• Tidak ada hasil yang ditemukan

On the speed in Wasserstein distances of heat distributions

N/A
N/A
Protected

Academic year: 2024

Membagikan "On the speed in Wasserstein distances of heat distributions"

Copied!
43
0
0

Teks penuh

(1)

On the speed in Wasserstein distances of heat distributions

Kazumasa Kuwada

(Tokyo Institute of Technology)

7th International Conference on Stochastic Analysis and its Applications (Seoul National University) Aug. 6–11, 2014

(2)

1. Introduction

(3)

Speed in transportation cost

(Xt)t≥0: stochastic process on M

⇓ ⇑

t)t≥0: curve in P(M), µt := PPP◦ Xt−1

Q. Tct, µs) ≈ ? (s → t) Tc(µ, ν) := inf

(Z

M×M

c dπ

π: coupling of µ and ν

)

(Optimal transportation cost for a cost function c)

(4)

Speed in transportation cost

(Xt)t≥0: stochastic process on M

⇓ ⇑

t)t≥0: curve in P(M), µt := PPP◦ Xt−1 Q. Tct, µs) ≈ ? (s → t)

Tc(µ, ν) := inf (Z

M×M

c dπ

π: coupling of µ and ν

)

(Optimal transportation cost for a cost function c)

(5)

Background

µt = et∆µ0: heat dist. on a met. meas. sp. (M, d, v)

⇒ “∂tµt = −∇Entvt)” w.r.t. W2 = (Td2)1/2 [Jordan, Kinderlehrer & Otto ’98]

[Ambrosio, Gigli & Savar´e ’05, . . .]

“∂tEntvt) = −h∇Entv, ∂tµti = −|∂tµt|2

⇓ lims↓t

W2s, µt) s − t

2

= Z

M

|∇ρt|2

ρt dv =: I(µt) (Fisher information)

(6)

Background

µt = et∆µ0: heat dist. on a met. meas. sp. (M, d, v)

⇒ “∂tµt = −∇Entvt)” w.r.t. W2 = (Td2)1/2 [Jordan, Kinderlehrer & Otto ’98]

[Ambrosio, Gigli & Savar´e ’05, . . .]

“∂t Entvt) = −h∇Entv, ∂tµti = −|∂tµt|2

⇓ lims↓t

W2s, µt) s − t

2

= Z

M

|∇ρt|2

ρt dv =: I(µt) (Fisher information)

(7)

Background

µt = et∆µ0: heat dist. on a met. meas. sp. (M, d, v)

⇒ “∂tµt = −∇Entvt)” w.r.t. W2 = (Td2)1/2 [Jordan, Kinderlehrer & Otto ’98]

[Ambrosio, Gigli & Savar´e ’05, . . .]

“∂t Entvt) = −h∇Entv, ∂tµti = −|∂tµt|2

⇓ lims↓t

W2s, µt) s − t

2

= Z

M

|∇ρt|2

ρt dv =: I(µt) (Fisher information)

(8)

Background

“Hess Entv ≥ K” (⇔ “Ric ≥ K”) for K ∈ RRR

W2(0)t , µ(1)t ) ≤ e−KtW2(0)0 , µ(1)0 )

W2t, µt+s) ≤ e−KtW20, µs)

I(µt) ≤ e−2KtI(µ0)

(⇒ log Sobolev ineq. (when K > 0))

(9)

Background

“Hess Entv ≥ K” (⇔ “Ric ≥ K”) for K ∈ RRR

W2(0)t , µ(1)t ) ≤ e−KtW2(0)0 , µ(1)0 )

W2t, µt+s) ≤ e−KtW20, µs)

I(µt) ≤ e−2KtI(µ0)

(⇒ log Sobolev ineq. (when K > 0))

(10)

Questions

What happens for other transportation costs?

What happens when there is no gradient flow structure?

(11)

Outline of the talk 1. Introduction

2. Heat distributions on backward Ricci flow

3. Idea of the proof

4. Further problems

(12)

Outline of the talk

1. Introduction

2. Heat distributions on backward Ricci flow

3. Idea of the proof

4. Further problems

(13)

Framework

(M, g(t)): cpl. Riem. mfds., t ∈ [0, T]

tg(t) = 2 Rict (backward Ricci flow)

((X(t))t≥0,(PPPx)x∈M): g(t)-Brownian motion

!!! ∆g(t): generator µt = PPPµ0 ◦X(t)−1: heat dist.

vt: g(t)-volume meas., µt = ρtvt

F ∂tvt = Rtvt (Rt: g(t)-scalar curv.) Ass. sup

t

|Rmt|g(t) < ∞ (Rmt: g(t)-curv. tensor)

(14)

t

µ

t

6= −∇ Ent

vt

t

)

Entvtt) :=

Z

M

ρtlogρtdvt = Z

M

logρtt

F ∂tµt = ∆tµt (weakly)

⇒ ∂tEntvtt) = − Z

M

|∇ρt|2

ρ2t + Rt

t

=: −F(µt) (F-functional)

⇒ No monotonicity of Entvtt)!

(15)

W

2

-contraction

Observation

When g(t) ≡ g0, ∂tg(t) = 2 Rict ⇒ Ric ≡ 0

F Td2

t(0)t , µ(1)t ) & [McCann & Topping ’10], [Arnaudon, Coulibaly & Thalmaier ’09], [K. ’12]

(16)

W

2

-contraction

Observation

When g(t) ≡ g0, ∂tg(t) = 2 Rict ⇒ Ric ≡ 0

F Td2

t(0)t , µ(1)t ) & [McCann & Topping ’10], [Arnaudon, Coulibaly & Thalmaier ’09], [K. ’12]

(17)

W

2

-contraction

Observation

When g(t) ≡ g0, ∂tg(t) = 2 Rict ⇒ Ric ≡ 0

F Td2

t(0)t , µ(1)t ) & [McCann & Topping ’10], [Arnaudon, Coulibaly & Thalmaier ’09], [K. ’12]

⇒/ Td2

tt, µt+s) & (time-inhomogeneity)

(18)

W

2

-contraction

Observation

When g(t) ≡ g0, ∂tg(t) = 2 Rict ⇒ Ric ≡ 0

F Td2

t(0)t , µ(1)t ) & [McCann & Topping ’10], [Arnaudon, Coulibaly & Thalmaier ’09], [K. ’12]

F TLt,t+s

0t, µt+s) & in t [Lott ’09], [Amaba & K.]

Lt,t0 0(x, y) := inf

γ(t)=x, γ(t0)=y

"

Z t0 t

|γ(r)|˙ 2r + Rr dr

#

(L0-distance; introduced by Lott)

(19)

Monotonicity of F

Theorem 1

Suppose Entv00) < ∞ and F(µ0) < ∞

⇒ lim

s↓0

TLt,t+s

0t, µt+s)

s = F(µt) a.e. t ∈ [0, T] Corollary 2

F(µt) &

Rem: g(t) ≡ g, Ric ≥ 0 ⇒ I(µt) &

[Lott ’09] when M: cpt.

by Eulerian calculus (requires smoothness)

(20)

1. Introduction

2. Heat distributions on backward Ricci flow

3. Idea of the proof

4. Further problems

(21)

Kantorovich duality

Observation: W2 in the case g(t) ≡ g

W2t, µt+s)2

2s = sup

ϕ∈Cb

Z

M

Qsϕ dµt+s − Z

M

ϕ dµt

Qsϕ(x) := inf

y∈M

ϕ(y) + d(y, x)2 2s

= inf

γ(t)=y γ(t+s)=x

ϕ(γ(t)) + 1 2

Z t+s t

|γ(r˙ )|2dr

(Hopf-Lax semigroup) F ∂sQsϕ+ 1

2|∇Qsϕ|2 = 0 (Hamilton-Jacobi eq.)

(22)

Kantorovich duality

Observation: W2 in the case g(t) ≡ g

W2t, µt+s)2

2s = sup

ϕ∈Cb

Z

M

Qsϕ dµt+s − Z

M

ϕ dµt

Qsϕ(x) := inf

y∈M

ϕ(y) + d(y, x)2 2s

= inf

γ(t)=y γ(t+s)=x

ϕ(γ(t)) + 1 2

Z t+s

t

|γ(r˙ )|2dr

(Hopf-Lax semigroup)

F ∂sQsϕ+ 1

2|∇Qsϕ|2 = 0 (Hamilton-Jacobi eq.)

(23)

Kantorovich duality

Observation: W2 in the case g(t) ≡ g

W2t, µt+s)2

2s = sup

ϕ∈Cb

Z

M

Qsϕ dµt+s − Z

M

ϕ dµt

Qsϕ(x) := inf

y∈M

ϕ(y) + d(y, x)2 2s

= inf

γ(t)=y γ(t+s)=x

ϕ(γ(t)) + 1 2

Z t+s t

|γ(r˙ )|2dr

(Hopf-Lax semigroup) F ∂sQsϕ + 1

2|∇Qsϕ|2 = 0 (Hamilton-Jacobi eq.)

(24)

Upper bound

W2t, µt+s)2

2s = sup

ϕ∈Cb

Z

M

Qsϕ dµt+s − Z

M

ϕ dµt

[· · ·] = Z s

0

r Z

M

Qrϕ dµt+r

dr

r(···) = Z

−h∇Qrϕ, ∇ρt+r

ρt+r i − 1

2|∇Qrϕ|2

t+r

≤ 1

2I(µt+r)

lims↓t

W2t, µt+s)2

s2 ≤ lim

s↓t

1 s

Z t+s t

I(µr)dr = I(µt)

(25)

Upper bound

W2t, µt+s)2

2s = sup

ϕ∈Cb

Z

M

Qsϕ dµt+s − Z

M

ϕ dµt

[· · ·] = Z s

0

r Z

M

Qrϕ dµt+r

dr

r(···) = Z

−h∇Qrϕ, ∇ρt+r

ρt+r i − 1

2|∇Qrϕ|2

t+r

≤ 1

2I(µt+r)

lims↓t

W2t, µt+s)2

s2 ≤ lim

s↓t

1 s

Z t+s t

I(µr)dr = I(µt)

(26)

Lower bound

W2t, µt+s)2

2s = sup

ϕ∈Cb

Z

M

Qsϕ dµt+s − Z

M

ϕ dµt

lim

s↓t

1 s

Z

M

Qsϕ dµt+s − Z

M

ϕ dµt

“=”

Z

−h∇ϕ, ∇ρt

ρt i − 1

2|∇ϕ|2

t

⇓ ϕ = −logρt

lim

s↓t

W2t, µt+s)2

s2 ≥ I(µt)

(27)

Lower bound

W2t, µt+s)2

2s = sup

ϕ∈Cb

Z

M

Qsϕ dµt+s − Z

M

ϕ dµt

lim

s↓t

1 s

Z

M

Qsϕ dµt+s − Z

M

ϕ dµt

“=”

Z

−h∇ϕ, ∇ρt

ρt i − 1

2|∇ϕ|2

t

⇓ ϕ = −logρt

lim

s↓t

W2t, µt+s)2

s2 ≥ I(µt)

(28)

Lower bound

W2t, µt+s)2

2s = sup

ϕ∈Cb

Z

M

Qsϕ dµt+s − Z

M

ϕ dµt

lim

s↓t

1 s

Z

M

Qsϕ dµt+s − Z

M

ϕ dµt

“=”

Z

−h∇ϕ, ∇ρt

ρt i − 1

2|∇ϕ|2

t

⇓ ϕ = −logρt

lim

s↓t

W2t, µt+s)2

s2 ≥ I(µt)

(29)

Outline of the proof of Thm1

Kantorovich duality / Hopf-Lax semigr. for Lt,t+s0 Difficulty: Dependency on t of geometry

No a priori integrability of ∇ρt & ∆tρt

⇒ Approximation

† Use of heat kernel & Gaussian (upper) bound

† Show Entvss) −Entvtt) ≥ Z t

s

F(µr)dr (⇒ F(µr) < ∞ a.e. r)

† Show lim

s↓t

Entvss) − Entvtt)

s − t ≤ F(µt)

(30)

Outline of the proof of Thm1

Kantorovich duality / Hopf-Lax semigr. for Lt,t+s0 Difficulty: Dependency on t of geometry

No a priori integrability of ∇ρt & ∆tρt

⇒ Approximation

† Use of heat kernel & Gaussian (upper) bound

† Show Entvss) −Entvtt) ≥ Z t

s

F(µr)dr (⇒ F(µr) < ∞ a.e. r)

† Show lim

s↓t

Entvss) − Entvtt)

s − t ≤ F(µt)

(31)

Outline of the proof of Thm1

Kantorovich duality / Hopf-Lax semigr. for Lt,t+s0 Difficulty: Dependency on t of geometry

No a priori integrability of ∇ρt & ∆tρt

⇒ Approximation

† Use of heat kernel & Gaussian (upper) bound

† Show Entvss) −Entvtt) ≥ Z t

s

F(µr)dr (⇒ F(µr) < ∞ a.e. r)

† Show lim

s↓t

Entvss) − Entvtt)

s − t ≤ F(µt)

(32)

Outline of the proof of Thm1

Kantorovich duality / Hopf-Lax semigr. for Lt,t+s0 Difficulty: Dependency on t of geometry

No a priori integrability of ∇ρt & ∆tρt

⇒ Approximation

† Use of heat kernel & Gaussian (upper) bound

† Show Entvss) −Entvtt) ≥ Z t

s

F(µr)dr (⇒ F(µr) < ∞ a.e. r)

† Show lim

s↓t

Entvss) − Entvtt)

s − t ≤ F(µt)

(33)

Outline of the proof of Thm1

Kantorovich duality / Hopf-Lax semigr. for Lt,t+s0 Difficulty: Dependency on t of geometry

No a priori integrability of ∇ρt & ∆tρt

⇒ Approximation

† Use of heat kernel & Gaussian (upper) bound

† Show Entvss) −Entvtt) ≥ Z t

s

F(µr)dr (⇒ F(µr) < ∞ a.e. r)

† Show lim

s↓t

Entvss) − Entvtt)

s − t ≤ F(µt)

(34)

Outline of the proof of Thm1

Kantorovich duality / Hopf-Lax semigr. for Lt,t+s0 Difficulty: Dependency on t of geometry

No a priori integrability of ∇ρt & ∆tρt

⇒ Approximation

† Use of heat kernel & Gaussian (upper) bound

† Show Entvss) −Entvtt) ≥ Z t

s

F(µr)dr

(⇒ F(µr) < ∞ a.e. r)

† Show lim

s↓t

Entvss) − Entvtt)

s − t ≤ F(µt)

(35)

Outline of the proof of Thm1

Kantorovich duality / Hopf-Lax semigr. for Lt,t+s0 Difficulty: Dependency on t of geometry

No a priori integrability of ∇ρt & ∆tρt

⇒ Approximation

† Use of heat kernel & Gaussian (upper) bound

† Show Entvss) −Entvtt) ≥ Z t

s

F(µr)dr (⇒ F(µr) < ∞ a.e. r)

† Show lim

s↓t

Entvss) − Entvtt)

s − t ≤ F(µt)

(36)

Outline of the proof of Thm1

Kantorovich duality / Hopf-Lax semigr. for Lt,t+s0 Difficulty: Dependency on t of geometry

No a priori integrability of ∇ρt & ∆tρt

⇒ Approximation

† Use of heat kernel & Gaussian (upper) bound

† Show Entvss) −Entvtt) ≥ Z t

s

F(µr)dr (⇒ F(µr) < ∞ a.e. r)

† Show lim

s↓t

Entvss) − Entvtt)

s − t ≤ F(µt)

(37)

1. Introduction

2. Heat distributions on backward Ricci flow

3. Idea of the proof

4. Further problems

(38)

T

L

/W

p

For Perelman’s L-distance? (backward Ricci flow)

† A monotonicity of transportation cost is known [Topping ’09], [K. & Philipowski ’11]

⇒ Monotonicity of W-functional

([Topping ’09]; M: cpt.)

(39)

T

L

/W

p

For Perelman’s L-distance? (backward Ricci flow)

† A monotonicity of transportation cost is known [Topping ’09], [K. & Philipowski ’11]

⇒ Monotonicity of W-functional

([Topping ’09]; M: cpt.)

(40)

T

L

/W

p

For Perelman’s L-distance? (backward Ricci flow)

† A monotonicity of transportation cost is known [Topping ’09], [K. & Philipowski ’11]

⇒ Monotonicity of W-functional

([Topping ’09]; M: cpt.)

(41)

T

L

/W

p

For Wp (p ∈ [1,∞)) in time-homogeneous case?

† Ric ≥ K ⇒ eKtWp(0)t , µ(1)t ) &

F lim

s↓0

Wpt, µt+s) s

p

≤ Z

M

|∇ρt|p ρp−1t dv

Ric ≥ K > 0, v ∈ P(M)

⇒ Wp(µ, v)p ≤ 1 Kp

Z

M

|∇ρ|p ρp−1 dv

(42)

T

L

/W

p

For Wp (p ∈ [1,∞)) in time-homogeneous case?

† Ric ≥ K ⇒ eKtWp(0)t , µ(1)t ) &

F lim

s↓0

Wpt, µt+s) s

p

≤ Z

M

|∇ρt|p ρp−1t dv

Ric ≥ K > 0, v ∈ P(M)

⇒ Wp(µ, v)p ≤ 1 Kp

Z

M

|∇ρ|p ρp−1 dv

(43)

T

L

/W

p

For Wp (p ∈ [1,∞)) in time-homogeneous case?

† Ric ≥ K ⇒ eKtWp(0)t , µ(1)t ) &

F lim

s↓0

Wpt, µt+s) s

p

≤ Z

M

|∇ρt|p ρp−1t dv

Ric ≥ K > 0, v ∈ P(M)

⇒ Wp(µ, v)p ≤ 1 Kp

Z

M

|∇ρ|p ρp−1 dv

Referensi

Dokumen terkait

Tensile properties of heat treated copper alloy based on the effect of cooling rate Tensile properties of heat treated copper alloy based on the effect of aging treatment

(i) Rolled Products - Aluminum sheet applications include heat exchangers, heat shields, bumper stock as well as closure sheet and structural sheet for complete

Proceeding of International Conference on Sustainable Engineering and Creative Computing 2022 Implementation of Soil Lateral Pressure Measurement due to Vehicle Under Constant Speed

4 was used to analyze how both the warming and cooling periods influence heat transfer process, represented by the sensible heat flux, which took place on the atmospheric-oceanic

7th ICGSS International Conference of Graduate School on Sustainability, November 4-5, 2022 207 The Influence of Work Culture and Work Motivation on Employee Performance Mediated by

Baghdad Science Journal Vol.16 Special Issue 2019 Special Issue on the 7th International Conference on Computing and informatics ICOCI2019 from 27-29 march 2019 Dhurakij Pundit

Theoretical calculation of heat transfer in hot air roaster Time Minutes Roastin g temper ature Conducti on Heat Transfer Coefficie nt W Roaster Room Convection Heat

Applying this modeling framework to the protein production processes, delay distributions are derived in a stochastic probability density function and deterministic setting impulse