UNIVERSITI SAINS MALAYSIA First Semester Examination Academic Session
2007 12008October/November 2007
MST 564 - Statistical Reliability [Kebo
I eh perc aya
an Stati sti k]
Duration
:3 hours [Masa :
3jamJ
Please check that this examination paper consists of NINE pages of printed material before you begin the examination.
[Sila pastikan bahawa keftas peperiksaan
inimengandungi SEMBILAN muka
suratyang bercetak sebelum anda memulakan peperiksaan ini.l
Instructions: Answer allfour
[4]questions.
tnranan:. Jawab semua empat [4] soalan.l
1.
2 IMST
5641(a) Give the definition of a survivor function
andits
properties. Does the function(c)
ll-t .0<r<l
S(r)={^
l0 , t>l
satisfy the properties
of
a survivor functionfor
some variable Z ? What is the distributionof
? ?[20 marks]
The failure rate
of
a component is givenby h(t1= ae-bt, t
>0, a>0,b>
0(i) Determine the survival function and the probability
density function.(iD
Does this distribution has an IFR or a DFR?(iii)
Determine theprobability of the survival of the
component given that the component has survived up to x.[40 marks]
Consider the problem
of
designing alife
testin which
20 electric motors axenrn to
destruction,giving
independent observations T1 ,72,...,720
(measuredin hours) from a Weibull distribution with the probability
density function asfollows
f(t)=Bf sf-t"-<z'1q , t>0
Letp=jand l=#
(i)
Determinethe test fixed duration, L, which should
ensure that 95%of
themotors will
havebumed out by the
test termination time.(ii)
Determine theprobability
that allof
the 20 test motorsfail
before l.(iii) Give
an expressionfor
theprobability that the first motor to fail
( from amongst the20 on test) does so aftert.
[40 marks]
(a)
Supposethe lifetime 7 of a
certaintype of
componentsis
a continuous random variablewith
survivorfunction S(t).
To reduce in-service failures,all components inclusive of those that are still surviving
ateremoved from service and
replacedwith 'new'
ones. Othersthat fail
before
time r
are replaced on failure. Show that the mean usefullife of
a component is givenby
f s6at
[30 marks]
...31-
o)
2.
f.
IMST
5641(a) Beri definasi bagi suatufungsi survivor serta
ciri-cirinya. Adakahfungsi
,0<l<1 , t)\
memenuhi
ciri-ciri bagi
suatufungsi survivor
untuk pembolehubahT
?Apakah taburan bagi T ?
[20
marknhJKadar
kegagalan bagi satu komponen diberiknn olehh(t1= ae-bt, t ) 0, a> 0,b>
0O
Tentukanfungsi survivor danfungsiketumpatan kebarangkalian.(iil
Adaknh taburanini
mempunyai satuIFR
atau DFR?(ii,
Tentukankebarangkalian
komponenmasih berfungsi
diberikan komponen telah berfungsi sehingga x.[40
marleahJ Pertimbangkan satu masaalah merekabentuk suatuujian
hayat dengan 20motor elehrik dijalanknn
sehingga kerosakkanberlalat Hasilnya
ialahcerapan tak
bersandarTr,T2,...,Tro ( diulan
dalamiam )
daripadasuatu taburan
Weibull denganfungsi
ketumpatan kebarangkalian sepertiberilai
f(t)=Ff tga"<toP , t)0
Andaikan P=l dan 2=Lro
O
Tentukanjangkamasa ujian yang ditetapkan, L , yang
alcanmenentukan
bahawa 95% daripada motor-motor tersebut
akan gagal berfungsi pada masa tamat ujian.(iil
Tentukankebarangkalian bahawa
kesemua20 motor
tersebut gagal berfungsi sebelum masa t.(iii) Berilmn satu
ungknpankebarangkalian bahawa motor
pertama gagal berfungsi ( daripada 20 yangdiuji ) terjadi
selepas masa t.[40
markahJAndaikan
masahayat T bagi
sejenis komponentertentu adalah
suatupembolehubah rawak selanjar
denganfungsi survivor S(l) .
Untukmengurangkan kegagalan semasa digunakan, semua komponen termasuk
yang
masih berfungsi telah dikeluarkan dandiganti
denganyang
'baru'.Komponen
lain
yanggagal
berfungsi sebelum masar diganti
semasa iagagal berfungsi.
Tunjul<kanbahawa min hayat berguna bagi
suatu komponen deberikan oleh['
s1t1at[30
markahJIt- t
s(,)
=to
(b)
(c)
(a)
2.
(b)
4 [MSr
5641The following data is obtained from a life test,
assumingthat it
isexponentially distributed
with
parameter)' . A total of 16
components were tested and the test was terminated after the 12th failure. Thelife
times of the components, in days, are asfollows;
1123456688810
(i) Obtain the expression for the log likelihood
functionl(1)=lnLQ).
Hence,find
the maximumlikelihood
estimatorfor
the parameter)"
andthe Fisher'sInformation, I(|').
(ii) Find a
95o/o confidenceinterval for the
parameterI
anda
95Yoconfidence interval for the component
reliability
atl:
8 days.[40 marks]
Consider a
life
testing situationfor which
a manufacturer claims that his product has an exponential timeto failwe with
a meanof
10,000 hours.A
consumer questions
this claim
andwill
toleratea
consumer'srisk of
nomore than f
=A.rc when the population
meanis 3500
hours.Find
the smallest numberof
failures,r, to
satisfy both the producer and consumer.Assume there is type
II
censoring.[30 marks]
Let Tr,T2,...,Tn ben
independent continuouslifetime
random variables.Define a new random variable
f
=min{4 ,72,
... , Tn\ .(i) If {.
has the hazardfunctions h, for i =1,2,...,n,
show that thelifetime random variable T has the hazard
functionh(t1=>'_thj(t).
(ii) If {. hasthesurvivalfunction,l(r1: exp{-a{Q}
fora, >0
andB
>0,
determine the hazardfunction
fo,niT
.[40 marks]
Suppose
under laboratory condition in which failure of the device
is accelerated. thelifetime of
the device is denotedby { with
corresponding density,survivor
and hazard functionsfr(t) ,
,S,(t)
and ft,(r)
respectively.T
Then if
Tt =!,
wherelifetime
Zo hasthe
density,survivor
and hazarda
functions
fo$), So(r)
andfto(r)
respectively, show that (c)(a) J.
(b)
...51-
(c)
5 IMST 564]
(b) Data berilut diperoleh daripada satu ujian hayat, dengan
anggapan bahawaianya
tertabur secqra elcsponen denganparameter 4..
Sebanyak16
komponentelah diuji dan ujian tersebut telah dihentikan
selepas kegagalan ke-L2. Masa hayat komponen-komponen tersebut, dalam hari, adalah seperti berilan ;1123456688810
(i)
Dapatkan ungkapan bagi logfungsi
kebolehjadian (,(1)=lnL(X)
.Seterusnya, dapatkan penganggar kebolehjadian malcsimum bagi
parameter )"
dan Fisher'sInformation, I(),).
(ii)
Dapatkan satu selang keyakinan 95% bagiparameter )"
dan satu selang keyakinan 95% kebolehpercayaan komponenpada
masat
=
8 hari.[40
markahJPertimbangkan satu situasi ujian hayat dimana seorang
pengeluar mendakwabahawa hasil
pengeluarannya mempunyaimasa
kegagalan elrsponendengan min
10,000jam. Seorang
consumer mempersoalkan dahuaanini
dan dia akan menerima saturisiko
konsumer yang tidak lebihdaripada 0=0.10 apabila min populasi adalah
3500jam.
Dapatknnbilangan kegagalan yang terkecil, r untuk memuaskan
kedua-dua pembelrnl dan pembeli. Andailwn bahawa terdapat penapisan datajenis II.
[30
markah]Andaikan Tr,72,...,7, sebagai n pembolehubah rawak masa
hayatselanjar tak bersandar. Talcriflcan satu pembolehubah
baruf
=min{4 ,72, ...,Tn}.
(, Jika Ti
mempunyaifungsi bahaya hi bagi i=1,2,...,n
,tunjukkan bahawa pembolehubah rawak masa hayat T
mempunyai
fungsi
b ahaya
h(t1 =Z'^ rr,
{r) .(i, Jita Ti
mempunyaifungsi survival S(r; = exp{-a,t0)
ba?,qi
>0
dan B >0,
tentukanfungsi bahay Oagrni f
.[40
markahJ(b) Andaikan bahawa di bawah
keadaan malcrnaldimana
kegagalanalat
dipercepatlwn, masa hayat alat tersebut ditandaknnoleh T,
denganfungsi ketumpatan,fungsi survivor
danfungsi
bahayayang berknitan
adalah masing-masing.fr(t), Sr(/) dan hr(t). OIeh itu jika Tr=!9-,
dengana
masa
hayat T,
mempunyaifungsi
ketumpatan,fungsi survivor
danfungsi
bahaya , masing-masingfoG),
So(t)dan ho(t) ,
tunjukkan bahawa (a)3.
lMsT
5641(i)
,S,(r; = So@t)(ii) .fr(t)=p fo@t) (iiD hr(t)=pho(qt)
[30 marks]
A
study was carried out to investigate whetherIIPA
staining can be used to predict the survival experience of women who presentwith
breastcancer. The survival times ( in months ) of women
with
tumours that were negatively or positively stainedwith
HPA were recorded.(i)
The survival functionsfor
thetwo
groupsof positive
staining and negative staining andthe log - rank
testwere
givenbelow.
Usethese information to test whether or
not
thereis
a differencein
thesurvival
experienceof the fwo groups of women. Write
yourconclusion.
6
(c)
Survival Functions
STAINING
o positive staining
+ positlve staining -censored
a negative staining
+ negativ€ staining -csnsored 0
TIME
Los
Rank Statisticdf
Sienificance3.51 1 0.0608
The result
of
the staining process can be regarded as a factorwith two levels and the proportional
hazardsmodel was fitted.
TheouQut from
SPSSbelow
gives the estimated valueof
theratio of the
hazardof
deathat time r for positively
stainedrelative
tonegatively
stained women.Write your
conclusion. Compare this conclusionwith
part (i).[30 marks]
...71- .-o
t.+
=o
6.2
E(ii)
IMST
5641(c)
(i) St(r)
=So(Pt)
(i, fr(t)=p "fo(pt)
(ii, hr(t1= p ho(qt)
[30
markah]Satu
kajian
telahdijalankan
untuk mengkaii sama ada pengesanan HPAboleh digunaknn untuk meramal pengalaman hidup wanita
yang mempunyai barahpayudara. Masa hayat ( dalam
bulan) wanita
yangmempunyai ketumbuhan yang dikesan sebagai
positif
atau negatif telahdi
rekod.
0 Fungsi survival bagi
kedua-dua kumpulanyang
dikesan sebagaipositif dan
dikesan sebagainegatif
danjadual ujian log -
rankdiberikan di bawah.
Gunaknn maklumatini untuk
menguji samaada
terdapat perbezaanpengalaman hidup diantara
kedua-dua latmpulan wanitaini.
Tulislcan kesimpulan anda.1.2
1.0
Survival Functions
6 o Z.+
6.2
ESTAINING
o positivE staining
+ p6sitive staining -censored
o negative slaining
+ negative staining -censorod
(ii)
TIME
Lop Rank Statistic
df
Sisnificance3.5I I
0.0608Keputusan proses pengesanan boleh dianggap sebagai satu falctor
dengan dua aras dan satu model bahaya berkndaran
telahdisuaikan. Output dari
SPSSberikut memberi nilai
anggarannisbah
bahaya kematianpada
masat bagi wanita yang
dikesanpositif terhadap wanita yang dikesan
negative.Tuliskan kesimpulan anda. Bandingkan kesimpulanini
dengan kesimpulandi
bahagian (i).[30
markahJ[MSr
56414.
(a)
Consider thefollowing
system:(c)
(i)
Find the minimal path sets for this system.(ii)
Obtain the systemreliability if
P(
t'th component isfunctionin1): p,
i:
1,...,
5.(iii)
Oneofthepath
setsis {
1,2,3,
5}. Showthatthis
path setisnota
minimal path set.
[30 marks]
An
electronicunit
consistsof trvo
components,Cl
andC2,
arrangedin parallel.
Suppose that T, denotesthe lifetime of Cl
andT,
denotes thelifetime of C2.
Assumethat {
andT,
are independent.(i) If
Tt, T2 areidentically
distributed asthe
exp(2) random variables, determinethe probability
densityfunction of the lifetime of
the unit.(ii) If
T,- exp()",), i =1,2 , determine the probability
density function of thelifetime
of the unit.(iiD lf
71, T2 areidentically
distributed asthe
exp(A) random variablesand two such units are connected in series, determine
theprobability
densityfunction
of thelifetime
of the resulting system.[40 marks]
Suppose
that n
componentshave
independentlifetimes 71,72,...,Tn.
Suppose
that S,(/),
thesurvival function for
thelth
component,is
given byS,(r1=
e-Q't)2(i) If the
componentsare linked in
series, determinethe
survival function and hazard function for the system.(ii)
Give theprobability
densityfunction for
thelifetime of the
series systemin (i).
Identifu the parameters of the distribution.[30 marks]
...9/-
I
o)
Variables in the Equation
B SE Wald df Siq. Exo(B)
STAINING .906 .501 3.286 1 .070 2.479
4.
I
Variables in the Equation
IMST
5641(,
Dapatlan set laluan minimal bagi sistem ini.(ii) Dapatlmnreliabilitisistemjika
P
( komponen ke-i berfungsi) : p, i : I,
... , 5.(iii) Salah satu daripada set laluan ialah { 1, 2, 3, 5 }.
Tunjukkanbahawa set laluan
ini
bukan sdtu set laluanminimal.
[j0
mar*ahJSebuah
unit elehronik
mempunyaidua
komponen,Cl dan C2,
disusun secaraselari. Andaikan
bahawa T, menandakan masahayat Cl
dan T, menandaknn tnasahayat C2.
Anggapkan bahawa T,dan T, adalah
tak bersandar.(, Jika fi, T, adalah
pemboleubahrawak yang tertabur
secara secatnan dengantaburan
exp(,X.),
tentukanfungsi
ketumpatanlrcbarangknlian masa hayat unit tersebut.
(iil Jil@
T,- exp(X",), i =1,2 , tentuknn fungsi
ketumpatankebarangkalian masa hayat unit tersebut.
(iii) Jika T, T, adalah
pemboleubahrawak yang tertabur
secara secaman dengantaburan exp(Z)
dan duaunit
tersebutdi
hubung secarabersiri ,
tentukanfungsi
ketumpatankebaranglalian
masa hayat sistem yang dihasilknn.[40
markahJAndailran bahawa n
komponen mempunyaimasa hayat tak
bersandarTr,T2,...,7,. Andailwn
bahawaS,(r), fungsi survival bagi
komponenlre-i, diberikan oleh
'Sr
(t)
= '-()'t\20 Jika
kamponen dihubung secarabersiri,
tentuksnfungsi
survivaldan
fungsi
bahaya bagi sistem tersebut.(i,
Dapatkanfungsi
ketumpatankebarangkalian
masahayat
sistembersiri
dalam bahagian(i).
Camkan parameter taburan tersebut.-oooOooo-
(b)
(c)
B SE Wald df Siq. Exp(B)
STAINING .908 .501 3.286 I .070 2.479
P er t imb angkan s i s tem b er ikut :
[30
marlwhJ