• Tidak ada hasil yang ditemukan

Chap 3. The Theory of PLAIN Concrete y y

N/A
N/A
Protected

Academic year: 2024

Membagikan "Chap 3. The Theory of PLAIN Concrete y y"

Copied!
15
0
0

Teks penuh

(1)

71

Chap 3. The Theory of PLAIN Concrete

3.1 Statical condition

= equilibrium cond. + boundary cond.

y

y

dy

y σ + ∂ σ

Taylor’s series

' '

( ) ( )

2

( ) ( )

1! 2!

f a f a

f a + h = f a + h + h

3.2 Geometrical condition

-> displacement – strain relationship

=compatibility condition

σ

1

σ

2

σ

1

σ

2

z x

y

σ

x

d

x

d

y

d

z x

x x

x

σ d σ + ∂

z x

y

σ

x

d

x

d

y

d

z x

x x

x

σ d σ + ∂

z

z z

z

σ d σ + ∂

x

x x

x

σ d σ + ∂

y

y y

y

σ d σ + ∂

z

z z

z

σ d σ + ∂

x

x x

x

σ d σ + ∂

y

y y

y

σ d σ + ∂

(2)

72

3.3 Virtual Work

The equation in an identity if the statical conditions are fulfilled and is then valid for any displacement field satisfying the geometrical condition

if on the contrary, the equation is know to be valid for any displacement field, the statical conditions are fulfilled.

3.4 Constitutive equations (by normality rule)

i

i

q λ f θ

= ∂

3.5 Plastic strains in coulomb material

1 3 c

2

k σ σ − = f = c k

Note

σ

3

≤ σ

2

≤ σ

1

Where

2 2

1 sin 1 sin

( ) ( ) tan ( )

cos 1 sin 4 2

k ϕ ϕ π ϕ

ϕ ϕ

+ +

= = = +

Six yield conditions

1 3 3 2 1

1. k σ σ − = f

c

: σ ≤ σ ≤ σ

3 1 1 2 3

2. k σ σ − = f

c

: σ σ ≤ ≤ σ

1 2 2 3 1

3. k σ σ − = f

c

: σ ≤ σ ≤ σ

2 1 1 3 2

4. k σ σ − = f

c

: σ σ ≤ ≤ σ

2 3 3 1 2

5. k σ σ − = f

c

: σ ≤ σ σ ≤

3 2 2 1 3

6. k σ σ − = f

c

: σ ≤ σ σ ≤

θ

2

q

i

θ

2

q

i
(3)

73 By normality rule

i

i

q f λ ∂ Q

= ∂

1 2 3

1

1. f , 0 ,

ε λ λ k ε ε λ

σ

= ∂ = = = −

1 2 3

2. ε = − λ , ε = 0 , ε = λ k

1 2 3

3. ε = λ k , ε = − λ , ε = 0

1 2 3

4. ε = − λ , ε = λ k , ε = 0

1 2 3

5. ε = 0 , ε = λ k , ε = − λ

1 2 3

6. ε = 0 , ε = − λ , ε = λ k

1 2 3

( k 1)

ε ε ε λ

∴ + + = −

Along the edges, plastic strain vectors

1/5 linear combination of plastic strain on planes 1 & 5

1

k

ε λ =

ε

2

= + 0 λ

2

k ε

3

= − − λ λ

1 2

4/5 edge :

ε

1

= − λ

1

ε

2

= ( λ λ

1

+

2

) ε

3

= − λ

2

2/4 edge :

ε

1

= − ( λ λ

1

+

2

) ε

2

= λ

2

k ε

3

= λ

1

k

2/6 edge :

ε

1

= − λ

1

ε

2

= − λ

2

ε

3

= ( λ λ

1

+

2

)k

3/6 edge :

ε

1

= − λ

1

k ε

2

= − ( λ λ

1

+

2

) ε

3

= − λ

2

k

2/6 edge :

ε

1

= ( λ λ

1

+

2

)

ε

2

= − λ

2

ε

3

= − λ

1

At the apex

1 2 3

1 f

c

σ = σ = σ = k

From (3.4.4)

6

1 1 3 2 4 1

1

( ) k ( )

ε = λ λ + − λ λ + = ε

6

2 4 5 3 6 2

1

( ) k ( )

ε = λ λ + − λ λ + = ε

6

3 2 6 1 5 3

1

( ) k ( )

ε = λ λ + − λ λ + = ε

Except for the apex, on planes

(4)

74

ε λ

+

= k

,

∑ ε

= λ k

On edges

1 2

( )k

ε

+

= λ λ +

,

∑ ε

= + λ λ

1 2

∴ k

ε ε

+

∑ =

On apex

k ε ε

+

∑ ≥

Volume change

ε ε ε

1

+ + =

2 3

?

On planes

ε ε ε

1

+ + =

2 3

λ ( k − 1)

On edges

ε ε ε

1

+ + =

2 3

k ( λ λ

1

+

2

) ( − λ λ

1

+

2

)

Since

1 sin

1 sin k

ε ϕ

ε ϕ

+

= = +

Plastic strains of coulomb’s material

k ε ε

+

∑ =

except for apex

1 sin

1 sin

k ϕ

ϕ

= +

-①

Volume change

1 2 3

( k 1)

ε ε ε + + = λ −

on plane -②

1 2 3

k (

1 2

) (

1 2

)

ε ε ε + + = λ λ + − λ λ +

on edge -③

From ①

1 sin 1 sin k

ε ϕ

ε ϕ

+

= = +

(5)

75 Eq ② is rewritten as

1 2 3

2 sin ( 1)

1 sin

k ϕ

ε ε ε ε ε

ϕ

+ + = − =

∑ ∑ −

1 2 3

2 sin 1 1 sin k

k

ε ε ε ϕ ε

ϕ + + =

− ∑

=

2 sin 1 sin 1 sin 1 sin

ϕ ϕ ε ε

ϕ ϕ ε

+

− + ∑ ∑ ∑

=

2 sin 1 sin

ϕ ε ϕ

+

+ ∑

1 2 3

( ε ε + + ε )(1 sin ) − ϕ = ∑ ε

2sin ϕ

-④

1 2 3

( ε ε + + ε )(1 sin ) + ϕ = ∑ ε

+

2sin ϕ

-⑤

④ + ⑤ Æ

1 2 3

2( ε ε + + ε ) = 2sin ( ϕ ∑ ε

+ ∑ ε

+

)

1 2 3

1 2 3

sin ϕ ε ε ε

ε ε ε + +

= + +

3.4.2 Dissipation formula for coulomb material along planes

- along the planes

1 1 2 2 3 3

W = σ ε σ ε σ ε + +

1

( k ) 0

3

( )

σ λ σ λ

= + + −

1 3

( k ) f

c

λ σ σ λ

= − =

-along the edges

1 1 2 2 3 3

W = σ ε σ ε σ ε + +

1 1 2 2 3

(

1 2

)

W = σ λ k + σ λ k − σ λ λ +

1 1 2 2 1 1 2

( ) (

c

)( )

k σ λ σ λ k σ f λ λ

= + − − +

2

(

1 2

)

c

(

1 2

)

k λ σ σ f λ λ

= − + +

Since

σ σ

1

=

2

1 2

( )

W = f

c

λ λ +

(6)

76 -at apex

1 1 2 2 3 3

W = σ ε σ ε σ ε + +

Since 1 2 3

cot

1 f

c

k c

σ = σ = σ = = ψ

1 2 3

( )

1 f

c

W = k ε ε + + ε

1 2 3 4 5 6

( )

1 f

c

k λ λ λ λ λ λ

= + + + + +

=summary

k

ε ε

+

= ∑

,

ε λ k

+

=

,

∑ ε

= λ

c c c

W f f f

k ε

λ ε

+

= = ∑ =

for plane

1 2

( )

c c c

W f f f

k ε

λ λ ε

+

= + = ∑ =

for edge

6 yield surfaces

1 3

1. k σ σ − − = f

c

0

3 3

2. k σ σ − − = f

c

0

1 2

3. k σ σ − − = f

c

0

2 1

4. k σ σ − − = f

c

0

2 3

5. k σ σ − − = f

c

0

3 2

6. k σ σ − − = f

c

0

Plane strain Æ

ε

3=0

1 2 3

ε ε ε

1 ( λ k , 0, − λ ) 2 ( − λ , 0, λ k ) 3 ( λ k , − λ , 0)

(−

λ λ

, k, 0)

(−λ λ, ,o k)

(0,−λ λ, k)

k,−λ, 0)

( ,0, λ

k

− λ )

(0,

λ

k,−

λ

)

(−

λ λ

, k, 0)

(−λ λ, ,o k)

(0,−λ λ, k)

k,−λ, 0)

( ,0, λ

k

− λ )

(0,

λ

k,−

λ

)

f

c

k

f

c

k

f

c

f

c

( , )

1 1

c c

f f

kk

f

c

k

f

c

k

f

c

f

c

( , )

1 1

c c

f f

kk

(7)

77

4 ( − λ , λ k , − λ ) 5 (0, λ k , − λ ) 6 (0, − λ , λ k )

3.4.3 & 3.4.4 Plastic strains & dissipation formulas for modified coulomb material

Plastic strains by normality rule

plane 1 2 3 4 5 6 7 8 9

ε

1

λ k − λ λ k − λ

0 0

λ

0 0

ε

2 0 0

− λ λ k λ k − λ

0

λ

0

ε

3

− λ λ k

0 0

− λ λ k

0 0

λ

9 yield surfaces

1 3

1. k σ σ − − = f

c

0

3 3

2. k σ σ − − = f

c

0

1 2

3. k σ σ − − = f

c

0

2 1

4. k σ σ − − = f

c

0

2 3

5. k σ σ − − = f

c

0

3 2

6. k σ σ − − = f

c

0 7. σ

1

− = f

t

0 8. σ

2

− = f

t

0 9. σ

3

− = f

t

0

⑦ ⑧

σ

1

σ

2

σ

3

⑦ ⑧

σ

1

σ

2

σ

3
(8)

78

Edge 1/5 4/5 2/4 2/6 3/6

ε

1

λ

1

k − λ

1

− ( λ λ

1

+

2

) − λ

1

λ

1

k ε

2

λ

2

k ( λ λ

1

+

2

)k λ

2

k λ

2

− ( λ λ

1

+

2

) ε

3

− ( λ λ

1

+

2

) − λ

2

− λ

2

( λ λ

1

+

2

)k λ

2

k

Edge 1/3 1/7 3/7 6/9 2/7

ε

1

( λ λ

1

+

2

)k λ

1

k + λ

2

λ

1

k + λ

2 0

− λ

1

ε

2

− λ

2 0

− λ

1

− λ

1 0

ε

3

− λ

1

− λ

1 0

λ

1

k λ

1

k + λ

2

Edge 4/8 5/8 8/7 7/9 8/9

ε

1

− λ

1 0

λ

1

λ

1 0

ε

2

λ

1

k λ

1

k + λ

2

λ

2 0

λ

1

ε

3 0

− λ

1 0

λ

2

λ

2

W along edges

1/7 edge

1

(

1 2

)

3

(

1

)

1

(

1 3

)

2 1

W = σ λ k + λ + σ − λ = λ σ k − σ + λ σ = λ

1

f

c

+ λ

2

f

t

8/7 edge

1 1 2 2

(

1 2

)

t

W = σ λ σ λ + = λ λ + f

Apex

ε

1

ε

2

ε

3

4/5/8

− λ

1

k ( λ λ

1

+

2

) + λ

3

− λ

2

7/8/5/1

λ

1

k + λ

3

λ

2

k + λ

4

− ( λ λ

1

+

2

)

1/3/7

k ( λ λ

1

+

2

) + λ

3

− λ

2

− λ

1

3/7/6/9

λ

1

k + λ

2

− ( λ λ

1

+

2

) λ

2

k + λ

4

2/6/9

− λ

1

− λ

2

k ( λ λ

1

+

2

) + λ

3

8/9/2/4

− ( λ λ

1

+

2

) λ

2

k + λ

3

λ

1

k + λ

4

7/8/9

λ

1

λ

2

λ

3

W at apex 4/5/8 apex

(9)

79

1 1 1 2 3 2 3 2

1 1 2 2 3 2 2 3

1 2 3

[ ( ) ] ( )

( ) ( ) ( )

( )

c t

W k

k k

f f

σ λ λ λ λ σ σ λ λ σ σ λ σ σ σ λ

λ λ λ

= − + + + + −

= − − − − +

= + +

7/8/5/1 apex

1 1 3 2 4 2 3 2 1

1 1 3 2 2 3 1 3 2 4

1 2 3 4

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

c t

W k k

k k

f f

σ λ λ λ λ σ σ λ λ λ σ σ λ σ σ σ λ σ λ

λ λ λ λ

= − + + + + − −

= − + − + +

= + + +

1/3/9 apex

1 2 3

( )

c t

W = f λ λ + + f λ

3/7/6/9 apex

1 2 3 4

( ) ( )

c t

W = f λ λ + + f λ λ +

( )

c t

W = f ∑ ε

+ f ∑ ε

+

− k ∑ ε

for plane stress In the apex, we have

k ε ε

+

∑ ≤

(Proof)

k 0 ε

ε

+

∑ ∑

At apex for coulomb material

1 2 3

1 3 2

2 3 1

1 2 3

2 3 1

3 1 2

, 0, 0

, 0, 0

, 0, 0

0, , 0

0, , 0

0, , 0

ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

≥ ≤

≥ ≤

≥ ≤

≤ ≥

≤ ≥

≤ ≥

(10)

80 Î 1 2 3

k ε ε + + ε

2 4 5 6

1 3 4 5

(

1 5

) (

3 6

)k

k λ λ λ λ

λ λ λ λ + + + λ λ λ λ

= + + + − − + + +

3 4 2 6

1 1

( )(1 ) ( )( k ) 1

k k

λ λ λ λ

= + − + + − ≥

Dissipation formula

1 1 2 2 3 3

W = σ ε σ ε σ ε + +

For coulomb material On plane and edges

c c

W f f

ε

k ε

+

= ∑ = ∑

At apex

1 2 3

cot ( )

W = c ϕ ε ε ε + +

For modified coulomb material

( )

c t

W = f ∑ ε

+ f ∑ ε

+

− k ∑ ε

3.4.5 Planes and lines of discontinuity = yield line = failure line

I II

I II

△t

Con’c dissipation

Work?

thin layer

I II

I II

△t

Con’c dissipation

Work?

thin layer

t

before

after

movement

I

II

n α

u

δ

t

before

after

movement

I

II

n α

u

δ

(11)

81

n

sin

u = u α

t

cos u = u α

n

sin

n

u u

ε α

δ δ

= =

cos 0

t

u α

ε = =

∞ cos

nt

r u α

= δ

@A (0,

cos 2

u α

δ

)

@B (

u sin α δ

,

cos 2

u α

− δ

)

1 n

R

ε = ε +

2 n

R

ε = − ε

Where 1 2

2 2

n t

m

ε ε ε = ε ε + = +

2 2

( ) 2

nt m

R = ε + r

2 2 2 2

2 2

sin cos

4 4 2

u α u α u

δ δ δ

= + =

1

sin

2 2

u α u

ε = δ + δ

2

sin

2 2

u α u

ε = δ − δ

Æ

(sin 1) 2

u α

δ ±

ε

2

ε

1

A

( , ) 2

nt t

ε γ

ε 2

γ

( , )

2

nt n

ε −γ

B

(12)

82

cos

tan 2 2 cot tan( )

sin 2

2 u u

α π

θ δ α α α

δ

= = = −

If the 1st principal strain coincides with the 1st principal stress

n 2

n 2

(13)

83 Plane strain

1) Coulomb material

k ε ε

+

∑ =

1 2

(sin 1) 2

(sin 1) 2

u u k ε δ α

ε α

δ

= + =

− −

1 sin 1 sin 1 sin 1 sin

k α ϕ

α ϕ

+ +

= =

− −

tan α tan ϕ

∴ = ±

For

α ϕ =

,

α π ϕ = −

W = f

c

∑ ε

(1 sin )

c

2

f u ϕ

= δ −

Dissipation per unit length

W

l

= Wb

δ

(1 sin )

c

2

f ub ϕ

= −

(1 sin )

c

2 f ub

k ϕ

= +

σ2 ε2

σ1 ε1 σ2 ε2

σ1 ε1

ϕ ϕ

at the apex

ϕ

ϕ

at the apex

(14)

84 Since

f

c

= 2 c k

2 (1 sin )

l

2

W = c k ub − ϕ

For

ϕ α π ϕ ≤ ≤ −

1 1 1

cot ( )

W = c ϕ ε ε ε + +

1 1 1

cot ( )

W = c ϕ ε ε ε + + cot sin W

l

= cub ϕ α α π ϕ = −

Plane strain

2) Modified coulomb material

( )

c c

W = f ∑ ε

+ f ∑ ε

+

− ∑ ε

(1 sin ) [1 sin (1 sin )]

2 2

c c

u u

f α f α k α

δ δ

= − + + − −

(1 sin ) [ ( 1) ( 1) sin )]

2 2

c c

u u

f α f k k α

δ δ

= − + − − + +

Where

1 sin

1 sin 4

k α

α

= + =

for concrete

2 sin

1 1 sin

k α

− = α

,

1 2

1 sin k + = − α

Plane stress

1) Coulomb material

(1 sin ) 2

ε u α

δ

= −

For

α ϕ ≤

,

α π ϕ ≤ −

σ2 ε2

σ1 ε1

α π ϕ = −

α π =

ϕ α π ϕ ≤ ≤ −

σ2 ε2

σ1 ε1

α π ϕ = −

α π =

ϕ α π ϕ ≤ ≤ −

(15)

85

W = f

c

∑ ε

1 (1 sin )

l

2

c

W = f ub − α

For

α π ϕ ≤ −

1 [1 sin {( 1) ( 1) sin }]

2

t

l c

c

W f ub f k k

α f α

= − + − + +

σ2 ε2

σ1 ε1 α π ϕ= −

α π= ϕ α π ϕ≤ ≤ −

II: sliding II: sliding III : separation

I: crushing 0≤ ≤α ϕ

after

III II

ϕ ϕ σ2 ε2

σ1 ε1 α π ϕ= −

α π= ϕ α π ϕ≤ ≤ −

II: sliding II: sliding III : separation

I: crushing 0≤ ≤α ϕ

after

III II

ϕ ϕ

Referensi

Dokumen terkait