• Tidak ada hasil yang ditemukan

nblib.library.kz - /elib/library.kz/jurnal/v_2006_2/

N/A
N/A
Protected

Academic year: 2023

Membagikan "nblib.library.kz - /elib/library.kz/jurnal/v_2006_2/"

Copied!
4
0
0

Teks penuh

(1)

16

2006. 2

. .

1. .

- y

x t B y H x t A y H

L 2[ ] (, ) [ ] ( , )

1

0

0

1(, , ) [ ] (, , ) ] ,

[ ) ,

(t x K t s x H y K t s x y ds

F (1)

- :

).

( ) , , 0 ( ), ( ) , , 0

( x 0 x y' x 1 x

y t (2)

> 0 – , (t,x) G – , y y(t,x, ) – - ,A(t,x),B(t,x),F(t,x),Ki(t,s,x) i(x) )

1 , 0

(i – , G {(t,x):0

)}

( )

( , 1

0 t 1 t x 2 t , :

]]

[ [ ] [ , )

, ( ]

[y et x grady H2 y H H y

H ,

- )) , ( , 1 ( ) ,

(t x Q t x

e )

,

( x

y t

grady y , Q(t,x)

G.

, :

I. A(t,x),B(t,x),F(t,x),Ki(t,s,x) i(x) )

1 , 0 ( , ) ,

(t x G i .

II. A(t,x),Q(t,x) s(x) - :

G x t x

t Q x

t

A(, ) 0, (, ) 0, (, ) , 0

, – .

III. 1(t) 2(t) -

) , (t dt Q

d , -

(1),

. 1 ) 0 ( , 0 ) 0

( 2

1

IV. 1

:

1 0

1(, , ) [ ( , , )

) , ( ) 1 , , (

s

x t K x s t x K s x A s t K

) , (

) , (

1 ]

) , (

) , ) ( , , ( )

xd A

x B

d x e

A x x B

t

K x . (3)

- :

0

0] (, )

[ ) ,

(t x H y B t x y

A (4)

1

0

0 0

0

1(, , ) [ ] (, , ) ]

[ ) ,

(t x K t s x H y K t s x y ds

F ,

(1) = 0

:

) ( ) ,

( 0

0 t x x

y . (5)

: 1) -

) ,

0(t x

y (4), (5); 2)

(1), (2); 3) ,

) , , (t x

y (1), (2)

) ,

0(t x

y G

. ,

(1) -

. , -

[1].

2. .

1. I–IV.

(4), (5) -

G .

. , -

:

x s y H x s t K x t F x t

z(, ) ( , ) ( (, , ) [ ( , )]

1

0

0 1

ds x s y x s t

K0(, , ) 0( , )) . (6) (4), (5)

(2)

17

A d tB

e x t x

t

y 0 ( , )

) , (

0(, ) ( ( , ))

+ e d

A

z BA d

t t

) , (

) , (

0 ( , )

) ,

( , (7)

) ,

(t (t,x) ,

[2].

(7) (6),

1

0

), , ( ) , , ( ) , ( ) ,

(t f t K t s z s

z (8)

) , , (t s

K (3),

) , (t f

1

0 0

0( ) [ (, , )

) , ( ) ,

(t F t K t s

f

1 ]

) , (

) , ) ( , ,

( A s

s s B

t

K e ds

A d sB 0 ( , )

) , (

. (9)

I–IV, -

(8)

G z(t, ). -

, (7), , -

(4), (5)

G. 1 .

-

(4), (5). -

) , , (t s

R K(t,s, ).

) , (t z (8)

1

0

) , ( ) , , ( ) , ( ) ,

(t f t R t s f s ds

z . (10)

(10), (9),

) , ( ( ) ( ) , ( ) ,

(t t 0 t

z

) ) , ( ) , , (

1

0

ds s s t

R , (11)

) ,

(t x (t,x) -

:

1

0

1

0 ]

) , (

) , ) ( , , ( ) , , ( [ ) ,

( A

t B K t

K t

0

) ) , (

) ,

exp( ( d d

A

B ,

1

0

) , ( ) , , ( ) , ( ) ,

(t F t R t F d . (12)

, (7), (11),

) ,

0(t x

y (4), (5)

:

t t

d A t B

d A B

A e e

x t

y ( , )

) , (

0 ) , (

) , ( 0

0 ( , )

) 1 ( ) , (

d ds s s R

1

0

) ) , ( ) , , ( ) , ( (

d A e

t d

A tB

0

) , (

) , (

) , (

) ,

( . (13)

3. . ,

) , , (t x t

, (t,x) G -

:

0 ) , ( ] [ ) , ( ]

2[

x t B H

x t A

H , (14)

, 0 ) , ,

(t x t t(t,x,t) 1,0 t t 1. (15)

1. I–III.

) , ,

(t x t G

:

e K t K

t x K t

t x

t (, , )

, )

, ,

( ,

t t

e K x K

t x t, , )

( , (16)

K > 0 > 0 t,x .

. ,

:

0 ) , , ( ), , , ( )]

, , (

[ t x t z t x t t x t

H . (17)

) , ,

(t xt (17), -

t

t

ds t s z t x

t, , ) ( , , )

( . (18)

(17), (18) (14), (15)

ds t s z t B z t A z H

t

t

) , , ( ) , ( )

, ( ]

[ , (19)

1 ) , , (t xt

z . (20)

, (19), (20) -

:

(3)

18

2006. 2

t

t

ds t s z s t T V t t

z (, , ) (, , ) ( , , ) , (21)

) , , (t s

T :

d B t V

t x t V s

t T

t

s

) , ( ) , , ( ) , , 1 ( ) , ,

( 1 , (22)

) , , (t xt V

V -

:

1

| , 0 ) , ( ]

[V A t V V t t

H . (23)

(23) , ,

[2], II,

1 0

), exp(

) , ,

( t t t t

K t t

V . (24)

(22), (24),

1 0

, ) , ,

(t s K s t

T . (25)

(21).

(21), (24) (25),

t t z (, , )

ds t s z t K

K t

t

t

) , , ( )

exp( . (26)

, -

,

) exp(

)]

, , (

[ t t

K K t x t

H . (27)

(27), , H[ (t,x,t)]

)) , ( , 1 ( ) ,

(t x Q t x

e grad ( , )

x y t

y y ,

(16). -

(27)

d t H

t x t

t

t

)]

, , ( [ ) , ,

( ,

(16). 1 .

4. .

2. I–IV.

) , , (t x

y -

(1), (2) G :

) , , 0 ( )

, , 0 ( )

, ,

(t x K y x K y x

y t

) , ( max

) , (

x t F K

G x t

t

t t x K y x K y x

y ( , , ) (0, , ) (0, , ) ) , , 0 ( )

, , 0 ( )

, ,

(t x K y x K y x

yx t (28)

) exp(

) , , 0 ( )

, ( max

) , (

x t y K x t F

K t

G x

t ,

K > 0 > 0 t,x .

. , -

(1) -

, .

x s y H x s t K x t F x t

z(, , ) (, ) ( (, , ) [ ( , , )]

1

0 1

ds x s y x s t

K (, , ) ( , , ))

)] 0 , (29)

) , , (t x

y (1), (2) -

) , , (t x t :

t

t d t B t t x

t y

0

0 1 (, , ) ( , ) )

1 ( ) ( ) , , (

t d t z t t t

t

) , , ( ) , , 1 ( ) ( ) 0 , , (

0

1 .(30)

(30) (29), -

) , , (t z

:

ds s

z s t K t

f t

z(, , ) (, ) ( , , ) ( , , )

1

0

, (31) )

, , (t s

K f (t, )

:

)]

, , ( [ ) , , ( 1 ( ) , , (

1

1 t s H t t

K s

t K

s

, )) , , ( ) , ,

0(t s t t ds

K

t K t

F t

f (, ) (, ) 1( ) ( , ) ds s B s t K s t

K (, , ) (, , ) ( , )) (

) (

1

0 0

0 , (32)

I–III (16), (27)

:

, 1 0

, ) , ,

(t s K s t

K

K K

t

f (, ) 0( ) 1( )

G x t t F K

G x

t (, ), ,

max

) ,

( . (33)

(4)

19 )

, , (t s

RK (t,s, ).

(31)

ds s f s t R t

f t

z(, , ) (, ) ( , , ) ( , )

1

0

. (34)

(34) (33),

K K

t

z(, , ) 0( ) 1( ) G x t t F K

G x

t (, ), ,

max

) ,

( . (35)

(30)

t x (16), (35), -

(28). 2 .

5. .

) , , (t x

y (1), (2)

) ,

0(t x

y (4), (5)

3. I–IV.

G :

) , , 0 ( )

, ( ) , ,

(t x y0 t x K K y x

y t

) , , 0 ( )

, ( ) , ,

(t x y0 t x K K y x

yt t t

+K e 1 yt(0,x, )

t

,

) , , 0 ( )

, ( ) , ,

(t x y0 t x K K y x

yx x t

+K e 1 yt(0,x, )

t

, (36) K > 0 > 0 t,x .

. , -

(1) y(t,x, ) y0(t,x)

) , , (t x u

1

0

0

1(, , ) [ ] (, , ) ]

[K t s x H u K t s x u ds u

L

0 2[y (t,x)]

H . (37)

(37) 2 -

1, (36).

3 .

. 3 ,

G x t 1, ) 0

( :

) , ( ) , , (

lim 0

0y t x y t x ,

) , ( ) , , (

lim 0

0yt t x y t x ,

) , ( ) , , (

lim 0

0yx t x y t x .

1. .

. :

, 1981. 123 .

2. ., .

- -

// . , ,

. 2000. 2(21). . 100-106.

i i

- .

i i .

Summary

The estimations for the solutions of the Cauchy problems for the singular pertu rbed partial second order integral differential equations have suggesting.

Have proving that the solution of the perturbed problem going to the solution of the nonpertubed problem when small parameter going to zero.

517.938

, . 7.01.06 .

Referensi

Dokumen terkait

The paper deals with the existence of solutions for singular higher order differential equations with Sturm–Liouville or ( p, n − p ) right focal boundary conditions or the ( n − p, p

Leszczy´ nski, On the existence and uniquencess of weak solutions of the Cauchy problem for weakly coupled systems of nonlinear partial differential functional equations of the

Hu, Remarks on the blowup estimate for solutions of the heat equation with a nonlinear boundary condition, Differential Integral Equations 9 (1996), 891-901..

Tiryaki, Oscillation theorems for nonlinear second order differential equations with damping, Acta Math.. Butler, Integral averages and the oscillation of second order

The purpose of this paper is to create a method for solving the problem of the variation calculus for processes described by ordinary differential equations with phase and integral

Based on the results obtained for a family of multipoint boundary value problems with an integral condition for a system of ordinary integro-differential equations, conditions for the

A hybrid of Fourier transform and Adomian decomposition method FTADM is developed for solving the nonlinear non-homogeneous partial differential equations of the Cauchy problem of

Introduction In this paper, our aim is to present a numerical method for the solution of a mixed system of Volterra integral equations of the first and second kind with weakly singular