• Tidak ada hasil yang ditemukan

nblib.library.kz - /elib/library.kz/jurnal/v_2007_1/

N/A
N/A
Protected

Academic year: 2023

Membagikan "nblib.library.kz - /elib/library.kz/jurnal/v_2007_1/"

Copied!
4
0
0

Teks penuh

(1)

67

a thunder-storm – ).

,

i ( .:

- ).

- -

( . ),

: .:

),

: can’t say bo (boh or boo) to a goose “ ”).

-

. ,

, [6, . 100]. .

, “

- ,

”, -

[6, . 96].

1. ., .

: -

. ., 1999.

2. . . 6 . .,

1984. . 5.

3. . // -

. .: , 1983.

4. . :

. . 1. .

., 2003.

5. Pott er B. nclus f et exclus f dans le systeme personnel du qu chua // BFLS. 1974. 52 annee. N 8.

6. . //

, , . ., 1987.

Summary

The following article considers the structure of phraseo- logical sign concept on the examples of Russian, Kazakh and English phraseological units.

. . . ,

. 21.11.06 .

. .

- :

) ( )

(x u x

u , 1 x 1. (1)

(1) -

:

, 0 ) 1 ( )

1 (

, 0 ) 1 ( )

1 ( )

1 ( )

1 (

21 21

11 11

1 1

u u

u u

u u

(2)

2 21 2 21 2

1 2 1 1

1| | | 0, ,

| .

, .

, -

(1)

x

x e

e x

u1( ) , u2(x) ei x e i x,

2 .

, (2),

) 1 ( )

1 ( )

1 ( )

1 ( )

( 1 1 11 11

1 u u u u u

U ;

) 1 ( )

1 ( )

( 21 21

2 u u u

U .

u(x) (1),

(2), -

2 ,

) ( )

( )

(x c1u1 x c2u2 x

u , (3)

1, 2

, 0 ) ( )

(

, 0 ) ( )

(

2 2 2 1 2 1

2 1 2 1 1 1

u U c u U c

u U c u U c

(2)

68

2007. 1

, , -

(3) (2).

,

,

) ( ) (

) ( ) ) (

(

2 2 1 2

2 1 1 1

u U u U

u U u U

.

. Ui(uj) -

, :

e u

U1( 1) 1 11 1 11

11 e

1 11

1 ,

e i

i i

u

U1( 2) 1 11 1 11 ei

i

i 11 1 11

1 ,

e e

u

U2( 1) 21 21 21 21 ,

i

i e

e u

U2( 2) 21 21 21 21 ,

.

- (1), (2):

21 1 21 1 21

1 21

1 (1 )

) 1

( i i

) 1 ( 11 21 21

2 11 e i

21 1 21 1 21

1 21

1 (1 )

) 1

( i i

) 1 ( 11 21 21

2 11 e i

21 1 21 1 21

1 21

1 (1 )

) 1

( i i

) 1 ( 11 21 21

2 11 e i

) 1 ( )

1

( i 1 21 1 21 i 1 21 1 21

0

2 11 21 21 11 e(1 i) . (4) .

. (1), (2)

2 1

0 2

1

1 2

1 ln )

( O k

i k k

k ,

2 2

2 0 2

1 2

1 ln )

( O k

i k k

k ,

2 1

1 ,

1 2

2 ,

21 1 21 1 21

1 21 1

1 i ,

21 1 21 1 21 1 21 1

2 i ,

k =N,N + 1, ...

, -

, .

.

. -

(4) (1–i) .

(4)

21 1 21 1 21

1 21 1

O 1 i

) 1 ( i

e

+ 1 21 1 21 1 21 1 21

1

O i

) 1 ( i

e

+ 1 21 1 21 1 21 1 21

1

O i

) 1 ( i

e

+ 1

21 1 21 1 21

1 21

1 i O

)

0

1 ( i

e

.

21 1 21 1 21

1 21 1

1 i ,

21 1 21 1 21 1 21 1

2 i ,

) 1 ( 2

) 1 ( 1

1

1 i i

e O

e O

) 1 ( 2

1 i

e

O 1 (1 ) 0

1

e i

O .

(5) -

(3)

69

) 1 (

1( ) e i , 2( ) e( 1 i) ,

) 1 (

3( ) e i , 4( ) e(1 i) , )

( )

( 4

1 , 2( ) 3( ).

2 1 i ,

:

1) Re( 1 i) 1 2,

2) Re( 1 i) 1 2,

3) Re(1 i) 1 2,

4) Re(1 i) 1 2.

- )

i( , i 1,4,

: 1) | 1( )|~e 1 2, 2)| 2( )|~e 1 2, 3)| 3( )|~e 1 2, 4)| 4( )|~e 1 2.

2

1 , . -

- ,

| ) (

| i , -

,

|

|

,

| | (5) .

,

.

1- . 2 0 2 | 1|, .

, -

I II -

. | 1( )| | 3( )| -

,

| ) (

| 2 | 4( )|

|

|

. (5)

1 0

1 (1 )

2 ) 1 ( 1

i

i O e

e

O .

(6)

1 1

1 2 2

O O e

1 1

1 1

2

1

2

O O

.

-

(2) 0 1

.

2 1 2 ln

1

2

0 k i O ,

, 2 , 1 , 0

k (7)

i

k ln 2k

2 1

2

0 , (8)

ln0 – -

, (8)

O 1

k .

k

k . -

k -

. ,

, . . -

1,

.

2- . 2 0 | 2| | 1|.

, -

, III IV -

. -

| ) (

| 1 | 3( )| -

, | 2( )| | 4( )| -

|

|

.

1 . . ., 1969. 528 .

(4)

70

2007. 1

(5) :

1 0

1 (1 )

1 ) 1 ( 2

i

i O e

e

O .

(9) (9)

1 1

1 1 1

2 2 1

O O

e ,

, 2 , 1 , 0

k

,

(7).

, -

, .

3- . 1 0 1| | 2 |. -

-

, I IV

.

| ) (

| 1 | 2( )| -

, | 3( )|

| ) (

| 4

| |

.

(5) 1 0

1 (1 )

1 ) 1 ( 2

i

i O e

e

O .

1 1 1

1

2 1

2 1

2

O

O O e

i

1 1

1 O ,

k 0 , 1 , 2 ,

-

, 1- .

4- .

, 1 0

|

1

| |

2

|

, . -

, ,

II III -

. | 3( )| | 4( )|

,

| ) (

| 1 | 2( )|

|

|

. -

(5)

1 0

1 ( 1 )

2 ) 1 ( 1

i

i O e

e

O .

, , -

. ,

-

. .

-

(2).

(2) 1 1 0.

(2)

0 ) 1 ( , 0 ) 1

( u

u

.

(2) 1 0,

1 0, 21 0, 11 0, 11 0, 21 0,

(4)

)

0

1 ( ) 1 ( ) 1 ( ) 1

( i i i i

e e

e

e

.

:

2

1 (k )

k , 2

2

2 2

k 1

k .

, -

. . 2.

0 '' x u x u

i .

Summary

In this article are given asymptotic formulas of eigen value of boundary-value problems for differential equations in second order with divergent argument, in that case when only one standard condition consist of derivative importance, and the second don’t consist of them.

517.927.25

. . ,

10.10.06 .

2 .

Referensi

Dokumen terkait

Summary The estimations for the solutions of the Cauchy problems for the singular pertu rbed partial second order integral differential equations have suggesting.. Have proving that