• Tidak ada hasil yang ditemukan

PDF Arithmetic of Arithmetic Schemes - 広島大学

N/A
N/A
Protected

Academic year: 2024

Membagikan "PDF Arithmetic of Arithmetic Schemes - 広島大学"

Copied!
21
0
0

Teks penuh

(1)

Arithmetic of Arithmetic Schemes

Kanetomo Sato (Nagoya University)

1

(2)

Introduction.

X : a projective smooth variety over a finite field k = Fq p := ch(k)

ζ(X, s) : Hasse -Weil zeta function of X := Y

x∈X0 (1 N(x)−s)1,

where X0 := the set of closed points on X, and N(x) := ](κ(x)).

Then we have the determinant presentation (d := dim(X), ` 6= p):

ζ(X, s) = Y2d

i=0 det(1 F·q−s; Hi´et(Xk,Q`))(1)i+1 (F : geometric Frobenius operator)

= P`1(q−s) · P`3(q−s)· · ·P`2d−1(q−s)

P`0(q−s) ·P`2(q−s)· · ·P`2d−2(q−s) · P`2d(q−s) with P`i(T) := det(1 F·T; H´eti (Xk,Q`)).

ζ(X, s) is a rational function in q−s with Q-coefficients, because we have Q`(T) Q((T)) = Q(T).

The reciprocal roots of P`i(T) are algebraic integers whose com- plex absolute values are qi/2. Hence P`i(T) is independent of

` 6= p and belongs to Z[T]. (Deligne)

(3)

Theorem 1. (Artin-Tate/Milne/Bayer-Neukirch/Schneider) Let n be an integer. Assume the semi-simplicity of F on

H´et2n(Xk,Q`) for all ` 6= p, and H2ncris(X).

Let ρn be the (positive) integer such that ζ(X, s) · (1 qn−s)ρn tends to a non-zero constant as s n. Then the limit

s→nlim ζ(X, s) · (1 qn−s)ρn is written in terms of the cohomology groups

Hi´et(X,Z(n)) :=c Y

all `

Hi´et(X,Z`(n))

with i = 1,2, . . . ,2d + 1, and a certain regulator term.

(Hi´et(X,Z`(n))’s will be explained below.) Problem:

Construct {H´eti (X,Z(n))}c i,n for arithmetic schemes X.

Find zeta-value formulae for arithmetic schemes.

Results:

X : regular arithmetic scheme (with some assumption),

Definition of the coefficient Tr(n)X Db(X´et,Z/prZ) playing the role of Z/prZ(n).

Duality for H´eti (X,Tr(n)X) (in case X is proper).

(4)

§1 Reveiw on ´etale cohomology groups over a field

´etale topology = algebraic analogue of analytic topology on complex manifolds

Example. For a variety X over C and a torsion sheaf F on X´et, H´et (X,F) ' Han(X(C)an,F|X(C)an).

´etale over a field k = finite separable over k Example. (1) For a sheaf F on Spec(k)´et,

H´et(Spec(k),F) ' HGal(Gk,F(ksep)).

(2) For a variety X over k and a sheaf F on X´et, Gk naturally acts on H´et (Xk,F|X

k) and spectral sequence E2p,q = HpGal(Gk,H´etq (Xk,F|X

k)) = Hp+q´et (X,F) (Hochshild-Serre spectral sequence)

(5)

Definition 2. Let n be an integer.

(1) X scheme

m positive integer invertible on X

µm ´etale sheaf of mth roots of unity on X We define:

Z/mZ(n) :=

µ⊗nm (n 0)

Hom(µ(−n)m ,Z/mZ) (n < 0).

(2) k perfect field of characteristic p > 0 X smooth variety over k

WrnX,log logarithmic part of WrnX on X´et (Illusie) Note: WrnX,log := 0, if n < 0 or dim(X) < n.

WrnX,log is a flat Z/prZ-sheaf and

0 Wr−1nX,log WrnX,log W1nX,log 0 (exact).

W1nX,log 'nX,log := Im(dlog : (OX×)⊗n −→nX/k).

Then we define

Z/prZ(n) := WrnX,log[−n].

(3) In the situation of (2), the group H´eti (X,Z(n)) is defined asc lim←−

(m,p)=1

Hi´et(X,Z/mZ(n)) × lim←−

r≥1

Hi´et(X,Z/prZ(n)).

(6)

Remark. For a projective smooth variety X over a finite field k, the group H´eti (X,Z(n)) is finite forc i 6= 2n,2n + 1, and the group H´et2n(X,Z(n))c tors is finite. The group H2n+1´et (X,Z(n))c tors is finite as well under the semi-simplicity assumption in Theorem 1.

In what follows, we restrict our attentions to finite coefficient cases and review duality facts for varieties over finite fields.

(7)

X : smooth variety over a finite field k d := dim(X)

Theorem 3. (Poincar´e-Pontryagin duality)

Let m be a positive integer prime to ch(k). Then:

(1) canonical trace map H2d+1c (X, µ⊗dm ) ' Z/mZ.

(2) For a constructible Z/mZ-sheaf F on X´et, the pairing Hic(X,F) × Ext2d+1−iX,Z/mZ(F, µ⊗dm ) −→ Z/mZ

is a non-degenerate pairing of finite Z/mZ-modules, for i.

Here, F constructible := finite partition X = j Zj

by locally closed subschemes such that F|Zj is locally constant with finite stalks Corollary 4. For any integers n and i, the pairing

Hic(X, µ⊗nm ) × H´et2d+1−i(X, µ⊗d−nm ) −→ Z/mZ is a non-degenerate pairing of finite Z/mZ-modules.

Proof. We have

ExtX,Z/mZ(µ⊗nm , µ⊗dm ) ' ExtX,Z/mZ(Z/mZ, µ⊗d−nm ) ' H´et(X, µ⊗d−nm ).

(8)

Theorem 5. (Milne duality)

Let r be a positive integer. Suppose X to be proper. Then:

(1) canonical trace map H´etd+1(X, WrdX,log) ' Z/prZ.

(2) For any integers n and i, the pairing

H´eti (X, WrnX,log) × Hd+1−i´et (X, Wrd−nX,log) −→ Z/prZ is a non-degenerate pairing of finite Z/prZ-modules.

Key point: Construction of the trace map

(then reduced to the case r = 1 and the Serre duality by the theory of Cartier operators).

Theorem 6. (Moser)

(1) canonical trace map Hd+1c (X, WrdX,log) ' Z/prZ.

(2) For a constructible Z/prZ-sheaf F on X´et, the pairing Hic(X,F) × Extd+1−iX,Z/prZ(F, WrdX,log) −→ Z/prZ

is a non-degenerate pairing of finite Z/prZ-modules, for i.

Note:

Theorem 5 (2) does not immediately imply Theorem 6.

Theorem 6 recovers Theorem 5 (2) only in case n = 0.

(9)

Combining Theorem 3 – Theorem 6, we obtain:

Fact 7.

Let m be a positive integer. Then:

(1) canonical trace map H2d+1c (X,Z/mZ(d)) ' Z/mZ.

(2) For a constructible Z/mZ-sheaf F on X´et, the pairing Hic(X,F) × Ext2d+1−iX,Z/prZ(F,Z/mZ(d)) −→ Z/mZ

is a non-degenerate pairing of finite Z/mZ-modules, for i.

(3) In case X is proper, for any integers n and i, the pairing Hi´et(X,Z/mZ(n)) × H2d+1−i´et (X,Z/mZ(d n)) −→ Z/mZ

is a non-degenerate pairing of finite Z/mZ-modules.

Remark. For a map f : X X0 of smooth varieties over k,

a canonical pull-back map

fZ/mZ(n)X0 −→ Z/mZ(n)X.

It is an isomorphism in the following cases (but not, otherwise):

f is ´etale,

(m,ch(k)) = 1,

n 0,

max{dim(X),dim(X0)} < n.

(10)

§2 Construction of p-adic ´etale Tate twists p : prime number, r : positive integer A : algebraic integer ring or p-adic integer ring

X : integral regular scheme flat of finite type over Spec(A), satisfying:

() X is smooth or a semistable family over Spec(A) around the fibers of characteristic p.

For n 0, we want K ∈ Db(X´et,Z/prZ) satisfying (T1)–(T4) (=variant of Beilinson-Lichtenbaum axioms for ‘Z(n)’ on X´et):

T1: t : K|V ' µ⊗npr , where V := X[1/p].

T2: K is concentrated in [0, n].

T3: For a locally closed regular subscheme i : Z X of characteristic p, we have a Gysin isomorphism:

Gysni : Wrn−cZ,log[−n c] −−→' τ≤n+cRi!K (c := codimX(Z)) in Db(Z´et,Z/prZ), where Wrn−cZ,log := 0 if n < c.

T4: A compatibility property between Gysin maps and boundary maps of Galois cohomology groups.

(11)

Precise statement of T4:

Consider points y and x on X satisfying

ch(x) = p, x ∈ {y} and codimX(x) = codimX(y) + 1.

Put c := codimX(x). (Note that ch(y) = 0 or p.)

Then the following diagram commutes up to a sign depending only on (ch(y), c):

Hn−c+1´et (y,Z/prZ(n c+ 1)) −−→val Hn−c´et (x,Z/prZ(n c))

Gysniy

y

yGysnix

Hn+c−1y,´et (Spec(OX,y),K) −−→δloc Hn+cx,´et(Spec(OX,x),K), where

val : boundary map of Galois cohomology groups (Kato) δloc : boundary map of a localization sequence

ix : x Spec(OX,x) iy : y Spec(OX,y)

Gysnix : Gysin map coming from (T3) Gysniy :

Gysin map coming from (T3), if ch(y) = p, Gysin map coming from (T1) and

Deligne’s cycle class, if ch(y) = 0.

(12)

Theorem I. For a fixed n 0, ! a pair of K ∈ Db(X´et,Z/prZ) and

t : K |V ' µ⊗npr

that satisfies T2–T4 as above.

Definition. (originally due to Schneider in the smooth case) For n 0, fix a pair (K, t) as in Theorem 1,

and define Tr(n)X := K ( Db(X´et,Z/prZ)).

For n < 0, define Tr(n)X := j! Hom

Ã

µ(−n)pr ,Z/prZ

!

. Remark:

For n > d := dim(X), t induces Tr(n)X ' Rjµ⊗npr .

If X Spec(A) is smooth around Y(:= union of the fibers of characteristic p) and p n + 2, then Tr(n)X|Y is isomorphic to the syntomic complex ‘Sr(n)’ of Fontaine-Messing (by a result of Kurihara).

Tr(n)X is not a log syntomic complex of Kato-Tsuji for 1 n dim(X), because the latter object is rather τ≤nRjµ⊗npr .

For the ´etale sheafification Z(n)´etX of the cycle complex defining higher Chow groups, one can hope Z(n)´etX L Z/prZ ' Tr(n)X. However, to prove this, we need to show T2 and T3 for the left hand side.

(13)

Theorem II. (Product and Contravariant functoriality) (1) For integers m and n, ! a morphism

Tr(m)X L Tr(n)X −→ Tr(m + n)X.

in D(X´et,Z/prZ) extending the natural isomorphism µ⊗mpr µ⊗npr −→' µ⊗m+npr on V = X[1/p].

(2) For a map f : X X0 of Spec(A)-schemes satisfying (), !

a morphism

resf : fTr(n)X0 −→ Tr(n)X.

in D(X´et,Z/prZ) extending the natural isomorphism gµ⊗npr,V0 −→' µ⊗npr,V on V.

where g denotes V V0 := X0[1/p].

Remark. The morphism resf is an isomorphism in the following cases (but not, otherwise):

f is ´etale,

(m,ch(k)) = 1,

n 0,

max{dim(X),dim(X0)} < n.

(14)

§3 Duality for arithmetic schemes A : algebraic integer ring

Theorem. (Artin-Verdier duality)

(1) canonical trace map H3c(Spec(A),Gm) ' Q/Z.

(2) For a constructible sheaf F on Spec(A)´et, the pairing Hic(Spec(A),F) × Ext3−iSpec(A)(F,Gm) −→ Q/Z

is a non-degenerate pairing of finite abelian groups, for i.

Remark.

This duality is deduced from the Tate duality theorems for global fields and local fields.

Generalized to ‘Z-constructible’ sheaves. (Deninger)

Generalized to two-dimensional arithmetic schemes, replacingGm with a modified version of Lichtenbaum complex Z(2). (Spieß)

(15)

Corollary. (Duality outside of characteristic p)

Let V be an integral regular scheme which is flat separated of finite type over Spec(A[1/p]). Put d := dim(V). Then:

(1) canonical trace map H2d+1c (V, µ⊗dpr ) ' Z/prZ.

(2) For a constructible Z/prZ-sheaf F on V´et, the pairing Hic(V,F) × Ext2d+1−iV,Z/prZ(F, µ⊗dpr ) −→ Z/prZ

is a non-degenerate pairing of finite Z/prZ-modules, for i.

Proof. The case d = 1: By the Kummer sequence µpr −→ Gm −→ Gm −→ µpr[1], reduced to the Artin-Verdier duality.

The general case: f : V Spec(A[1/p]) structure map.

We have a canonical isomorphism:

trf : µ⊗dpr [2(d 1)] −−→' Rf!µpr in D+(V´et,Z/prZ) (Poincar´e duality + absolute purity (Thomason-Gabber)).

Hence by Deligne’s duality

RfRHomV,Z/prZ(F, Rf!µpr) = RHomSpec(A[1/p]),Z/prZ(Rf!F, µpr), reduced to the 1-dimensional case.

(16)

A remains to be global. Let X Spec(A) be as in §2.

Suppose X to be separated, and put d := dim(X).

Theorem III. (Jannsen - Saito - S)

(1) canonical trace map H2d+1c (X,Tr(d)X) ' Z/prZ.

(2) For a constructible Z/prZ-sheaf F on X´et, the pairing Hic(X,F) × Ext2d+1−iX,Z/prZ(F,Tr(d)X) −→ Z/prZ

is a non-degenerate pairing of finite Z/prZ-modules, for i.

Proof. The case d = 1: By the Kummer sequence Tr(1)X −→ Gm −→ Gm −→ Tr(1)X[1], reduced to the Artin-Verdier duality.

The general case: Glue the relative trace map for X[1/p] Spec(A[1/p]) with those of fibers of characteristic p, and prove the isomorphism in D+(X´et,Z/prZ):

trf : Tr(d)X[2(d 1)] −−→' Rf!Tr(1)Spec(A).

Then by the same argument as the previous corollary, reduced to the case X = Spec(A).

(17)

Theorem IV. (S)

Suppose that X is proper over Spec(A). Then for any integers n and i, the pairing (coming from Theorems II and III (1))

Hic(X,Tr(n)X) × H2d+1−i´et (X,Tr(d −n)X) −→ Z/prZ is a non-degenerate pairing of finite Z/prZ-modules.

Proof. V := X[1/p], Y := union of fibers of characteristic p.

The case n < 0: the previous corollary.

The case n 0: By the exact sequences

· · · → Hic(X, j!µ⊗npr ) Hic(X,Tr(n)X) Hi´et(Y,Tr(n)X|Y) → · · · ,

· · · →HiY,´et0 (X,Tr(dn)X) Hi´et0(X,Tr(n)X) H´eti0(V, µ⊗d−npr ) → · · ·

with i0 := 2d + 1 i and by the previous corollary, reduced to the following theorem:

(18)

Theorem V. (S)

Suppose that A is local and that X is proper over Spec(A).

(1) canonical trace map H2d+1Y,´et (X,Tr(d)X) ' Z/prZ.

(2) For any integers n 0 and i, the pairing

H´eti (X,Tr(n)X) × H2d+1−iY,´et (X,Tr(d n)X) −→ Z/prZ is a non-degenerate pairing of finite Z/prZ-modules.

Proof. (smooth case, for simplicity)

The case n > d : Tate duality for K := Frac(A) and Poincar´e duality for VK = X A K The case n = 0 : Milne duality for Y

The case 0 < n d : Reduced to the case r = 1 and ζp A.

Let ι : Y X be the canonical map.

By the Bloch-Kato theorem on Rqjµ⊗qp , the cohomology sheaves of Z/pZ(n) and !Z/pZ(d n) are extensions of

Y, dY, ΩY,log.

A key step is to show that the induced pairing on those pieces are the same as the wedge product of differential forms up to a non-zero constant (explicit formula).

(19)

§4 Consequences of duality results

Let p, A and X be as in Theorems IV or V. Put d := dim(X).

Corollary.

Suppose that A is local. Put V := X[1/p] = X A Frac(A).

Define the ‘unramified part’ Hiur(V, µ⊗npr ) as

KerµH´eti (V, µ⊗npr ) −→ Hi+1Y,´et(X,Tr(n)X). Then under the non-degenerate pairing

H´eti (V, µ⊗npr ) × H2d−i´et (V, µ⊗d−npr ) −→ Z/prZ,

the subgroups Hiur(V, µ⊗npr ) and H2d−iur (V, µ⊗d−npr ) are exact annihi- lators of each other.

Corollary. (Lichtenbaum)

Suppose that A is local and d = 2. (i.e., V is a curve.) Then canonical non-degenerate pairing of finite groups:

Pic(V)/pr × prBr(V) −→ Z/prZ.

Proof. Follows from the previous corollary and the equality Pic(V)/pr = H2ur(V, µpr) ( H´et2 (V, µpr) ).

(20)

Corollary. (Tate/Cassels/Saito)

Suppose that A is global, d = 2 and p 3.

(i.e., X is an arithmetic surface.)

Define Br(X)p-cotor := Br(X){p}/(Br(X){p})Div (finite group).

Then canonical non-degenerate alternating pairing

h , i : Br(X)p-cotor × Br(X)p-cotor −→ Qp/Zp. In particular, the order of Br(X)p-cotor is a square number.

Proof. Decompose the non-degenerate pairing (Theorem IV) H´et2 (X,TQp/Zp(1)) × H3´et(X,TZp(1)) −→ H5´et(X,TQp/Zp(2))

y'

Qp/Zp and compute signs of cup products

(21)

§5 Euler-Poincar´e characteristics Let A, X and p be as in Theorem IV.

Problem.

For fixed i and n, is dimQpHi´et(X,TQp(n)X) independent of p?

Concerning this problem, we have the following weaker result:

Theorem VI. Put

χ(X,TQp(n)) := X

i=0 (1)i · dimQp Hi´et(X,TQp(n)X), χD(X/R,R(n)) := X

i=0 (1)i · dimR HiD(X/R,R(n)), where HD(X/R,R(n)) denotes the real Deligne cohomology of XC/Z := X Z C:

HD(X/R,R(n)) := Han(XC/Z(C)an,R(n)D)Gal(C/R). Then we have

χ(X,TQp(n)) = χD(X/R,R(n)).

In particular, χ(X,TQp(n)) is independent of p for which p-adic

´etale Tate twists are defined.

Referensi

Dokumen terkait

On the contrary, small particles accumulate near the wall of the drum and large materials accumulate to the inner region of the drum like the reverse segregation whenAw2.. Here,Ais the

i If there exists a reducing slope r, then Dðr;gÞa2g1 or q¼2, where q is the minimal geometric intersection number between essential 2-spheres in MðrÞ and the core of the r-Dehn

第 14 回広島仙台整数論集会 2015 年 7 月 14 日 火 – 7 月 17日 金 広島大学理学部 東広島キャンパス B棟B707号室 本研究集会は、 科研費基盤研究 A「数論における幾何・トポロジーの新展開と アルゴリズム」 代表者・松本眞 科研費基盤研究B「概均質ベクトル空間のゼータ関数」代表者・雪江明彦 からの援助を受けています。

A t-dimensional real vector bundle zoverA is said to beextendible respectivelystably extendible to X, if there is a t-dimensional real vector bundle overX whose restriction to A is

1 Discrepancy test A pseudorandom number generator prng generates a sequence of numbers in an interval I, mimicking a sequence of random variables having uniform identical independent

Heber [18]は,この rank one reductionの考え方を用いて,以下のような代数的不変量を導入 した: 命題 5.2 s,h,i を standard Einstein 可解多様体, H0 ∈ a を mean curvature vector とする.. adH0 |n

fxをfA = 0 となるF 係数多項式とする。このとき、ψAxは fxを 割り切る。特に、最小多項式 ψAx は固有多項式φAxを割り切る。 証明.. fx を ψAxで割った商を qx、余りを rx とすると fx =ψAxqx +rx

Geometry of two bridge knots and links The link 622 The link 622 is two-bridge links with the slope 10/3.A two–fold covering of the cone–manifold 622α, π branched over the singular