مراهچ لصف
امرگ و راک
راک : یورین یتقو ناکم رییغت رد F
، x رد دادتما ار نآ و تسا هدش ماجنا راک مییوگ دنک رثا ورین
میسیون یم ریز تروص هب W ≡ راک :
W=F.x 𝑤
12=
12𝐹. 𝑑𝑥
𝛿𝑤 = 𝐹. 𝑑𝑥 𝛿𝑤 = 𝑃. 𝐴. 𝑑𝑥 𝛿𝑤 = 𝑃. 𝑑𝑉 𝑑𝑉
𝑤
12= න
1 2
𝑃. 𝑑𝑉 ) یلداعت هبش - یلداعت ( دنیآرف یارب
2 1
لایس
Q
P
dx
فیرعت هیارا
هدش یارب راک نآ ار زا ظاحل یکیزیف
فیصوت یم
دنک . رد کیمانیدومرت هاگره
لدابت یژرنا
ثعاب هباج
ییاج هنزو
ش دو راک ماجنا
هدش تسا . نیا هباج ییاج هنزو
رثا صلاخ نآ
راک یور طیحم متسیس
تسا . رد w عقاو
یراک تسا
هک متسیس یور
طیحم ماجنا
یم دهد .
لاثم لبق راک ماجنا هدش
رد زرم متسیس ار
رد کی دنیآرف
هبش یلداعت
نایب یم دنک . رد یاهدنیآرف هبش
یلداعت تلاح
یاه ی ار یم ناوت
یور یاهرادومن یکیمانیدومرت
صخشم درک
هک فارحنا نآ
تلاح زا
لداعت یب
تیاهن کچوک
تسا ینعی یدنیآرف
تسا هک رایسب ب
ه یگتسهآ
تروص یم
دریگ ات
رد ره هظحل تلاح
نآ متسیس رایسب
هب لداعت کیدزن
دشاب
.
زا ییاجنآ هک
قبط فیرعت میراد
: سپ
تحاسم ریز
نیا رادومن رگنایب
رادقم راک
ماجنا هدش
تسا .
رادومن رتشیب یسررب اب (p-v)
میسر یم یمهم هجیتن هب .
تلاح زا هک یلداعت هبش فلتخم یاهریسم دادتما رد 1
تلاح هب 2
دسر یم
یاه ریسم دننام وA
و B ینحنم ریز حطس C (
هدش ماجنا راک )
تسا توافتم .
رف ریسم هب دنیآرف ره رد هدش ماجنا راک رادقم ینعی دنیآ
دراد یگتسب
دنیوگ یریسم عبات ار راک اذل
..
P=P(V)
یریسم عباتW
P
v
A
B C
𝑤12 = න
1 2
𝑃. 𝑑𝑉
2 1
3
هژیو تلاح دنچ یسررب
①
P= cte/C P:
v
1 2
v
1v
2𝑤
12𝑤12 = න
1 2
𝑃. 𝑑𝑉 = න
1 2
𝐶. 𝑑𝑉 = C න
1 2
𝑑𝑉 = 𝐶(𝑉2 − 𝑉1)
𝑤
12= 𝑃
1𝑉
2− 𝑉
1= 𝑃
2(𝑉
2− 𝑉
1)
v
1
2
𝑤
12P
2P
1V
2V
1②
PV =cte/C P1V1=cte/C P2V2=cte/C 𝑃 = 𝐶 𝑉𝑤12 = න
1 2
𝑃. 𝑑𝑉 = න
1 2 𝐶
𝑉 . 𝑑𝑉 = C න
1
2𝑑𝑉 𝑉
𝑤
12= 𝐶
ln 𝑉2𝑉1 = P1V1ln 𝑉2
𝑉1 = P2V2ln 𝑉2 𝑉1
PV=cte/C
PV=mRT=cte
T=cte
لآ هدیا لایس مرتوزیا
P= C
P
③ PV n =cte/C n ≠1 𝑃 = 𝐶
V
n P1V1 n =P2V2n =cte/C
𝑤12 = න
𝑉1 𝑉2
𝑃. 𝑑𝑉 = න
1 2 𝐶
Vn. 𝑑𝑉 = C න
1
2𝑑𝑉 Vn
𝑤12 =
𝑐
𝑉−𝑛+1−𝑛+1 V
1
V2 𝑤12 = P2V2−P1V1 1 − 𝑛 𝑤12 = mR(T2−T1)
1 − 𝑛
n≠1
n≠1 لآ هدیازاگ
P
v
1
2
𝑤
12P2 P1
V
2V
1④ V=cte
v
P
1 2
W
2=0
تسا رفص یکیناکم راک میشاب هتشادن مجح رییغت رگا .
بلص نزخم لثم
5
متسیس ردنلیس
و نوتسیپ لکش
ریز ار رد رظن دیریگب .
نوتسیپ هب
mp مرج تحت
راشف رفسمتا P0
رنف ،
یطخ و
یورین هطقن
F1 یا رارق دراد .
زاگ لخاد ردنلیس
تحت P راشف
تسا . راک ماجنا هدش
ار رد دنیآرف تکرح
نوتسیپ دیبایب
.(
تکرح نوتسیپ
هبش یلداعت تسا
)
Q
P0
P لایس
F1
mp
رادومن (P-V)
دینک مسر ریز دنیآرف یارب ار .
دیسیونب زین ار راک ی هلداعم دروم ره رد .
لایس
Q
7
دازآ طاسبنا
تلاح رد زاگ لباقم رد یمواقم یورین چیه 1
درادن دوجو .
تسا رفص زین هدش ماجنا راک نیاربانب .
1 2
زاگ ءلاخ زاگ
راک دادرارق :
SYS
+W
طیحم یور متسیس راکمتسیس یور طیحم راک
-W
امرگ :
تخا لیلد هب رت نییاپ یامد رد طیحم ای متسیس هب و هدرک روبع صخشم یامد رد و متسیس کی زرم زا هک تسا یژرنا زا یا هنوگ امرگ امد فلا
دوش یم لقتنم متسیس ود نیب امد فلاتخا قیرط زا اهنت امرگ ینعی ،دوش یم لقتنم .
رد اهنت ار امرگ و تسین امرگ یواح یمسج چیه روبع نیح
داد صیخشت ناوت یم متسیس زرمزا .
تسارذگ ی هدیدپ کی امرگ نیاربانب .
SYS
- Q
طیحم هب متسیس یامرگ لاقتنا+Q
امرگ دادرارق :
متسیس هب طیحم یامرگ لاقتنا
9
هتکن دنچ :
1 - دنتسه ارذگ یاه هدیدپ ود ره راک و ترارح .
سیس زرم زا هک یلاح رد دنشاب یمن راک ای ترارح یواح زگره اه متسیس ت
یم
دننک یم روبع دهد یم یور نآ رد تلاح رییغت هک .
2 - دنتسه یزرم یاه هدیدپ ود ره راک و ترارح (
دنریسم عبات )
اذل دنشاب یم هظحلام لباق متسیس یاهزرم رد اهنت و
تسا قیقد ریغ اه نآ لیسنارفید .
3 - هاگتسد رد امرگ و راک دحاو SI
دشاب یم لوژ J , .
ای ناوت ار نآ احلاطصا دشاب حرطم نامز دحاو رب راک هک یتروص رد
نآ دحاو و دنیوگ تردق J
ای
𝑆دوش یم هدیمان W
.
یامد رد عیام بآ مرگولیک کی یواح ینوتسیپ و ردنلیس 20
راشف و دارگ یتناس هجرد 300
لاکساپولیک
تسا .
ترارح بآ هب یتقو هک یا هنوگ هب هدش بصن نوتسیپ یور رب یطخ رنف کی شف میهد یم
هب نآ را
3 مجح و دسر یم لاکساپاگم 0/1
دوش یم بعکمرتم .
فلا ) ب بآ ییاهن یامد تسبولطم )
رادومن رد ار دنیآرف دینک مسر P-V
. ج ) دینک باسح ار راک .
Q
بآ
11
راشف رد نبرک دیسکا ید یواح ریز نوتسیپ و ردنلیس 300
یامد و لاکساپولیک 100
و دارگ یتناس هجرد
مجح 0/2
تسا بعکمرتم .
ی هطبار قبط ار زاگ نوتسیپ یور ییاه هنزو نتشاذگ اب PV 0.5 = CTE
ات
ییاهن یامد 200
هجرد دارگ یتناس
مینک یم مکارتم .
دینک باسح ار دنیآرف نیا یط هدش ماجنا راک (.
ب ضرف ا
زاگ ندوب لآ هدیا )
نبرک دیسکا ید P0
مهم هتکن :
یناهگان طاسبنا :
Q
1
2
L 𝑤
12=? 𝑤
12= න
𝑉1 𝑉2
𝑃. 𝑑𝑉 W
12=W
نوتسیپ+W
رفسمتاW=P
0* ∆𝑉
فسمتا ر
وتسیپ
ن W=mgL =mg ∆𝑉
𝐴
W
12=
mg ∆𝑉𝐴
+P
0* ∆𝑉 W
12=(
𝑚𝑔𝐴
+ P
0)∆𝑉
P2
W
12= P
2∗∆𝑉
یناهگان طاسبنا13
کی ردنلیس
یدومع ینوتسیپ
هب مرج 61/18
مرگولیک دراد
هک اب یخیم لفق
هدش تسا
. ردنلیس یواح
10 رتیل هدام
R-410 دربم رد
یامد 10
هجرد یتناس
دارگ و
تیفیک 90 ٪
تسا .
راشف طیحم
100 لاکساپویلک
و حطس عطقم
ردنلیس 0/006
رتم عبرم
تسا .
خیم ار
یمرب میراد
ات نوتسیپ تکرح
هدرک و
سپس فقوتم
دوش .
رد تلاح ییاهن
زین امد 10
هجرد یتناس
دارگ تسا
. راشف و
مجح ییاهن
ار نییعت هدرک
و
راک ماجنا هدش
ار طسوت لایس
دیبایب
.
15
16
17
18
19
20
21