Forecasting Petroleum Production Using the Time-Series Prediction of Artificial Neural Network
Teks penuh
Dokumen terkait
Puji syukur penulis panjatkan kepada Tuhan Yang Maha Esa, yang telah melimpahkan berkat, rahmat dan talenta-Nya sehingga penulis dapat menyelesaikan Tugas Akhir
KESIMPULAN Dari hasil penelitian ini dapat disimpulkan bahwa performa forecasting data ritel menggunakan Recurrent Neural Network yang pada kasus ini adalah LSTM dan GRU, dari segi
Statistical results of graduation of engineering education students Algoritma On time Not on time Artificial Neural Network 149 62 Particle Swarm Optimization PSO 165 69 forward
SARIMA was selected as the best model for Box-Jenkins with MAPE and MSE were 7.3458388 and 2.67011 respectively while Multilayer Feed Forward Neural Network MFFNN with seven input
[r]
GDP as the Most Vital Determinants of PHPI in Malaysia Based on Table 4, the results show that lnGDP, BLR and UR are statistically significant at 1% significant level whereas lnCPI
vi Abstract This study investigates and examines the advantages and forecasting performance of combining the dynamic factor model DFM and artificial neural networks ANNs leading to
2.2.2 Artificial neural network model The output of a neuron is computed by using the network design that worked with a two-layer feed-forward network one hidden layer.. The