• Tidak ada hasil yang ditemukan

Obscene Video Recognition Using Fuzzy SVM and New Sets of Features

N/A
N/A
Protected

Academic year: 2024

Membagikan "Obscene Video Recognition Using Fuzzy SVM and New Sets of Features"

Copied!
1
0
0

Teks penuh

(1)

International Journal of Advanced Robotic Systems

Obscene Video Recognition Using Fuzzy SVM and New Sets of Features

Regular Paper

Alireza Behrad

1,*

, Mehdi Salehpour

1

, Mahmoud Saiedi

2

and Mahdi Nasrollah Barati

1

1 Faculty of Engineering, Shahed University, Tehran, Iran 2 Iranian Research Institute for ICT (ITRC), Tehran, Iran 

* Corresponding author E-mail: [email protected]  

Received 3 May 2012; Accepted 14 Dec 2012 DOI: 10.5772/55517

© 2013 Behrad et al.; licensee InTech. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract In this paper, a novel approach for identifying  normal  and  obscene  videos is proposed. In  order  to  classify different episodes of a video independently and  discard the need to process all frames, first, key frames  are extracted and skin regions are detected for groups of  video frames starting with key frames. In the second step,  three different features including 1‐ structural features  based on single frame information, 2‐ features based on  spatiotemporal volume and 3‐motion‐based features, are  extracted  for  each  episode  of  video.  The  PCA‐LDA  method is then applied to reduce the size of structural  features and select more distinctive features. For the final  step,  we  use  fuzzy  or  a  Weighted  Support  Vector  Machine (WSVM) classifier to identify video episodes. 

We also employ a multilayer Kohonen network as an  initial  clustering  algorithm  to  increase  the  ability  to  discriminate  between  the  extracted  features  into  two  classes  of  videos.  Features  based  on  motion  and  periodicity characteristics increase the efficiency of the  proposed algorithm in videos with bad illumination and  skin colour variation. The proposed method is evaluated  using  1100  videos  in  different  environmental  and  illumination conditions. The experimental results show a  correct  recognition  rate  of  94.2%  for  the  proposed  algorithm. 

Keywords Obscene Video Recognition, 3D Spatiotemporal  Features,  Fuzzy  SVM,  Motion‐Based  Features,  Video  Retrieval 

 

1. Introduction 

Nowadays, the Internet has become an essential part of  our life and children are not excluded. The Internet  provides  children  many  opportunities  for  learning,  access to research, socializing, entertainment and can be  an  enhanced  communication  tool  within  families. However  at  the  same  time  it  can  expose  children to potentially negative content. Because of the  fast rate of growth of Internet facilities, the amount of  harmful content on the Internet is growing faster too. 

Therefore, uncontrolled access to the Internet gives rise  to serious  social problems.  Harmful  content  on  the  Internet may include obscene text, images and videos; 

however,  video content is  more harmful.  Therefore,  harmful video content recognition plays a great role in  ensuring safe access to the Internet.  

 

Content  filtering  is  a  technique  commonly  used  by  organizations such as schools to prevent Internet users  from  viewing  inappropriate  web  sites or  content.  In 

1 Alireza Behrad, Mehdi Salehpour, Mahmoud Saiedi and Mahdi Nasrollah Barati:

Obscene Video Recognition Using Fuzzy SVM and New Sets of Features www.intechopen.com

ARTICLE

www.intechopen.com Int J Adv Robotic Sy, 2013, Vol. 10, 2013

Referensi

Dokumen terkait

By using 23 images of leaves randomly testing the data, the results of the classification watermelon plants and weeds using SVM based on the shape and texture features

Method Research on Extractive Text Summarization of Student Essay Assignment Using Sentence Weight Features and Fuzzy C-Means has the following initial stages: 1 Conduct a literature

Based on normal-paced gait fluctuations, healthy and disease conditions were characterized using spatiotemporal statistical features derived from VGRF signals.. For the classification

FINDINGS AND DISCUSSION Findings Based on the observation, the researcher found that Lisa uses nine of ten women's language features including lexical hedges or fillers,

The first step clusters the SDI pints into text, noise and background Noise Removal and Binarization of Scanned Document Images Using Clustering of Features Atena Farahmand,

A number of chaotic and statistical features including Lyapunov exponent, skewness, kurtosis, fuzzy entropy and spectral entropy were extracted from the signals and selective

A new image encryption algorithm based on single s-box and dynamic encryption step ABSTRACT Chaotic-based S-box image encryption schemes promise to be a practical solution for

Detection of vocal fold paralysis and edema using time- domain features and Probabilistic Neural Network Abstract This paper proposes a feature extraction method based on time-domain