• Tidak ada hasil yang ditemukan

저작자표시-비영리-변경금지 2.0 대한민국 ... - KMOU Repository

N/A
N/A
Protected

Academic year: 2023

Membagikan "저작자표시-비영리-변경금지 2.0 대한민국 ... - KMOU Repository"

Copied!
64
0
0

Teks penuh

(1)

저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다. 다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

(2)

Z-Wave

A Study on Implementation of a Wireless Sensor Network Node using Z-Wave Module

2009 2

(3)
(4)

Abstract Abbreviations

1 1

1.1 1

1.2 2

2 USN 4

2.1 USN 4

2.1.1 USN 4

2.1.2 USN 5

2.2 USN 9

2.2.1 USN 9

2.2.1 16

3 Z-Wave System 18

3.1 Z-Wave 18

3.2 Z-Wave 20

3.2.1 (Physical Layer) 20

3.2.2 (Mac Layer) 20

3.2.3 (Transfer Layer) 23

3.2.4 (Routing Layer) 28

3.2.5 (Application Layer) 30

4 Z-Wave 31

4.1 Z-Wave 29

4.2 Z-Wave 36

4.2.1 36

4.2.2 37

4.3 Z-Wave 41

(5)

5 52

54

(6)

Abstract

WSN(Wireless Sensor Network) is an essential technology for USN(Ubiquitous Sensor Network) and it consists of process treating collected information, transmitting and receiving devices and sink nodes. The Sink node roles sending the collected data by sensors.

WSN is not designed for communication means, but for automated remote data collecting. And it can be utilized at scientific, military and commercial application.

There are many technologies such as Z-Wave, Zigbee, Bluetooth, UWB(Ultra-Wideband), NFC(Near Field Communication) for USN.

Recently, Zigbee has been in the spotlight among low-power and low-rate technologies. Z-wave technology is similar to Zigbee technology. Z-Wave, a proprietary technology developed by Zensys of Denmark, is competing with Zigbee to become the standard for automated home controls. About 50 companies in USA or Europe adopt Z-wave technology and they are making several products.

Comparing with other technologies, Z-Wave has an advantage of low power consumption, two-way RF communication and mesh network. Its merits are available to control a sensor and device. Z-wave is possible to make it lighter, more energy efficient. With this special features, Z-Wave is expected to be a available solution in USN area.

In this thesis, the platform of automated home sensor network with Z-Wave is studied and implemented. The Z-Wave chipset, the ZW0201, is used at each sensor board. The 8-bit microcontroller interrelated 8051 is adopted to synchronize and control a sensor node. The 8051 functions at 16MHz includes 2kbyte RAM memory and 32kbyte flash ROM memory.

Using the microprocessor, it receives or transmits digital data.

(7)

Master sensor board is connected with a computer and RS-232c through UGI(User Graphic Interface).

SHT11 developed by SENSIRION is used for humidity and temperature sensor. The Z-Wave chipset, the ZW0201, and GUI is controled by C language. The compiler offered by developers kit of Zensys is used for implementing this system.

Realized sensor nodes are activated for the line of sight range 13m at hight 0m, 35m at hight 0.75m and 65m at hight 2m.

Output power is -3.619dBm at center frequency 868.42MHz. The

system is stably operated over input power 3.3V and its current

consumption is 6.8mA at standby mode, 30.3mA at active mode.

(8)

Abbreviations

USN : Ubiquitous Sensor Network WSN : Wireless Sensor Network UWB : Ultra-Wideband

NFC : Near Field Communication GUI : Graphic User Interface

MEMS : Micro Electro Mechanical System MCU : Micro Controller Unit

API : Application Program Interface OSWA : Open Sensor Web Architecture NRZ : Non Return Zero

FSK : Frequency Shift Keying

CSMA : Carrier Sense Multiple Access MPU : Micro Processor Unit

PCB : Printed Circuit Board MAC : Media Access Control PCB : Personal Digital Assistant OS : Operating System

SQL : Structured Query Language SQL : Structured Query Language QoS : Quality of Service

TTA : Telecommunication Technology Association

(9)

1

1.1

,

.

, ,

. ,

, u-City . u-City USN

, , , , , ,

,

, , ,

. ,

,

, USN USN

USN .

USN (Wireless

Sensor Network)

, (Sensor Node)

(Sink Node) .

, , ,

. WSN

Z-Wave, Zigbee, Bluethooth, UWB, NFC .

2.4GHz ISN , Zigbee

. Zigbee ,

(10)

Zensys Z-Wave Z-Wave

/ .

Z-Wave Zigbee , ,

RF, Mesh .

Z-Wave USN 9.6/40Kbps

/ , on/off, ,

, .

1.2

Z-Wave . Z-wave Chip

, /

ID .

, , , , ,

,

, , ,

.

Z-Wave , MAC

, ,

. Z-Wave

Zensys 868.42MHz ZW0201

ZW0201 8051 8bit

Microcontroller . 8051 16MHz 2kbyte

32kbyte .

,

UGI(User Graphic Interface) RS-232c

. SENSIRION

SHT11 . Z-Wave ZW0201

GUI C , Zensys Developers Kit

. Z-Wave

(11)

Controller Digital

Oscilloscope , OUTPUT POWER Agilent Spectrum

Analyzer ,

0m, 0.75m, 2m .

(12)

2 USN

2.1 USN

2.1.1 USN

USN(Ubiquitous Sensor Network) , , ,

(bade-station sink)

.

,

.

. , ,

,

.

2.1 .

2.1 USN

Fig. 2.1 USN Applications.

(13)

2.1.2 USN

USN

Ad-Hoc .

, , PDA

.

. Ad-Hoc

(AP)

.

.

.

AP

.

.

.

. 2.2 Ad-Hoc

.

(14)

2.2 Ad-Hoc

Fig. 2.2 Structure of ensor network using Ad-Hoc.

.

. 8bit CPU 8kByte ,

128Kbyte

, .

micro-controller .

(actuator)

.

.

.

.

. (

) ( )

1 (hop)

(15)

, (Sink

Node) .

,

.

USN , , , ,

.

,

, , ,

, ,

.

CPU , ,

, ,

, .

WSN

, , ,

,

.

,

, / ,

, /

.

(16)

2.3

Fig. 2.3 The component structure of sensor node.

, ,

. USN , , USN

.

USN 2.4 . Access

Network IPv6 BcN USN

IPv6 .

.

(17)

2.4 USN

Fig. 2.4 Schematic diagram of USN.

2.2 USN

2.2.1 USN

USN 2.1

, (OS), , USN

. .

,

. , ,

.

(18)

(H/W) , , G/W (OS)

USN , ,

USN USN 2.1 USN

Table 2.1 Core technology of USN.

.

.

.

2.5 , ,

. MEMS(Micro Electro Mechanical System)

Bio .

MCU(Micro Controller Unit) Atmel

Atmega128L, TI MSP430, PIC18F

IEEE 1451 .

(19)

2.5

Fig. 2.5 Structure of sensor node.

.

Atmel, ARM, Motorola ,

.

USN OS

OS

. OS ,

, , I/O, ,

, API .

OS 32~128Kbyte , OS

4~8Kbyte OS

. OS

UC Tiny OS, UCLA SOS,

MANTIS, TRON

T-Engine . ANTS, ETRI

Nano-Qplus OS .

(20)

, , . USN

USN ,

, , ,

, 2.2

( ) USN

(USN ) .

USN

, ,

U- USN

USN ,

, ,

, API, , ,

TinyDB, Cougar, SINA , - ,

-

( ) DSWare, MiLAN OSWA

2.2 USN

Table 2.2 Compare middleware of sensor node with middleware of USN.

, , , ,

, ,

( ) . TinyDB, TinySec,

Cougar, SINA, DSWare, MiLAN . USN , ,

, , , , USN

(21)

, .

USN USN , U- , USN

, USN API

.

, , - (Sensor-Grid), -

(Sensor-Web), OSWA(Open Sensor Web Architecture) USN

R&D . 2.3 USN

.

2.3 USN

Table 2.3 Features of USN middleware and a limit.

USN

TinyDB (Berkeley)

Server in-network

aggregation

TinyOS , SQL-like

TinyOS

,

,

Cougar (Cornell)

, DB

.

Server-side , SQL-like

Server-side ,

SINA (Delaware)

Cougar server-side , SQL-like

cluster

(cluster head )

Cougar

Cluster head

2.3 (a)

(22)

USN

Impala (Princeton)

Binary

Hewlett-Packard

,

DSWare (Virginia)

DB SQL-like

in-network aggregation

,

Milan (Rochester)

USN QoS

QoS

lifetime QoS

USN tightly-coupled

Mate (Berkeley)

(TinyOS )

Byte code Virtual Machine(VM)

VM

,

interpretation

COSMOS (ETRI)

( , , )

In-network aggregation

2.3 (b)

(23)

,

.

, .

,

. 2.6 .

2.6

Fig. 2.6 Specification of sensor network protocol.

.

. .

.

(24)

, .

MAC .

, Z-Wave,

, HomeRF, ZigBee, , 1394

1394, UWB Z-Wave

. 2.4 .

2.4

Table 2.4 Wireless communication technologies.

Z-Wave Zigbee Bluetooth UWB WLAN

868.42MHz

908.42MHz 2.4GHz 2.4GHz 3.1-10.6GHz 2.4GHz 9.6 kbps

40 kbps 250kbps 1Mbps 100Mbps 11Mbps

70m 70m 10m 10m 50m

FSK OQPSK FFHSS DSSS

/ / Ad Hoc

3 A/V

2.2.2 USN

,

. 1993 NIST IEEE IEEE1451

. IEEE 802.15 ,

ZigBee Aliance, IETF 6LoWPAN , IPv6 Convergence

.

TTA RFID/USN 2004 USN

, , ,

(25)

. 2.7

.

2.7 USN

Fig. 2.7 standardization movement of domestic USN.

IPv6 Convergnce .

IPv6 IPv6

IPv6

. IT IT839

IT .

IPv6 USN .

(26)

3 Z-Wave

3.1 Z-Wave

USN Z-Wave /

. Z-Wave

Alliance . 900

10 40kbps RF

Mesh ZigBee .

, ad-hoc

. ,

, (sensor node) .

. ad-hoc

. PC,

3.1 .

3.1 Z-Wave

Fig. 3.1 Schematic diagram of Z-Wave sensor network.

(27)

3.1 Z-Wave Zigbee

Table 3.1 Features of Z-Wave and Zigbee.

Z-Wave(ZW0201) Zigbee(CC2420)

RF Transceiver

Frequency 868.42MHz(EU)/

908.42MHz(US)

868.42MHz(EU)/

908.42MHz(US) 2,4GH/z(Globa)l Data rate 9.6 kbps/ 40 kbps

20 kbps /40 kbps /250 kbps High

sensitivity

9.6 kbit : -104 dBm

40 kbit : -101 dBm 250 kbps : -94 dBm

Modulation FSK O-QPSK

Coding Manchester Coding No Use

Spreading/PSK Microcontroller

Core 8051 MCU 8051 MCU

Clock

Frequency 16MHz 16MHz

Memory Flach Memory 32 kbyte 32 kbyte

SRAM 2 kbyte 2 kbyte

(28)

3.2 Z-Wave (Z-Wave )

3.2 Z-Wave

Fig. 3.2 The layer structure of Z-Wave.

3.2.1 (Physical Layer)

RF MEDIA , Manchester

NRZ , FSK .

3.2.2 (Mac Layer)

Z-Wave Mac layer RF Manchester

, (SOF), (EOF)

.

(29)

3.3 MAC FRAME

Fig. 3.3 The transmission structure of MAC layer's FRAME.

little endian , ,

Mac layer

access Manchester

.

8 ,

DC free Manchester .

(Collision avoidance) .

3.4 Manchester Fig. 3.4 Manchester code.

/

. CSMA

.

(30)

3.5 Backoff

Fig. 3.5 backoff algorithm.

CSMA

free busy .

CSMA

.

A

B C

CSMA B C A

free

.

.

(31)

3.2.3 (Transfer Layer)

Z-Wave ,

.

. Frame Layout

Z-Wave 4

. - Singlecast Frame Type

- Transfer Acknowledge Frame Type - Multicast Frame Type

- Broadcast Frame Type

Z-Wave 3.6

.

(32)

7 6 5 4 3 2 1 0 Home ID

Source Node ID Frame Header

Length Destination Address

Data Byte 0 Data Byte 1 Data Byte 2

...

Data Byte n Checksum 3.6 Z-Wave

Fig. 3.6 The frame structure of Z-Wave.

(33)

. Single cast Frame Type

,

. .

.

3.7

Fig. 3.7 The frame structure of singlecast.

. Transfer Acknowledge Frame Type

. 3.7

.

. Multicast Frame Type

1~232 .

.

(34)

3.8 Multicast Frame Fig. 3.8 Multicast frame transmission.

, .

.

.

. Broadcast Frame Type

. .

.

.

(35)

3.9

Fig. 3.9 Retransmit of transmission layer.

3.10 Broadcast Frame Fig. 3.10 Broadcast frame transmission.

3.9 .

3.9 . B

Ack

Ack A B A

. 3.9

.

(36)

3.2.4 (Routing Layer)

Z-Wave

.

. ,

.

.

. Frame Layout

Z-Wave 2

. Routed Single cast Frame Type Z-Wave 3.11

. ,

.

3.11 Routed Single cast Frame Fig. 3.11 Routed single cast frame transmission.

. Routed Acknowledge Frame Type

Z-Wave

. .

(37)

3.12 Routed Acknowledge Frame Fig. 3.12 Routed acknowledge frame transmission.

. Routing Table

.

.

, .

3.13

Fig. 3.13 Routing table of network topology.

. Route to Node

. .

,

(38)

.

3.2.5 (Application Layer)

Z-Wave Z-Wave

.

. Frame Layout

Z-Wave 3.14

.

7 6 5 4 3 2 1 0

Single/Multi/Broadcast frame header Application command class

Application command Command parameter 1 Command parameter 2

...

Command parameter n

3.14 Z-Wave

Fig. 3.14 Routing table of network topology.

(39)

4 Z-Wave

4.1 Z-Wave , ,

EEPROM, RS-232, , , PIC

.

4.1 Z-Wave

Fig. 4.1 Z-Wave Board block diagram.

Z-Wave Chip Z-Wave RF .

4.1 Z-Wave Chip ,

4.1 / Z-Wave RF

RS-232

PC . Z-Wave

EEPROM

ID ID

.

(40)

4.2 Z-Wave Chip Z-Wave

Fig. 4.2 Communication module designed by Z-Wave Chip.

(41)

4.3

Fig. 4.3 Temperature-Humidity sensor node design.

(42)

Temperature & Humidity Sensor SHT11 14 AD . Calibration memory

Calibration .

. 2-wire MPU

, 2.7V 5.5V 280uA

, 0.1uA . -40

+80 2 , -40 +100

.

4.1 /

Table 4.1 Temperature & Humidity Sensor spec.

Sensor Sensirion SHT11

Channel Humidity Temperature

Range 0 ~100 % -40 ~ 80 °C

Accuracy ± 3 % RH(Typical) ± 0.5 °C

Operation Volt 2.4 ~ 5.5V

(43)

(a) (b)

4.4 (a) ; (b) MAIN PCB

Fig. 4.4 Layout (a) Sensor module ; (b) Main PCB.

(a) (b)

4.5 (a) Z-Wave ; (b) MAIN PCB

Fig. 4.5 (a) Z-Wave sensor module. ; (b) Main sensor module PCB.

4.4 PCB . 4.4 (a) Z-Wave

PCB 4.4 (b) MAIN PCB .

4.26 (a) ZW0201 4.5 (b)

. , Transmission line 4.5 (b)

(44)

MAIN PCB .

4.2

4.2.1

4.6

Fig. 4.6 Flowchart of controller node.

4.6 Z-Wave .

(45)

H/W S/W Init Z-Wave Sleep mode

. Z-Wave wake-up .

,

Ack Sleep mode cycle

.

4.2.2

4.7 H/W Init, S/W Init,

Application Poll, Application Command

Handler .

H/W Init , S/W Init

. Application Poll Application

Command Handler Application Poll

, Application Command Handler

.

(46)

.

4.7

Fig. 4.7 Flowchart of sensor module.

(47)

.

4.2

Table 4.2 Hardware initialize function.

BYTE ApplicationInitHW(BYTE bWakeupReason) {

PIN_IN(Button, 1); //

PIN_OUT(SSN); //SCK PIN_OUT(MISO); //DATA return(TRUE);

}

4.3

Table 4.3 software initialize function.

BYTE ApplicationInitSW( void ) {

LoadConfiguration(); //EEPROM AssociationInit(); //

OneButtonInit(); //

return(TRUE);

}

(48)

4.4 ApplicationCommandHandler

Table 4.4 ApplicationCommandHandler function acquired data.

long data1, data2;

char humi_tempo1, humi_tempo2, temp_tempo1, temp_tempo2;

post02_Read(MEASURE_HUMI, &data1, &data2); //

humd_data1 = data1;

humd_data2 = data2;

post02_Read_temp(MEASURE_TEMP, &data1, &data2); //

temp_data1 = data1;

temp_data2 = data2;

txBuf.ZW_SensorMultilevelReport4byteFrame.cmdClass = COMMAND_CLASS_SENSOR_MULTILEVEL;

txBuf.ZW_SensorMultilevelReport4byteFrame.cmd

= SENSOR_MULTILEVEL_REPORT;

txBuf.ZW_SensorMultilevelReport4byteFrame.sensorType = 0x01;

txBuf.ZW_SensorMultilevelReport4byteFrame.precisionScaleSize = 0x44;

txBuf.ZW_SensorMultilevelReport4byteFrame.sensorValue1 = humd_data1;

txBuf.ZW_SensorMultilevelReport4byteFrame.sensorValue2 = humd_data2;

txBuf.ZW_SensorMultilevelReport4byteFrame.sensorValue3 = temp_data1;

txBuf.ZW_SensorMultilevelReport4byteFrame.sensorValue4 = temp_data2;

// , 2Byte

(49)

7 6 5 4 3 2 1 0 Command Class = COMMAND_CLASS_SENSOR_MULTILEVEL(0x31)

Command = SENSOR_MULTILEVEL_REPORT(0x05) Sensor Type

Precision Scale Size

Sensor Value 1 Sensor Value 2

Sensor Value n

4.8 /

Fig. 4.8 Packet of temperature-humidity sensor data structure.

01 : Start Of Frame

0E : (SOF Checksum )

00 : Request

04 : FUNC_ID_APPLICATION_COMMAND_HANDER 00 : bStatus

02 : 08 :

31 : COMMAND_CLASS_SENSOR_MULTILEVEL 05 : SENSOR_MULTILEVEL_REPORT

01 :

44 : ( )

(50)

06 : Byte

7C : Byte

18 : Byte

CA : Byte

26 : Checksum

(51)

4.3 Z-Wave

. ( , , , ,

)

(a)

(b) (c)

(d) (e)

4.9 /

Fig. 4.9 Temperature-humidity sensor data waveform.

(52)

4.9 Z-Wave

. Clock 15ms 3.3V .

14bit , 12bit .

SHT11

. 4.9

. 4.9 (a), (b), (d) Z-Wave , 4.30 (c), (d)

Z-Wave .

(53)

.

4.10 Z-Wave

Fig. 4.10 A structure of Z-Wave system.

4.11

Fig. 4.11 Measure the communication distance.

4.10 Z-Wave . Main

RS-232 ,

. 3.6V .

.4.11 .

0m, 0.75m, 2m . 5m

1m .

0m 13m 0.75m 35m 2m

65m . 3.10 .

(54)

4.5 (a) 0m ; (b) 0.75m ; (c) 2m

Table 4.5 Measure the communication distance is followed by height. (a) height 0m ; (b) height 0.75m ; (c) height 2m

(a)

5m 0m 50 0

10m 0m 50 0

11m 0m 50 0

12m 0m 50 0

13m 0m 50 2

14m 0m 50 7

15m 0m 50 11

(b)

10m 0.75m 50 0

15m 0.75m 50 0

20m 0.75m 50 0

25m 0.75m 50 0

30m 0.75m 50 0

31m 0.75m 50 0

32m 0.75m 50 0

33m 0.75m 50 3

34m 0.75m 50 3

35m 0.75m 50 13

(c)

10m 2m 50 0

20m 2m 50 0

30m 2m 50 0

40m 2m 50 0

50m 2m 50 0

60m 2m 50 0

65m 2m 50 0

70m 2m 50 13

75m 2m 50 39

(55)

(a) (b)

4.12 (a) ; (b)

Fig. 4.12 Measure the consumption current (a) standby mode ; (b) active mode.

.4.12 .

. 6.8mA, 30.3mA

.

(56)

(a)

(b)

(57)

(c)

4.13 Z-Wave (a) 868.42MHz ; (b)

867.6MHz ; (c) 869.2MHz

Fig. 4.13 The output frequency measurement of Z-Wave sensor node (a) Center frequency 868.42MHz ; (b) Guard frequency 868.42MHz ; (c) Guard frequency 869.2MHz.

(58)

4.14 PC application

Fig. 4.14 Output of PC application programing.

(59)

4.15 30

4.15 TXT

Fig. 4.15 Saved data of TXT output.

(60)

5

USN , ,

,

. , IT

,

USN . USN

. Z-Wave Zigbee

, , RF, Mesh

. Z-Wave USN

9.6/40Kbps / , on/off, ,

, .

Z-Wave

. Z-Wave Zensys

868.42MHz ZW0201

ZW0201 8051 8bit Microcontroller

. 8051 16MHz 2kbyte 32kbyte

.

, GUI(Graphic User Interface)

RS-232c .

SENSIRION SHT11 .

Z-Wave ZW0201 GUI C ,

Zensys Developers Kit

0m 13m 0.75m

35m 2m 65m .

868.42MHz Output power -3.619dBm 3.3V

(61)

6.8mA,

30.3mA .

.

(62)

[1] “IT389 ”, ,2004.10

[2] , “WSN ”, 2008. 10.

[3] “IT ”, ,2006. 2.

[4] “A survey on Sensor Networks", Ian F. Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci Georgia Institute of Technology, IEEE Communications Magazine, August, 2002

[5] http://www.zen-sys.com/modules/Zensys/

[6] http://www.z-wave.com/

[7] ,“ ”, TTA , 95 ,

, P.7

[8] , “

”, , 2002. 11.

[9] , “ ”, 2002. 10.

[10] , “ ”, TTA, IT

Standard Weekly 2004-16 , 2003. 4.

[11] , “u- ”, 2004. 2.

[12] , “Digital Life Digital Home ”,

2003. 5.

(63)

[13] Yoshihiro KAWAKARA, Massateru MINAMI, Hiroyuki Morikawa, and tomonori AOYAMA, “Design and Implementation of Sensor Network Node for Ubiquitous Computing Environment”, In Proceedings of IEEE Semiannual Vehicular Technology Conference, Orland, USA, October 2003

[14] , , “ ”, , 2006

[15] , “USN ”,

22 3 , 2007.6

(64)

2

.

.

.

.

.

, ,

, .

, ,

, ,

,

, , ,

, ,

, , ,

, , .

,

, ,

.

, .

.

Gambar

Fig. 2.2  Structure of ensor network using Ad-Hoc.
Fig. 2.3 The component structure of sensor node.
Fig. 2.4 Schematic diagram of USN.
Table 2.1 Core technology of USN.
+7

Referensi

Dokumen terkait

THE SPIRIT OF SOCIETY JOURNAL International Journal of Society Development and Engagement Volume 2 Number 1 September 2018 ISSN : 2597-4777 Online –ISSN : 2597-4742 Print This

Y: GOP X: regional economic development regional GDP with one year lagged the structure of marine industry tertiary marine industry/ GOP the scale of marine industry regional