidalmethod,t=80␮s.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 -1.5

-1.48 -1.46 -1.44 -1.42 -1.4 -1.38x 107

Time [sec]

Min eigenvalue [1/sec]

Fig.7.Propagationofminimumrealpartofeigenvaluesduringthesimulationtime.

Thesimulationresultsoftransformerinrushcurrentsbyusing theclassicaltrapezoidalmethodwithintegrationstept=80␮s areshowninFig.6.

Theexistenceoftheartificialnumericaloscillationsisevidentby usingthetrapezoidalmethod.Todetectthecauseofthesenumer- icaloscillationsin everyintegrationstep of thesimulation,the maximalandminimaleigenvalues,aswellasthestiffnessratioand stiffnessindexwerecomputed.TheseresultsareshowninFigs.7–9.

Thelimitvaluesofdefinedstiffnessparametersareobtainedby thefollowing:

1.388×107j,k≤1.497×107 0.579×106j,k≤6.947×107

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 -30

-25 -20 -15 -10 -5 0

Time [sec]

Max eigenvalue [1/sec]

Fig.8. Propagationofmaximumrealpartofeigenvaluesduringthesimulationtime.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0

1 2 3 4 5 6 7x 107

Time [sec]

Eigenvalue ratio

Fig.9. Propagationofeigenvalueratioduringthesimulationtime.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 -20

-15 -10 -5 0 5 10

Time [sec]

Current [A]

measured simulated

Fig.10.Measuredandsimulatedtransformerinrushcurrents:phase1.

Itisclearthatthestate-spaceformofthetransformerinrush currenttransientsexhibitsverystiffsystems.Therefore,BDF2and NDF2methodswereusedforfurthersimulationsofthetransformer energization.

Thecomparisonbetweenthemeasuredandsimulatedtrans- formerinrushcurrentsisshowninFigs.10–12.Thesimulations wereperformedbyusingthenumericalmethod(NDF2)withthe integrationstepsizeoft=80␮s.

Theabsolutedifferencebetweenthemeasuredandsimulated transformer inrush currents as a function of time is shown in Figs.13–15accordingtotheformula:

ε(tk)=

isimul.(tk)−imeas.(tk)

(25)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 -20

-15 -10 -5 0 5 10

Time [sec]

Current [A]

measured simulated

Fig.11.Measuredandsimulatedtransformerinrushcurrents:phase2.

(8)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 -10

0 10 20 30 40

Time [sec]

Current [A]

measured simulated

Fig.12.Measuredandsimulatedtransformerinrushcurrents:phase3.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0

2 4 6 8 10

Time [sec]

Current [A]

Fig.13.Absolutedifferencebetweenthemeasuredandsimulatedtransformer inrushcurrents:phase1.

Thepropagationoftherelativeerrorofthetransformerpeak inrushcurrentsisshowninFig.16.Therelativeerrorofcurrent peakk,1≤k≤8perphasej=1,2,3iscalculatedbyrelation:

ıj(k)=

isimul.(k)−imeas.(k)

imeas.j ·100% (26)

whereimeasj=max

j

imeas.j(k)

.

Based on the above explanation, it is possible to propose theimplementationofthehybridnumericalmethodwithinthe EMTP-basedprogramsasalinearcombinationofthetraditional trapezoidal method and the proposed BDF2 (NDF2) methods

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0

2 4 6 8 10

Time [sec]

Current [A]

Fig.14.Absolutedifferencethebetweenmeasuredandsimulatedtransformer inrushcurrents:phase2.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0

2 4 6 8 10

Time [sec]

Current [A]

Fig.15.Absolutedifferencebetweenmeasuredandsimulatedtransformerinrush currents:phase3.

1 2 3 4 5 6 7 8

0 0.5 1 1.5 2 2.5 3 3.5

Peak number

Relative error [%]

ph 1 ph 2 ph 3

Fig.16.Relativeerrorofpeakvalueoftransformerinrushcurrents.

0≤≤1:

Xn+1 =

1+ 3

Xn− 3Xn−1+

1+ 3

t

2 F(Xn,tn) +

1−

t

2 F(Xn+1,tn+1) (27)

Xn+1 =

1+ 5

Xn−3

10Xn−1+

1−

t

2 F(Xn,tn) +

1+ 5

t

2 F(Xn+1,tn+1)+

10X[0]n+1 (28) In expressions (27) and (28), =0 leads to the trapezoidal method,whereas=1leadstotheBDF2(NDF2).Inthisway,itis possibletoovercomesomeproblemsinusingthestandardtrape- zoidalmethod.

5. Conclusions

The simplified three-phase three-legged transformer model basedonlinear graphtheory wasdevelopedin this paper.The modeltakesintoaccountmutualcouplingbetweenthephasesand hystereticcharacterofironcore.

The algorithm for generating system matrices in electrical networksispresentedhere.Theanalyzednetwork maycontain inductorcut-setsand/orcapacitorloops.

Themainfocusofthepaperwastoresearchthespecificchar- acteristicsofthesystemofdifferentialequationsthatdescribethe

Referensi

Dokumen terkait

- The seminar can make teachers aware that teaching English to elementary school students must be fun - The seminar can refresh the teachers’ mind how to teach English - The seminar

Selanjutnya dosen juga menjelaskan bahwa “Supaya mahasiswa dapat memahami konsep hukum Newton maka hendaknya ada media atau sumber belajar yang dikembangkan untuk mengkonkritkan