• Tidak ada hasil yang ditemukan

11. Time Series Analysis Outline

N/A
N/A
Protected

Academic year: 2024

Membagikan "11. Time Series Analysis Outline"

Copied!
11
0
0

Teks penuh

(1)

11. Time Series Analysis

Basic Regression

Read Wooldridge (2013), Chapter 10

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat

Outline

I.  The Nature of Time Series Data II.  Examples of Time Series Models III. Finite Sample Properties of OLS 

IV. Functional Form, Dummy Variables, and Index   Numbers

I. Nature II. Examples III. Properties IV. Index 2

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat

I.  The Nature of Time Series Data

• Time series

A time series data set consists of observations on a  variable or several variables over time.

eg.  GDP, money supply, interest rate.

• Cross section series

A cross sectional data set is a data set collected from  a population at a given point in time.

I. Nature II. Examples III. Properties IV. Index 3

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat I. The Nature of Time Series Data

Differences between Time Series and  Cross Section

(1) Ordering

Cross section: Ordering usually is not important.

Time series: A data set comes with a temporal ordering (2) Random sample

Cross section: A random sample is drawn from the  population.  Each observation is randomly drawn  (MLR.2).

Time series:  An observation is an outcome of random  variables.

I. Nature II. Examples III. Properties IV. Index 4

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat I. The Nature of Time Series Data

(2)

Terms:

• Stochastic – random

• Realization – observation

• Formally, say observation 1960‐2003.

A sequence of random variables indexed by time is  called a stochastic process or a time series process.

– At a point in time, we obtain a single realization of  the stochastic process.  Note that we cannot go back  in time. 

I. Nature II. Examples III. Properties IV. Index 5

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat I. The Nature of Time Series Data

II.  Examples of Time Series Regression

• Static and Finite Distributed Lag Models

• Static Model

y t =  0 +  1 z t + u t t = 1, 2,…,n – A static model is a model that relates y to z using the 

same time period.

–  1 : An immediate effect of z on y.  

I. Nature II. Examples III. Properties IV. Index 6

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat II. Examples of Time Series Regression

Examples of Time Series Regression

• Example : Phillips Curve inf t =  0 +  1 unem t + u t

inf t : annual inflation rate (%) unem t : unemployment rate (%)

• = 1.423+ .468unem (s.e)   (1.72)   (.289)

[t] [.828]  {1.617}

n=49  R 2 =.053     R 2 bar=.032 – How to define  1 ?

I. Nature II. Examples III. Properties IV. Index 7

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat II. Examples of Time Series Regression

Finite Distributed Lag (FDL) Models:  

Effect of one or more variables with a lag on y

• Example:  Effect of the growth in money supply on economic growth in  Thailand over 1993‐2002 (quarterly data)

ggdp: economic growth (percent) gm1: money supply growth (percent) ggdp

t

= 

0

+ 

0

gm1

t

+ 

1

gm1

t‐1

+ 

2

gm1

t‐2

+ u

t

• Interpret coefficients: let t = 0

: “this quarter” effect of MS growth on “this quarter” ggdp.

: “last quarter” effect of MS growth on “this quarter” ggdp

: “two‐quarters ago” effect of MS growth on “this quarter” ggdp.

I. Nature II. Examples III. Properties IV. Index 8

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat II. Examples of Time Series Regression

(3)

Example: effect of gm1 on ggdp y t =  0  +  0 z t +  1 z t‐1 + 2 z t‐2 + u t

t = .001 + .319gm1 t +.121gm1 t‐1 ‐.126gm1 t‐2 p‐value  {.88}  {.0005}     {.105}       {.1359}

n=39, R 2 =.5088 F=12.08 {p‐value=.000014}

Interpretation: Economic Significance.

1) Interpret  2) Interpret  3) Interpret 

I. Nature II. Examples III. Properties IV. Index 9

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat II. Examples of Time Series Regression

A General form – a FDL of order two y t =  0  +  0 z t +  1 z t‐1 + 2 z t‐2 + u t

Interpret coefficients:

1)  0 : the immediate change in y due to the one‐unit  increase in z at time t 

–  0 is called the impact propensity or impact multiplier.

2)  0 +  1 + 2 : the long‐run change in y given a permanent  increase in z

–  0 +  1 + 2    is called the long run propensity (LRP) or  long‐run multiplier.

I. Nature II. Examples III. Properties IV. Index 10

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat II. Examples of Time Series Regression

A temporal increase in z:  j

y t =  0  +  0 z t +  1 z t‐1 + 2 z t‐2 + u t

“temporal” means lasting only for a time.

• Assumptions:

1) Before time t:  z is a constant (c) 2) At time t,  z increases one unit to c+1 

3) After time t, z reverts back to its previous level, c

• Interpretation:

– 

0

= y

t

– y

t‐1

: immediate change in y due to the one‐unit increase  in z at time t

– 

1

= y

t+1 

– y

t‐1

: the change in y one period after the increase in z.

– 

2

= y

t+2

– y

t‐1

: the change in y two periods after the increase in z.

I. Nature II. Examples III. Properties IV. Index 11

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat II. Examples of Time Series Regression

A permanent increase in z:   0 +  1 +  

2

y t =   0  +   0 z t +   1 z t‐1 +  2 z t‐2 + u t

• Assumptions:

1) Before time t,  z is a constant (c).

2) At time t, z increases one unit permanently to c+1.   

• Interpretation: With the permanent increase in z

0

= y

t

– y

t‐1

: immediate change 

0

+

= y

t+1

– y

t‐1

: increase in y after one period.

0

+

1

+

= y

t+2

– y

t‐1

: increase in y after two periods.

• 

0

+

1

+

2

is the LR change in y given a permanent increase in z in the FDL model of order 2.

I. Nature II. Examples III. Properties IV. Index 12

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat II. Examples of Time Series Regression

(4)

Example: effect of gm1 on ggdp y t =   0  +   0 z t +   1 z t‐1 +  2 z t‐2 + u t

t = .001 + .319gm1 t +.121gm1 t‐1 ‐.126gm1 t‐2 p‐value  {.88}  {.0005}     {.105}       {.1359}

n=39, R 2 =.5088 F=12.08 {p‐value=.000014}

Interpretation: Economic and Statistical Significance?

– Impact multiplier = ? and Test?

– Long run multiplier = ? and Test?

• Graph: a lag distribution with two nonzero lags.

I. Nature II. Examples III. Properties IV. Index 13

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat II. Examples of Time Series Regression

Dependent Variable: GGDP Method: Least Squares Sample(adjusted): 1993:2 2002:4

Included observations: 39 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

C 0.001303 0.006156 0.211701 0.8336

GM1 0.319434 0.082622 3.866224 0.0005

GM1(-1) 0.120663 0.072506 1.664191 0.105

GM1(-2) -0.12604 0.082562 -1.52659 0.1359

R-squared 0.50881 Mean dependent var 0.008038

Adjusted R-squared 0.466708 S.D. dependent var 0.040941

S.E. of regression 0.029898 Akaike info criterion -4.08516

Sum squared resid 0.031286 Schwarz criterion -3.91453

Log likelihood 83.66052 F-statistic 12.08517

Durbin-Watson stat 2.033647 Prob(F-statistic) 0.000014

Effect of Monetary Policy on Economic Growth

I. Nature II. Examples III. Properties IV. Index 14

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat II. Examples of Time Series Regression

III.  Finite Sample Properties of OLS  under classical Assumptions

TS.1: Linear in parameters.

Given stochastic process {(x

t1

, x

t2

,…,x

tk

, y

t

): t = 1, 2, .., n}

y

t

= 

0

+ 

1

x

t1

+ … + 

k

x

tk

+ u

t

where {u

t

: t = 1, 2, …., n} is the sequence of errors.

x

tj

: t denotes the time period j indicates one of the k variables

 Unbiasedness of OLS: TS.1‐TS.3.

I. Nature II. Examples III. Properties IV. Index 15

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat III. Finite Sample Properties of OLS

TS.2: No perfect collinearity

No independent variable is constant or a perfect linear combination of the others.

TS.3 : Zero Conditional Mean E(u t |X) = 0

where X is an array with n rows and k columns.

I. Nature II. Examples III. Properties IV. Index 16

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat III. Finite Sample Properties of OLS

(5)

Example: y t =GDP; x t1 =M1 t x t2 =GE t (gov’t spending); n=44, k=2

year y

t

= gdp x

t1

= M1 x

t2

= GE error

1960 gdp

60

M1

60

GE

60

u

60

1961 gdp

61

M1

61

GE

61

u

61

1962 gdp

62

M1

62

GE

62

u

62

.. .. .. .. ..

2001 gdp

01

M1

01

GE

01

u

01

2002 gdp

02

M1

02

GE

02

u

02

2003 gdp

03

M1

03

GE

03

u

03

u

t

is uncorrelated with each explanatory variable in every time period. We say that x

tj

are strictly exogenous.

I. Nature II. Examples III. Properties IV. Index 17

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat III. Finite Sample Properties of OLS

 Theorem 3.1: Unbiasedness of OLS

If TS.1 – TS.3 hold, then the OLS estimators are  unbiased, conditional in X, i.e.,

E( ) =   j for j = 1, ..., k

I. Nature II. Examples III. Properties IV. Index 18

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat III. Finite Sample Properties of OLS

TS. 3' implies that u t is uncorrelated with regressors dated  at time t, (TS.3' next chapter)

E(u t |x t1 ,…,x tk ) = E(u t |x) = 0

We say x tj are contemporaneously exogenous.

• Why don’t we assume E(u i |X)=0 or strict exogeneity in  the cross sectional analysis?

• Random sampling: u i is automatically independent of the  explanatory variables other than i.

year y

t

= gdp x

t1

= M1 x

t2

= GE error

2001 gdp

01

M1

01

GE

01

u

01

I. Nature II. Examples III. Properties IV. Index 19

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat III. Finite Sample Properties of OLS

Example: Strict Exogenity Assumption Model: y t =  0 +  1 z t + u t

ggdp t =  0 +  1 gm1 t + u t TS. 3 requires that

(1) u t and z t are uncorrelated

(2) u t is also unrelated with past and future values of z; 

that is, z have no lagged effect on y.

(3) A subtle point : the changes in error term today cannot cause future changes in z.  ( u t  y t  z t+1 )

( u t  ggdp t  gm1 t+1 )

• This rules out feedback from y on future values of z. 

I. Nature II. Examples III. Properties IV. Index 20

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat III. Finite Sample Properties of OLS

(6)

Example: Murder rate equation  mrdrte t = 0 + 1 polpc t + u t

mrdrte: murders per 10,000 people polpc: number of police in the force

• Two implications:

(1) TS.3 implies that u t is uncorrelated with polpc in all time period.

Violation:  Higher u 0 may lead to larger polpc 1  force.

(2) Explanatory variables that are strictly exogeneous cannot react to  what has happened to y in the past.

year=t y t =mrdrte t z t =polpc t u t =error

2000 10,000 100 u 0

2001 ….  150 ..

Violation: high u 0  high mrdrt 0  high polpc 1

? ?

I. Nature II. Examples III. Properties IV. Index 21

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat III. Finite Sample Properties of OLS

Cases: Agricultural Production, rainfall  and labor input

Example : Agricultural Production (y)

Case 1: y=output z=rainfall u t =error

t=0 y 2000 u 2000

t=1 z 2001

Case 2: y=output z=labor input  u t =error

t=0 z 2000 u 2000

t=1 z 2001

?

?

?

?

I. Nature II. Examples III. Properties IV. Index 22

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat III. Finite Sample Properties of OLS

TS.4: Homoskedasticity

VAR(u t |X) = VAR(u t ) =  2 t = 1 ,…, n

• Example: Effect on Treasury bills i3 t =  0 +  1 inf t +  2 def t + u t

def t : federal deficit as a percentage of GDP.

• TS. 4  requires that unobservables affecting interest rates  have a constant variance over time. 

• Violation:  Variability of interest rates depends on the level  of inflation or relative size of the deficits.

I. Nature II. Examples III. Properties IV. Index 23

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat III. Finite Sample Properties of OLS

TS.5: No Serial Correlation

Corr(u s ,u t |X) = 0 for all t  s

Example: No Serial Correlation

y t =  0 +  1 inf t +  2 def t + u t

• When u t‐1 > 0 then, on average, the error in the next  period u t is positive, or Corr(u t , u t‐1 ) > 0.

– This problem is called serial correlation or auto  correlation.

• This implies that if interest rate is high in this period, it will  be high in the next period: a violation of TS.5.

I. Nature II. Examples III. Properties IV. Index 24

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat III. Finite Sample Properties of OLS

(7)

25

Positive Serial Correlation

Negative Serial Correlation

Serial Correlation

I. Nature II. Examples III. Properties IV. Index 25

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat III. Finite Sample Properties of OLS

• Theorem 10.2: OLS Sampling Variances If TS.1 – TS.5 hold, then

Var( X ) = 

j = 1, …, k, where SST j is the total sum of squares of x tj and  R j 2 is the regression of x j on the other regressors.

I. Nature II. Examples III. Properties IV. Index 26

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat III. Finite Sample Properties of OLS

• Theorem 10.4: Gauss Markov Theorem

If TS.1‐TS.5 (Gauss Markov assumptions) hold, then  conditional on X, the OLS estimators are the best linear  unbiased estimators  (BLUE).

I. Nature II. Examples III. Properties IV. Index 27

• Theorem 10.3: Unbiased estimator of  2

If TS.1 – TS.5 hold, then the unbiased estimator of  2 is

2 = 

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat III. Finite Sample Properties of OLS

Inference under the CLM Assumptions

• Assumption TS.6: Normality assumption The errors u t are independent of X and

u t  N(0, 2 )

That is, u t is independently and identically distributed (i.i.d)  as Normal (0, 2 ). 

I. Nature II. Examples III. Properties IV. Index 28

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat III. Finite Sample Properties of OLS

(8)

Inference under the CLM Assumptions

 Theorem 10.5: Normal Sampling Distribution If TS.1‐TS.6 (CLM assumptions) hold, then (1)  is normally distributed,

(2) t and F statistics have t and F distributions,  respectively, under the null hypothesis, and

(3) the usual construction of confidence interval is valid.

I. Nature II. Examples III. Properties IV. Index 29

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat III. Finite Sample Properties of OLS

Example: Effects of inflation and deficits on interest rate in  the United States over 1948‐66.

i3: the three‐month T‐bill rate

def: federal deficit as a percentage of GDP 3 t = 1.25 + 0.613inf t + 0.700def t

s.e. (0.44)       (0.076) (0.118) t      [2.84]        [8.06]         [5.93]

n = 49  R 2 =  0.697 R 2 bar= 0.683

• Interpret: Economic and Statistical Significance

1) Test  inf and  def at the 5% level.

2) Interpret the coefficient on  inf

3) Interpret the coefficient on  def

I. Nature II. Examples III. Properties IV. Index 30

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat III. Finite Sample Properties of OLS

IV.  Functional Form, Dummy Variables, and Index number

• Index number: GDP Example

• Base period: 1988

• Base value: 100

1988 1997 1998 1999

Nominal GDP 1,559.8 4,740.2 4,628.4 4,615.4 Real GDP 1,559.8 3,074.5 2743.4 2859.2 Index: GDP Deflator 100.0 154.2 168.7 161.4

I. Nature II. Examples III. Properties IV. Index 31

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat IV. Functional Form, Dummy and Index

Change the base year

• NESDB uses 1988 as the base year for GNP deflator 1988 100 (base year)

1997 154

1999 161

• Suppose we want to change the base year to 1997

1988 65 (100/154)*100

1997 100 (base year)  (154/154)*100

1999 105 (161/154)*100

100 index *

index index old

base new

t

t 

 

  new old

I. Nature II. Examples III. Properties IV. Index 32

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat IV. Functional Form, Dummy and Index

(9)

Old and new GDP deflator  Indexes compared.

1988 1997 1998 1999

Old GDP deflator Index 100.0 154.2 168.7 161.4

New GDP deflator Index 65 100 109 105

Calculate the growth rate of GDP deflator: inflation

100

* year )

year year

( new rate

growth

t t t

old

 old

I. Nature II. Examples III. Properties IV. Index 33

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat IV. Functional Form, Dummy and Index

Calculate the growth rate of GDP  deflator: another index for inflation

1988 1997 1998 1999

Old GDP deflator Index 100.0 154.2 168.7 161.4 New GDP deflator Index 64.9 100.0 109.4 104.7

Inflation rate 54.2 9.4 -4.3

Inflation in 1999 = [(104.7‐109.4)/109.4]*100

= ‐4.3%

I. Nature II. Examples III. Properties IV. Index 34

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat IV. Functional Form, Dummy and Index

Example : Effect of Personal Exemption on Fertility Rates; 

gfr t =  0 +  1 pe t +  2 ww2 t +  3 pill t + u t

gfr t : general fertility rate – the number of children  born to every 1,000 women.

pe t : real dollar value of the personal tax exemption ww2 = 1 during WW II (1941‐1945)

= 0 otherwise (1913‐40,1946‐84) pill = 1 from 1963 on (1963‐84)

= 0 otherwise (1913‐62) 

Estimation:

t

= 98.68 + .083pe

t

– 24.24ww2

t

– 31.59pill

t

s.e. (3.21)    (.030)      (7.46) (4.08)

t      {30.74}   {2.77}     {3.25}       {7.74}

n = 72   R

2

= 0.473    R

2

bar = 0.450 What can you say about statistical significance?

I. Nature II. Examples III. Properties IV. Index 35

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat IV. Functional Form, Dummy and Index

Dependent Variable: GFR Method: Least Squares Sample: 1 72

Included observations: 72

Variable Coefficient Std. Error t-Statistic Prob.

C 98.68176 3.208129 30.75991 0

PE 0.08254 0.029646 2.784166 0.0069

WW2 -24.2384 7.458253 -3.249876 0.0018

PILL -31.594 4.081068 -7.74161 0

R-squared 0.473415 Mean dependent var 95.63194

Adjusted R-squared 0.450184 S.D. dependent var 19.80464

S.E. of regression 14.68506 Akaike info criterion 8.265492

Sum squared resid 14664.27 Schwarz criterion 8.391973

Log likelihood -293.558 F-statistic 20.37801

Durbin-Watson stat 0.176873 Prob(F-statistic) 0

Fertility Rate Equation with no lags

I. Nature II. Examples III. Properties IV. Index 36

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat IV. Functional Form, Dummy and Index

(10)

Example: fertility rate equation with a lag

t

= 95.87  +  .073pe

t

‐ .0058pe

t‐1

+ .034pe

t‐2

‐ 22.31ww2

t

‐ 31.30pill t‐stat  {29.07}   {.579}       {‐.030}      {.269}     {11.58}         {7.86}

n =70 R

2

= 0.499 R

2

‐bar= 0.459

• Interpretation:

1) Interpret the coefficient on ww2.

2) Interpret the coefficient on pill.

3) Are pe t , pe t‐1 , pe t‐2 individually statistically significant?

4) Are pe t , pe t‐1 , pe t‐2 jointly statistically significant?

– Problem: multicollinearity??

I. Nature II. Examples III. Properties IV. Index 37

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat IV. Functional Form, Dummy and Index

Dependent Variable: GFR Sample(adjusted): 3 72

Included observations: 70 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

C 95.8705 3.281957 29.21138 0

PE 0.072672 0.125533 0.578906 0.5647

PE(-1) -0.00578 0.155663 -0.037129 0.9705

PE(-2) 0.033827 0.126257 0.267919 0.7896

WW2 -22.1265 10.73197 -2.061737 0.0433

PILL -31.305 3.981559 -7.862495 0

R-squared 0.498599 Mean dependent var 94.77429

Adjusted R-squared 0.459427 S.D. dependent var 19.40881 S.E. of regression 14.27008 Akaike info criterion 8.236023 Sum squared resid 13032.64 Schwarz criterion 8.428751

Log likelihood -282.261 F-statistic 12.72845

Durbin-Watson stat 0.188715 Prob(F-statistic) 0

I. Nature II. Examples III. Properties IV. Index 38

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat IV. Functional Form, Dummy and Index

Wald Test:

Equation: Untitled

Test Statistic Value df Probability

F-statistic 0.05343 (2, 64) 0.948

Chi-square 0.10686 2 0.948

Null Hypothesis Summary:

Normalized Restriction (= 0) Value Std. Err.

C(3) -0.00578 0.155663

C(4) 0.033827 0.126257

Restrictions are linear in coefficients.

View/Coefficient Tests/Wald-Coefficient Restrictions

Redundant Variables: PE PE(-1) PE(-2)

F-statistic 3.972964 Probability 0.011652 Log likelihood ratio 11.95477 Probability 0.00754

View/Coefficient Tests/Redundant Variables…

I. Nature II. Examples III. Properties IV. Index 39

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat IV. Functional Form, Dummy and Index

Long run propensity...

gfr

t

=  

0

+ 

0

pe

t

+ 

1

pe

t‐1

+ 

2

pe

t‐2 

+ 

2

ww2

t

+ 

3

pill

t

+ u

t

t

= 95.87  +  .073pe

t

‐ .0058pe

t‐1

+ .034pe

t‐2

‐ 22.31ww2

t

‐ 31.30pill t       {29.07}   {.579}       {‐.030}      {.269}     {11.58} {7.86}

5)  Should we ditch pe t‐1 or pe t‐2 ?

6)  What is the long‐run propensity in this model? 

7)  Is the long‐run propensity statistically significant?

What is the null hypothesis?

8)  Find a 95% confidence interval of the long‐run propensity.

I. Nature II. Examples III. Properties IV. Index 40

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat IV. Functional Form, Dummy and Index

(11)

Dependent Variable: GFR Sample(adjusted): 3 72

Included observations: 70 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

C 95.8705 3.281957 29.21138 0

PE 0.100719 0.029803 3.379532 0.0012

PE(-1)-PE -0.00578 0.155663 -0.037129 0.9705

PE(-2)-PE 0.033827 0.126257 0.267919 0.7896

WW2 -22.1265 10.73197 -2.061737 0.0433

PILL -31.305 3.981559 -7.862495 0

R-squared 0.498599 Mean dependent var 94.77429

Adjusted R-squared 0.459427 S.D. dependent var 19.40881 S.E. of regression 14.27008 Akaike info criterion 8.236023 Sum squared resid 13032.64 Schwarz criterion 8.428751

Log likelihood -282.261 F-statistic 12.72845

Durbin-Watson stat 0.188715 Prob(F-statistic) 0

I. Nature II. Examples III. Properties IV. Index 41

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat IV. Functional Form, Dummy and Index

The 95% CI of LRP

• The 95% confidence interval of LRP is

Given  = 0.101 and s.e.(  ) = 0.030, the 95% CI is

 c*s.e.( ) = .101  2(.030) 

= .041 to .160

• c: is the 95 th percentile in the t distribution with 64 DF n = 70  k  = 5

n – k –1 = 70 –5 – 1= 64 c = 2.00 (DF = 60)

= 1.987 (DF = 90)

I. Nature II. Examples III. Properties IV. Index 42

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat IV. Functional Form, Dummy and Index

Recap of Time Series Analysis

• The Nature of Time Series Data

• Examples of Time Series Models

• Finite Sample Properties of OLS 

• Functional Form, Dummy Variables, and Index  Numbers

I. Nature II. Examples III. Properties IV. Index 43

11. Time Series Analysis . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat

Referensi

Dokumen terkait

We used two steps in center of mass moment method for region of interest (ROI) segmentation and apply the time series method combined with block window method as feature

The paper begins with an introduction of the basics of time series processing, and discusses feedforward as well as recurrent neural networks, with respect to their ability to

Fuzzy Time Series (FTS) adalah salah satu metode prediksi yang ada dalam lingkup fuzzy logic dengan model runtun waktu, metode tersebut menggabungkan antara ilmu komputer

The purpose of time series analysis is generally twofold: to understand or model the stochastic mechanism that gives rise to an observed series and to predict or forecast the

Time series data analysis is used for weather forecasting or rainfall prediction with the help of data mining techniques.. For time series data analysis, intelligent

19 For Better Official Statistics Pola Umum Data Time Series Sebelum memilih model time series yang tepat, pertama kali yang dilakukan adalah mengeksplorasi pola data... i Stasioner

TIME SERIES ANALYSIS FOR THE TREATMENT OF TYPHOID ENTERIC FEVER IN MAIDUGURI: USING ARIMA MODEL Aishatu Kaigama1Umar Yusuf Madaki2 1Department of Mathematics and Computer Science,

Plot of forecasted series and residuals for sample problem of Fig.. Exponential smoothing and short-term sales