• Tidak ada hasil yang ditemukan

Laboratory approaches to composition, origin, and evolution of the solid Earth

N/A
N/A
Protected

Academic year: 2024

Membagikan "Laboratory approaches to composition, origin, and evolution of the solid Earth"

Copied!
28
0
0

Teks penuh

(1)

Laboratory approaches to composition, origin, and evolution of the solid Earth

Tetsuo IRIUFNE

Geodynamics Research Center (GRC), Ehime Univ.

and

Earth-Life Science Institute, Ehime Satellite (ELSI-ES)

T. Tsuchiya Y. Tange J. Tsuchiya M. Nishi X. Wang H. Ichikawa S. Greaux

Current ELSI-ES members (to be expanded to 10-15 members soon)

(2)

Deep Earth Water

Structure of hydrous melts

Phase transitions in hydrous minerals Symmetrization of hydrogen bond

Core Materials

Crystal structure of iron   

Effects of light elements  

Structure and dynamics of inner core

new data

prediction and interpretation

High-pressure

experiments Numerical simulations

Phase transitions and structures of current Earth

Lower Mantle

Sound velocities of lower mantle materials

Spin-transitions in Fe and their implications

Post-perovskite transition and mantle dynamics

Research targets at GRC

Inner core Outer core Upper mantle

Crust MTR

Lower mantle

(3)

-t

t

Present

Forward modeling

Early Earth environment

Crystallization of primordial melt

Properties of early Earth materials

Clock-back modeling

Bulk Earth composition

Distribution of volatile elements

Dynamic behaviors

Research concept at ELSI- ES

(4)

Research targets at ELSI-

ES Chemistry of the lower mantle and bulk Earth

Differentiation and element partitioning

Distribution and circulation of water

Thermal structure and evolution

Laser shock and origin of life

Large-press experiments

Ab initio computations

Quantum-beam applications

(5)

Albarede (2009)

Late veneer:

addition of volatile-rich CI chondritic materials?

Early Earth

time

4550 (present)

(6)

after Wood et al. (2006)

Mg, Ca, Al

Fe

Mantle/CI chondrite

Condensation temperature, T50 (K)

CI chondritic

Element abundances in the Earth’s mantle

refractory volatile

Si lithophile

siderophile

(7)

M2SiO4 MSiO3

MO SiO2

M:Si = 1:0     2:1 1:1 0:1 pyrolite perovskitite

CI chondrite

1) The Earth was made of CI chondrite (-volitiles)

Bulk mantlepyrolitic (e.g. Ringwood, 1979)

2) The Earth was originally depleted in Si

U.M. = L.M.

U.M. Upper Mantle L.M. Lower Mantle U.M. L.M.

Bulk mantleCI chondritic (e.g. Liu, 1986)

M=Mg, Fe, Ca

Chemical models of Earth’s mantle

(8)

seismological models

laboratory

measurements

PREM

Mineral physics test

Inner core Outer core Lower mantle

Upper mantle Crust MTR

Lower mantle: pyrolite or perovskitite?

Lower mantle > half of the volume of the entire Earth

Lower mantle

(9)

0 50 100 150 4

6 8 10 12 14

P (GPa)

Velocity (km/s)

Vs Vp Vp

Vs

perovskitite perovskitite

perovskitite perovskitite

pyrolite pyrolite

pyrolite pyrolite

P (GPa)

Velocity (km/s)

PREM PREM

Brillouin scattering

measurements ab initio calculations

Sound velocities in the lower mantle

Murakami et al. (2012)

Kawai & Tsuchiya (2013)

Theory: higher velocities for MgSiO3-Perovskite

Perovskitite: better model?

(10)

sample L

X-ray

Imaging (sample length) Ultrasonic (travel time)

Diffraction

(phase, density, pressure)

Ultrasonic set-up at SPring-8

t

Higo et al. (2008) Irifune et al. (2008)

(11)

consistent with ab initio calculations

pyrolitic lower mantle?

Brillouin scattering measurements Murakami et al. (2007, 2012)

Sound velocities of Mg-perovskite

Higo et al. (in prep.)

ultrasonic measurements

(12)

pyrolite

perovskitite

pyrolite model

(Si deficient primordial mantle)

chondrite model

(chondritic primordial mantle)

Fe-Ni 410 660

2890

5150

6370

24 13 Depth

km

Pressure GPa

136 329

364

OC

IC LM UM MTR

Composition of the lower mantle

(13)

Partitioning in lower mantle (Irifune)

Concept of “lithophile”, “siderophile” HS

may not be valid any more needs laboratory studies under LM

conditions

Nano-polycrystalline diamond anvils

Wood et al. (2006)

Sintered diamond anvils

Ni C

o

(14)

Serpentine

Nominally anhydrous minerals

Dense hydrous minerals

Distribution of water (J. Tsuchiya)

Hydrous magma

Water storage capacity

J-PARC neutron facility

Estimation of current water inventory

(15)

Transport properties

Thermal history

Dekura et al. (2013)

​𝑱↓𝑪𝑴𝑩↑𝑭𝒓𝒐𝒎  𝒄𝒐𝒓𝒆 ≫​𝑱↓𝑪𝑴𝑩↑𝑻𝒐  𝒎𝒂𝒏𝒕𝒍𝒆 

???

How affect interior dynamics & surface environment?

Thermal evolution of Earth (T. Tsuchiya)

(16)

Survival rates of amino acids

Coherent diffraction imaging

SACLA XFEL-probe Synchronized pump laser

Radiation Blowoff plasma

High density plasma

Shock front

Cold solid target

x Temperature, T

Ablation front

T, ρ

ρc T0 Density, ρ

Laser

Laser ρ0

up to keV

~1021

Laser

Laser shock with X-FEL (Tange)

Laser-shock on primordial materials

Ultrafast time-resolve observations

glycine

alanine

Challenges to the origin of life

(17)
(18)
(19)

(2) Impact-shock synthesis (e.g. Gilvarry & Hochstim, 1963) (1) Endogenous production (e.g. Miller & Urey, 1959)

Electrical discharges in the atmosphere

Heating at submarine hydrothermal vents

(3) Exogenous Delivery (e.g. Chyba et al., 1990)

Asteroids

Comets

Interplanetary dust particles

Shock heating of atmosphere by meteoroid impact

Meteoritic impacts to the ocean

Origin of life on the early Earth

Glycine Alanine

…may be solved by FEL+ laser shock experiments?

Survival of amino acids?

(20)

Research targets at ELSI-

ES Chemistry of the lower mantle and bulk Earth

Differentiation and element partitioning

Distribution and circulation of water

Thermal structure and evolution

Laser shock and origin of life

Large-press experiments

Ab initio computations

Quantum-beam applications

(21)

Wood et al. (2006)

Mg, Ca, Al

Fe

Mantle/CI chondrite

Condensation temperature, T50 (K)

CI chondritic

Element abundances in the Earth’s mantle

refractory volatile

Si lithophile

siderophile

(22)

Irifune et al. (2008)

volume

HT

HT

1%

1%

Sound velocities of pyrolitic majorite

Upper mantle and mantle transition region:

Pyrolitic (Irifune et al., Nature 2008)

(23)

Mantle/CI chondrite

Condensation temperature, T50 (K)

Albarede (2009)

Melting and element partitioning

P/T effects on partitioning

Quantification of “late veneer”

(24)

Tsuchiya et al. (2006) Iriufne et al. (2010)

Fe spin transition

(25)

Albarede (2009)

Perovskitic L. M. VS Pyrolitic L. M.

(26)

Pyrolite  vs  piclogite  vs  harzburgite  vs  MORB  

harzburgite

Composi'on  of  MTR  

-­‐  upper  to  middle:  pyrolite   -­‐  bo8om:  harzburgite  

harzburgite  

pyrolite   piclogite    

MORB  

(27)

perido'tes    

chondrites    

CI  

Taylor (2001)

Terrestrial  &  cosmochemical  frac>ona>ons    

pyrolite    

cosmochemical  trend  

terrestrial  trend  

Al/Si  

Mg/Si  

(28)

0 50 100 150 4

6 8 10 12 14

P  (GPa)

Velocity  (km/s)

VP

VS

VΦ

0 50 100 150

4.0 4.5 5.0 5.5 6.0

P  (GPa) Density  (g/cm3 )

 Pyrolite  MORB  Perovskitite  PREM

Evolu>on  of  the  mantle

Late  veneer

Solidifica0on

Change  in  convec0on  style

How  to  make  the  present  pyroli>c  mantle?

u  Mel0ng  phase  rela0ons   u  Melt  proper0es  ρ(P,T,X)

Magma  ocean

Usui&Tsuchiya(2010) Kuwayama+(2008) Tsuchiya&Kawai(2013)

Referensi

Dokumen terkait

PT PTL uses market penetration and differentiation strategies taken from QSPM analysis and Porter’s Generic Strategy for establishing marketing, human capital and operational goals

Different types of clays namely spent bleaching earth that has been regenerated using acid and heat treatment after de-oiling RDSBE-AH, spent bleaching earth SBE, de-oiled spent

Sulphur, phosphorus and potassium require- ments for North Canterbury soils Collectively, the soil groups yellow-grey earth, yellow- brown earth, yellow-grey to yellow-brown earth

This article will be organised into the following sections: Theoretical framework; method; literature review that covers Mother Earth, women’s empowerment and sustainable development,

The topics covered include discussions of core-mantle differentiation [Rai and van Westrenen, 2013], the history of the Martian dynamo [Lillis et al., 2013], the preservation state of

The seminar on “Cable systems of Earth remote sensing spacecraft” at the Department of “Space technique and technologies” The seminar on “Cable systems of Earth remote sensing

地球史と生命史を結ぶ実験システム Early Earth Environment and Origin-of-Life Experiment 2013 微量分析システム 高温 低温 セパレータ他 気体 液体 固体 オートクレーブ Laser Optics フローリアクタ トランスファベッセル AXIMA-­‐CFR Plus(島津)

Chapter 2 The Thermal Properties of Iron-bearing Silicate Perovskite and the Implications for Lower Mantle Structures Abstract The high-temperature and -pressure equations of state