• Tidak ada hasil yang ditemukan

Mathematical Foundation of Kinetic Monte Carlo

N/A
N/A
Protected

Academic year: 2024

Membagikan "Mathematical Foundation of Kinetic Monte Carlo"

Copied!
18
0
0

Teks penuh

(1)

of Kinetic Monte Carlo

Shim, Hyung Jin

Nuclear Engineering Department,

Seoul National University

(2)

1. Application of KMC for Solving the Depletion Equation 2. Mathematical Foundation of KMC

Contents

(3)

 A simple decay chain of I-135 & Xe-135 can be shown as below.

 And the corresponding deletion equations can be written by

 And from initial conditions of the clean state at t=0, the two nuclide densities can be obtained by

Problem: Depletion Eq. for Xe-135

135

I

b 135

Xe

gI gX

,

I

I f I I

dN N

dt   

g  

(A.1)

( )

X

X f I I X X X

dN N N

dt 

g

 

 

 

(A.2)

 

( ) I f 1 It

I

I

N t

g 

e

 

( )

 

( )

( ) X f I f 1 X X t I f It X X t

N tX

g  g 

e  

g 

e e  

      

   

   

  

(A.3) (A.4)

(4)

 For simplicity, Eqs. (A.1) & (A.2) can be rewritten by

 Solve Eqs. (A.5) & (A.6) under the following conditions[*] by the kinetic Monte Carlo method.

Densities of I-135 & Xe-135

  

3 -1

 

4 -2 -1

5

0.056 3 10 cm 10 cm sec 1.68 / cc sec 2.9 10 / sec

C

I I f

D

I I

k

g 

 

       

  

(A.5)

C D ,

I

I I I

dN k N

dt  

C D D

X

X I I X X

dN k N N

dt  

(A.6)

     

   

3 -1 4 -2 -1 2

5 1 18 2 4 -2 -1

5

0.003 3 10 cm 10 cm sec 9 10 / cc sec 2.1 10 sec 3.5 10 cm 10 cm sec

2.1000000035 10 / sec

C

X X f

D

X X X

k

g 

   

        

      

 

[*] D. L. Hetrick, Dynamics of Nuclear Reactors, American Nuclear Society, Inc., La Grange Park, IL (1993).

(5)

CASE #1: Density of I-135 – Algorithm

Begin: t=0, NI=0

Calculate ktot: ktot kIC NI ID

135

135 5

construction rate of I=1.68 / cc sec, destruction rate of I=2.9 10 / sec

C I

D I

k

k

Sample Dt: D  t ln1 ktot , t  Dt

Select a transition type:

2 C

I tot

k k

Simulate a construction:

NI+= 1

Simulate a destruction:

NI-= 1

t<tend

Yes No

No Yes

(6)

CASE #1: Density of I-135 – Implementation

(7)

Algorithm for Xe-135

Begin with t=0, NI=0, NX=0

Calculate k:

4

1 2 3 4

1

; C, , C, D

i I I I X X X

i

k k k k k N k k k N

Sample Dt: D  t ln1 k t,   Dt

Select a transition event isatisfying:

1

1 2 1

i i

i i

i k k i k k

 

Creation of 135I by a fis.:

NI+= 1

Beta decay of 135I:

NI= 1, NX+= 1

t<tend No Yes

Creation of 135Xe by a fis.:

NX+= 1

Destruction of 135Xe:

NX= 1

When i=1, When i=2, When i=3, When i=4,

(8)

Numerical Results

0 50000 100000 150000 200000 250000 300000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Number Density

Time (sec)

135I (KMC)

135Xe (KMC)

135I (Analytic)

135Xe (Analytic)

(9)

Mathematical Foundation

of Kinetic Monte Carlo Method

(10)

 K. A. Fichthorn and W. H. Weinberg [1] presented the theoretical basis for a dynamical Monte Carlo method in terms of the theory of Poisson process.

 They showed that if

1. A “dynamical hierarchy” of transition probabilities is created which also satisfy the detailed-balance criterion;

2. Time increments upon successful events are calculated appropriately;

3. The effective independence of various events comprising the system can be achieved,

then Monte Carlo methods may be utilized to simulate the Poisson process.

[1] K. A. Fichthorn and W.H Weinberg, “Theoretical Foundations of Dynamical Monte Carlo Simulations,” J. Chem. Phys., 95(2), 1090 (1991).

Kinetic Monte Carlo vs. Poisson Process

(11)

 They stated that under a dynamical interpretation, the Monte Carlo method provides a numerical solution to the Master equation:

where X and X′ are successive states of the system.

PX,t) is the probability that the system is in state X at time t.

K(X′→ X) is the probability per unit time that the system will undergo a transition from state X′ to state X.

 The kinetic Monte Carlo method is explained as

• The solution of the Master equation is achieved computationally by choosing randomly among various possible transitions with appropriate probabilities.

• Upon each successful transition, time is typically incremented in integral units of Monte Carlo steps.

Kinetic Monte Carlo vs. Poisson Process (Contd.)

( , )

( ) ( , ) ( ) ( , )

P t

K P t K P t

t

      

 

X X

X X X X X X X (1)

(12)

 We are going to derive a mathematical formulation corresponding to the kinetic Monte Carlo method from the general kinetic equation as

and the initial condition at t=0 given by

 For simplicity, we rewrite Eq. (2) as

Mathematical Foundation of KMC

( , )

( , ) ( , ),

P t

k P t k P t

t

   

X X

X X

X X

X X X (2)

( , )

( , ) ( , );

P t

k P t S t

t

  

X

X X X

,

k k

X X X

X

( , ) ( , ).

S t k  P t

X X

X

X X

(4) (5) (6) ( ) ( , 0)

Q X  P X (3)

(13)

 Equation (4) with the initial condition of Eq. (3) is seen to be a first-order linear partial differential equation which has a unique solution. By introducing an integrating factor, Eq. (4) becomes

 Then an integration of Eq. (7) from t=0 yields

 Eq. (8) implies that the probability of state X is made up of the state appeared in the previous time multiplied by the attenuation factor of .

Derivation of KMC Algorithm

( , ) k ( , )

k t t

e P t S t

t e

     

X X X X (7)

( , ) k t ( ) 0t k t ( , ) P X t e X Q X

e X S X t dt 

( )

( , ) ( ) k t 0t k t t ( , )

P X t  Q X e X

e X S X t dt  (8)

( )

k t t

e X

(14)

 The transition probability can be defined by

 Then by multiplying kX on the both sides of Eq. (8), it can be expressed as

 By introducing the time-flight kernel, T defined by Eq. (10) becomes

is named the first transition source.

Transition Probability Equation

( , ) t k P ( , ) t

X

X X

( )

( , ) t k e

k t

Q ( )

0t

k e

k t t

S ( , ) t dt  

X

X X X

 

X X

X

(9)

(10)

(12)

( ) (11)

( | )

k t t

T t   t

X

 k e

X X

0

( , ) t Q ˆ ( , ) t

t

T t (  t | ) S ( , ) ; t dt  

X

X

  

X

X

ˆ ( , ) (0 | ) ( )

Q

X

t  T  t

X

Q

X (13)

ˆ ( , )

Q

X

t

(15)

 And we define another kernel named the event kernel as

 Using the event kernel C and the transition probability , S(X,t) of Eq. (6) can be expressed as

 The introduction of Eq. (15) into Eq. (12) yields

Transition Density Equation (Contd.)

( , ) ( ) ( , )

( ) ( , )

S t k C P t

C t

 

 

 

  

X X

X

X X X X

X X X (15)

( ) k

C k



   X X

X

X X (14)

0

( , ) t Q ˆ ( , ) t

t

K ( , t , ) ( , ) t t dt

    

      

X

X X X X X

( , , ) ( | ) ( )

K

X

  t 

X

t  T t   t

X

 C

X

 

X

(16) (17)

(16)

 Let’s consider the solution of Eq. (16) obtained by iteration; thus

Clearly

y

0 is the first-transition source.

y

1 means the transition probability from the second-transition state. Similarly,

y

2 indicates the contribution of the third-

transition state, and so on. If the series converges, it represents a solution to Eq. (16).

Series Solution

(16)

0

1 0 0

0 1

( , ) ˆ ( , )

( , ) ( , , ) ( , )

( , ) ( , , ) ( , )

t

t

n n

t Q t

t K t t t dt

t K t t t dt

y

y y

y y

    

 

    

 

 

 

X

X

X X

X X X X

X X X X

 

0

( , )

j j

y t

X 0

( , ) t Q ˆ ( , ) t

t

K ( , t , ) ( , ) t t dt

    

      

X

X X X X X

(17)

 The solution of Eq. (16) can be expressed by the Neumann series:

From Eq. (18), we can find that the transition probability is the sum of the contributions from transition at (X,t) first and after a transition or more.

Neumann Series Solution

(16)

0

( , )

j

( , );

j

t

y t

X

 

X

0 1

1 1

0 0 0 0 0

1 0 0 0 0

2 0 0 1 1 1 0 0 1 1

0 0 1 1 1 1 2 2 1

( , , ) ( ) ( ),

( , , ) ( , , ),

( , , ) ( , , ) ( , , ),

( , , ) ( , , ) ( , ,

j

t t

j j j j j j j

K t t t t

K t t K t t

K t t dt K t t K t t

K t t dt dt K t t K t

 

 

 

X

X X

X X X X

X X X X

X X X X X X

X X X X X X

tj1)K(X0,t0 X1, )t1

(18)

(20)

0

( , ) t Q ˆ ( , ) t

t

K ( , t , ) ( , ) t t dt

    

      

X

X X X X X

0

0 0 0 0 0

0

( , )

t

( , , ) ( ˆ , ),

j

t dt K

j

t t Q t

y    

X

X X X X (19)

(18)

Interpretation of KMC by MC Sim. of Series Sol.

Begin: t=0, NI=0

Calculate ktot: ktot kIC NI ID

Sample Dt: D  t ln1 ktot , t  Dt

Select a transition type:

2 C

I tot

k k

Simulate a construction:

NI+= 1

Simulate a destruction:

NI-= 1

t<tend

Yes No

No Yes

0 1

1

( )

ln

tot tot

k k

tot tot

tot

T k e k e d

k

 

  

( ) k

C k



  X X

X

X X

Referensi

Dokumen terkait

The original sequential Monte Carlo motion synthesis paper presented a test case in which a character could balance and synthesize complex getting up motions without using data to

Proceedings of the Fourth Artificial Intelligence and Interactive Digital Entertainment Conference, pp 216-217.. Progressive Strategies for Monte-Carlo

The most appropriate maintenance strategy with Monte Carlo simulation aimed to minimize the frequency of the breakdown of Exercise Book (EB) machine unit is the

aset-asset yang berdistribusi normal multivariat dengan parameter yang diperoleh pada langkah (1) sebanyak n buah... Langkah – Langkah Perhitungan VaR dengan Metode Simulasi

Therefore, the research objectives is to determine which risks really influential in PPP Project of Southern Jakarta-Cikampek II Toll Road Project using Monte Carlo

Pada makalah ini disajikan dua penerapan metode integrasi Monte-Carlo dengan Excel, yaitu : penentuan nilai π dan penentuan titik pusat massa suatu bentuk tak beraturan, yang

It is known that the problem 22–24 Dirichlet problem for 96 the Helmholtz equation of a time layer tnC1, is solved with the help of “random 97 walk on spheres“ algorithm of Monte

Simulasi Monte Carlo adalah metode komputasi yang digunakan untuk memodelkan dan menganalisis sistem yang kompleks dengan memperhitungkan ketidakpastian simulasi Monte Carlo merupakan