กก
: ก (Advanced
counting technique)
กก 2
!"#$
#$$%& #ก
##$$%& #ก
#&ก!'( #$$%& #ก)* ก%&
#&ก!'( #$$%& #ก)*+$, ก%&
ก, )
#&ก!'( #$$%& #ก- ก, )
". ก
กก 3
#$$%& #ก
/0!ก/0!$#&-ก!1 กก*$ก#ก +* ), .1# n +$,$ #ก
-ก * /0!ก,#-!* ,-#$$%& #ก
$ #$$%& #ก 1 {an} $กก1#, an
- $ก, !* a1, a2, ..., an-1
ก,##,1 {cn} 2'( #$$%& #ก ก3, $ $ 1 {cn} * ก#$$%& #กก,#
กก 4
145") fn $ #$$%& #ก
fn = fn-1 + fn-2
" f1 = 1, f2 = 1
1 10 $ก 145") 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...
ก1#4/ก )4ก $ก1#
n! = n · (n-1)!
" 0! = 1
145"))
กก 5
##$$%& #ก
-)*#$$%& #ก-ก.1 # /0! ),
/0! ก*: $$'*6ก$6ก 100,000 -0) $%
&-!* ก* 5% , 7 .!.1#! 30 76ก+#*
/0!ก,ก: /0!1 " Leonardo di Pisa
$$ก!,!8$ก,,!8 ,-#.0%& %)%!0
#,ก,. ,-#%& +*$ ',+ 2 $$#,ก 2
ก,# ก,!8,. กก 1 ,%)%!0 .!#$$%& #ก .1#ก,$ #',+ n
$$#,ก,ก$+$,
กก 6
/0!! 9
/0!! 9 : ! 9 ก *#ก 3 กก$
',ก$,$ก #:* ก.ก-!0,*,+
3ก * ก; ก*',ก$ '**$<*',ก$',
* #ก-ก!8"',#* $3กก#,',ก$#
ก*#
-!* Hn .1#ก*!$* % 1!, ',ก$!$
.กก$*+ก=!$ .#$$%& #ก ก1# Hn
กก 7
". ก*##$$%& #ก
1..!#$$%& #ก +$* % ก!.1# n
+$,$ ,ก .!1 $ n = 6
2. $%# !8 $-!*'*-)*-,!ก *# n # ,* $ .1# -2.1#,
.#$$%& #ก ก!.1#!2++*!$ n # 3..!#$$%& #ก Cn $ Cn ก.1#ก-,#3!$
2++* กก # n+1 .1# ), C3 = 5 "# 4 #
x0, x1, x2, x3 ก+* ((x0· x1) · x2) · x3, (x0· (x1· x2)) · x3, (x0· x1)(x2· x3), x0· ((x1· x2) · x3), x0· (x1· (x2· x3))
กก 8
#&ก!'( #$$%& #ก
-.ก!'( #$$%& #ก :8.$$ #&
-ก!). ! ก-)*ก1:1 ! ก-)*%>
$ #$$%& #ก)* ก%& ก k ก$&?#
#$$%& #ก ,-
an = c1·an-1 + c2·an-2 + ... + ck·an-k
$ c1, c2, ..., ck 2.1#. ck ≠ 0
%#,'(.ก#$$%& #ก)* ก%& .$'(# $ ก1!,# * ก#$$%& k ,
กก 9
) #$$%& #ก
#$$%& #ก ,- Pn = 1.11 Pn-1 2#$$%& #ก)*
ก%& ก 1
#$$%& #ก ,- fn = fn-1 + fn-2 2#$$%& #ก)*
ก%& ก 2
#$$%& #ก ,- an = an-5 2#$$%& #ก)* ก%&
ก 5
#$$%& #ก ,- an = an-1 + a2n-2 +$,2#$$%& #ก )* ก%& ก 5
กก 10
$กก>(% #$$%& #ก)* ก%&
'( #$$%& #ก)* ก%& $$&?2,#.
,- an = rnก,# an = c1·an-1 + c2·an-2 + ... + ck·an-k ก3, $
rn = c1rn-1 + c2rn-2 + ... + ck rn-k
! *# rn-k
rk = c1rk-1 + c2rk-2 + ... + ck-1r + ck
ก$กก>(% (characteristic equation) ก'(+*
.ก$กก>(%#, กก>(% (characteristic roots)
กก 11
@>;'( #$$%& #ก)* ก%& ก
2ก+$,:1
@>; -!* c1 c2 2.1#. $$#, r2 - c1·r – c2 = 0 $ก,ก ก r1 r2 *# 1 {an} 2'( #$$%& #ก an = c1·an-1 + c2·an-2 ก3, $ an = α
1·r1n + α
2·r2nก n = 0, 1, 2, ... $ α1
α22,#
1..!'( #$$%& #ก an = an-1 + 2an-2$ a0 = 2, a1 = 7
2..!'( 145"))
3..!'( #$$%& #ก an = 2an-1$ a0 = 3
4..!'( #$$%& #ก an = 4an-2$ a0 = 0, a1 = 4
กก 12
@>;'( #$$%& #ก)* ก%& ก
2ก:1 ก
k@>; -!* c1 c2 2.1#. c2 ≠ 0 $$#, r2 - c1·r – c2 = 0 $ก
%ก# r0 *# 1 {an} 2'( #$$%& #ก an = c1·an-1 + c2·an-2 ก3, $ an = α
1·r0n + α
2· n · r0nก n = 0, 1, 2, ... $ α1
α22,#
5. .!'( #$$%& #ก an = 6an-1 - 9an-2
@>; -!* c1, c2, ..., ck 2.1#. rk = c1rk-1 - ... - ck $ก,ก k
ก r1, r2, ..., rk *# 1 {an} 2'( #$$%& #ก an = c1·an-1 + c2·an-2 + ... + ck·an-k ก3, $ an = α
1·r1n + α
2· r2n + ... + α
k· rkn
ก n = 0, 1, 2, ... $ α1, α
2 , ....,α
k2,#
6. .!'( #$$%& #ก an = 6an-1 – 11an-2 + 6an-3
กก 13
@>;'( #$$%& #ก)* ก%& ก
kก:1
@>; -!* c1, c2, ..., ck 2.1#. rk = c1rk-1 - ... - ck $ก,ก t
ก r1, r2, ..., rt ,ก$ก:1ก m1, m2, ..., mt $1 " mi > 1 m1 + m2 + ... + mt = k *#1 {an} 2'( #$$%&
#ก an = c1·an-1 + c2·an-2 + ... + ck·an-k ก3, $
an = (α
1,0+ α
1,1n + ... + α
1,m1-1nm1-1)·r1n + (α
2,0+ α
2,1n + ... + α
2,m2-1nm2-
1)·r2n + ... + (α
t,0+ α
t,1n + ... + α
t,mt-1nmt-1)·rtnก n = 0, 1, 2, ... $ αi,j 2,#
7. .!'( #$$%& #ก an = -3an-1 – 3an-2 – an-3, " a0 = 1, a1= -2, a2 = -1
กก 14
$กก>(% #$$%& #ก)*+$, ก%&
#$$%& #ก)*+$, ก%& $$&?2,#. ,-
an = c1·an-1 + c2·an-2 + ... + ck·an-k + F(n)
$ c1, c2, ..., ck ,# F(n)+$,-)*4/ก )
ก
an = c1·an-1 + c2·an-2 + ... + ck·an-k
#,#$$%& #ก)* ก%& $
'( $กก,#.+*.ก'#ก '((% #$
$%& #ก)*+$, ก%& ก'(#+ #$$%& #ก )* ก%& $
กก 15
#&ก!'( #$$%& #ก)*+$, ก%&
1..!'( #$$%& #ก2++* an = 3·an-1 + 2n
<* a1 = 3 *#'(+* +
2..!'( #$$%& #ก2++* an = 5·an-1- 6·an-1 + 7n
ก!'( #$$%& #ก)*+$, ก%& ,2
ก!'((% #$$%& #ก)*+$, ก%& ก,
ก!'(#+ #$$%& #ก)* ก%& $
*#.11'(,$#$ก
กก 16
@>;'( #$$%& #ก)*+$, ก%&
● @>; ก1!-!* {an-1} * ก#$$%& #ก)*+$, ก%&
an = c1·an-1 + c2·an-2 + ... + ck·an-k + F(n)
$ c1, c2, ..., ck ,# F(n) = (btnt + bt-1nt-1 + ... + b1n + b0)sn
$ b1, b2, ..., bt, s ,# s +$,-),ก #$$%& #ก)*
$ .+*'((%-
(ptnt + pt-1nt-1 + ... + p1n + p0)sn
<* s 2ก #$$%& #ก)*$:1ก m
.+*'((%-
nm(ptnt + pt-1nt-1 + ... + p1n + p0)sn
กก 17
". #$$%& #ก)*+$, ก%&
1..!'((% #$$%& #ก)*+$, ก%& an = 6·an-1 - 9 an-2 + F(n) $ F(n) = 3n, F(n) = n3n, F(n) = n22n, F(n) = (n2+1)3n
2.ก1!-!* an 2'#$ .1#3$#ก n #ก
.#, an * #$$%& #ก)*+$, ก%&
an = an-1+ n
.!.1#ก. ),# 1×2 2×2 ก 2×n
2++*!$
an=
∑
k=1 n
k
กก 18
ก, )
-ก%A"ก$! #& '*%Aก3-)*!กกก*/0!"
,/0!-!*3ก .ก+*/0!3ก%% .!'(+*
!.ก.81'(, +*$#$-!*2'( /0!$* !กก ก,#ก#,!กก, ) (Divide-and-Conquer)
$$#, #&#ก,/0! n ก2 a /0!, $ n/b
$$#,#-)*-ก#$ /0!, g(n)
-!* f(n) .1#ก1ก-กก*/0! n +*#,
f(n) = a f(n/b) + g(n)
ก$ก#ก+*#, $ก#ก, ) (divide-and- conquer recurrence relation)
กก 19
# ,$ก#ก, )
1.ก*#B ก*!ก* ก.ก* $.$ *!
"-)*กก ก <*,* ก*!,ก ก !ก*
)% <*,* ก*!* ก#, ก -!*ก:1ก)* $ 8ก $(ก:1ก* $8!
ก1!-!* f(n) .1#ก-)*-ก*!$)ก n # +*#,
f(n) = f(n/2) + 2
2.ก!,$ก* -ก %. #&-ก*!
,$ก* a1, a2, ..., an
1.ก n = 1 +*#, a1 2,,1
2.<* n > 1 ,ก ก$8!8 !,1 ก, "#&ก:1 1,1 ,!,
1 ก#$ กก 20
# ,$ก#ก, )
ก1!-!* f(n) .1#ก-)*-ก!,1
f(n) = 2f(n/2) + 2
3.ก.* $'#ก (Merge sort) !กก 1ก* ก.
, ก2 ,#, C ก ก:1ก.* $'#ก.ก, ก, $ +* ก*#1$'#กก-!*$1 :8-)*
.1#ก1ก n
ก1!-!* M(n) .1#ก1ก-)*-ก!.* $'#ก กa1, a2, ..., an
M(n) = 2M(n/2) + n
กก 21
@>;'( $ก#ก, )
@>; -!* f 24/ก )%$:8 * ก#$$%& #ก
f(n) = a f(n/b) + c
$ n ! b # a > 1 +*#, f(n) = O(log n) <* a = 1 <* a > 1
ก.ก <* n = bk *# f(n) = C1nlog_b a + C2 $ C1 = f(1) + c/(a - 1) C2 = -c/(a - 1)
1. .$.1#ก ก*#B
2. .$.1#ก% !,1 #&-* 2
fn=Onlogba
กก 22
@>;$
@>; -!* f 24/ก )%$:8 * ก#$$%& #ก
f(n) = a f(n/b) + c nd
$ n ! b # a > 1 +*#,
3. .!#$::* -ก1#'( #$$%& #ก ก.
'#ก (merge sort)
fn=
{
OOOnnnddloglog nba}
กก 23
". ก, )
1..!.1#ก!$* ก ก*#B$$)ก 64 # 2.$$#, f(n) = f(n/3) + 1 $ n ! 3 # f(1) = 1 .! f(3), f(27),
f(729)
3.$$#, f(n) = f(n/5) + 3n2$ n ! 5 # f(1) = 4 .! f(5), f(125), f(3125)
4.$$$$ n = 2k$,%* กก * $'*)! %*$
ก$,!$ n/2 = 2k-1ก$$'*) 2k-1 $ - 1'*)!$
$,ก.! 2k-2 $
.$ก#ก .1#ก,!$.ก+*$)%
!8$
กก 24
4/ก )ก, ก1
4/ก )ก, ก1ก.กก-)* ก$ก1 (power series) $*4/ก )
# x ก1!$&? ก1 # x
$ 4/ก )ก, ก1.ก1 a0, a1, ..., ak, ... .1#.+$,.1ก
G(x) = a0 + a1x + ... + ak xk +...
$กก4/ก )ก, ก1.ก {ak} "#&ก,##, 4/ก )ก, ก1$0
# , 4/ก )ก, ก1.ก1 {an} ก1!-!*
{an}, an = 3
{an}, an = n + 1
{an}, an = 2n
=
∑
k=0
∞
akxk
∑
k=0∞
3 xk
∑
k=0∞
k1xk
∑
k=0∞
2 xk
กก 25
# ,ก-)*4/ก )ก, ก1$0
1.4/ก )ก, ก1+*.ก1 1, 1, 1, 1, 1, 1, 1
G(x) = 1 + x + x2 + x3 + x4 + x5 + x6
,(x7 - 1)/(x – 1) = 1 + x + x2 + x3 + x4 + x5 + x6
G(x) = (x7 - 1)/(x - 1)
2.-!* m 2.1#3$#ก ak = C(n, k) $ k = 0, 1, 2, ..., m 4/ก ) ก, ก1$0
G(x) = C(m, 0) + C(m, 1) + ... + C(m, m)xm
.ก@>;#B+*#, G(x) = (1 + x)m
กก 26
#$.ก#ก ก$ก1
4/ก ) f(x) = 1/(1 - x) 24/ก )ก, ก1 1 1, 1, 1, ...
4/ก ) f(x) = 1/(1 - ax) 24/ก )ก, ก1 1 1, a, a2, ...
@>; ก1! *#
ก1!-!* f(x) = 1/(1 – x)2.!$&? 4/ก )ก, ก1+*.ก f 1/(1 – x) = 1 + x + x2 + ...
+*#,
fxgx=
∑
k=0
∞
akbkxk, fxgx=
∑
k=0
∞
∑
j=0k ajbkj
xkf x=
∑
k=0
∞
akxk
1
1x2=
∑
k=0
∞
∑
j=0k 1
xk=∑
k=0∞ k1xkgx=
∑
k=0
∞
bkxk
กก 27
$$&?#$
$ -!* u 2#. k 2.1#3$+$,2 $$&?
#$ #,
# ,
uk
={
uu1⋯ukk !1 1 if kif k0=0}
23
=2343 ! =4
132
=121213 ! 122=161
nr
=1r
nr1r
กก 28
@>;$&?#$
$ -!* x 2#. |x| < 1 u 2.1#.
# ,.!4/ก )ก, ก1 (1 + x)-n (1 - x)-n$ n 2.1#3$#ก
1xu=
∑
k=0
∞
uk
xk1xn=
∑
k=0
∞
nk
xk=∑
k=0∞
1k
nkk1
xk1xn=
∑
k=0
∞
nk1k
xkกก 29
/0!ก4/ก )ก, ก1
$<-)*4/ก )ก, ก1-กก*/0!ก+* "(%ก.1#ก .!$,-, C
), กก.!$, r .ก n :8$$กก'(
e1 + e2 + ... + en = C
$ C 2,#, ei2.1#3$+$,2$ +ก1!
# , ..1#'(
e1 + e2 + e3 = 17
$ e1, e2, e32.1#3$+$,2 2 < e1 < 5, 3 < e2 < 6, 4 < e3 < 7
.1#'(* ก ,$&?!* $ x17
(x2 + x3 + x4 + x5)(x3 + x4 + x5 + x6)(x4 + x5 + x6 + x7)
กก 30
# ,/0!ก-)*4/ก )ก, ก1
ก$$ก /0!ก,#$ +*.ก
$ x17+*.กก,$ก xe1ก,$ xe2ก,$$ xe3" e1+e2+e3=17
%#,$&?!* x17 3 :821 * ก
ก#,ก!'(ก,# .+$,+*,ก#,ก. C ,#&ก$<
1+-)*กกก#* ก4/ก )%>+*
# , ..1##&2++*!$ ก.กกก)+$,ก,ก -!*ก3ก) ก 3ก!0 3ก) ",+*กก+$,1ก#, ) +$,ก)
#&1 $-)*1!3ก,+* (x2 + x3 + x4) $ #$3ก
$+*4/ก )ก, ก1- (x2 + x3 + x4)3"* ก$&?
!* $ x8 $$ก ก2++*!ก#&.ก (3, 3, 2), (4, 2, 2)
กก 31
ก-)*4/ก )ก, ก1ก*#$$%& #ก
$<!'( #$$%& #ก+*"-)*4/ก )ก, ก1 ),
# , .!'( #$$%& #ก ak = 3ak-1 +$* a0=2
#&1 -!* G(x) 24/ก )ก, ก1 1 {ak} ก,#
ก#,
% a0 = 2 ak = 3ak-1 +*#,
Gx=
∑
k=0
∞
akxk
x Gx=
∑
k=0
∞
akxk1=
∑
k=1
∞
ak1xk
Gx3 x Gx=
∑
k=0
∞
akxk3
∑
k=1
∞
ak1xk
=a0
∑
k=1
∞
ak3 ak1xk=2
กก 32
ก-)*4/ก )ก, ก1ก*#$$%& #ก
+*#, G(x) = 2/(1 - 3x)
,
+*#,
ak = 2 · 3k 1
1a x=
∑
k=0
∞
akxk
Gx=2
∑
k=0
∞
3kxk=
∑
k=0
∞
2⋅3kxk
กก 33
# ,ก-)*4/ก )ก, ก1ก*#$$%& #ก
# , $$! $+*ก *## n #:8* $ ,# -!* an
.1#! $+* n +*#,1* * ก#$$%&
#ก an = 8 an-1 + 10n-1 ... (1)
+$* a1 = 9 .-)*4/ก )ก, ก1! an
#&1 -!* (1) **# xn+*
an xn = 8 an-1 xn + xn10n-1 ... (2)
-!* Gx=
∑
24/ก )ก, ก1 1 a0, a1, a2, ...k=0
∞
akxk Gx1=
∑
n=1
∞
anxn=
∑
n=1
∞
8 an1xn10n1xn=8
∑
n=1
∞
an1xn1
∑
n=1
∞
10n1xn
=8 x
∑
n=1
∞
an1xn1x
∑
n=1
∞
10n1xn1=8 x Gx x 110 x
กก 34
ก-)*4/ก )ก, ก1ก*#$$%& #ก
+*#, G(x) – 1 = 8 x G(x) + x/(1 – 10 x)
*,+*#,
+*#, an = 0.5 (8n + 10n)
Gx= 19 x
18 x110 x
Gx=1
2
18 x1 110 x1
=1
2
∑
n=0∞ 8nxn∑
n=0∞ 10nxn
=
∑
n=0
∞ 1
28n10nxn
กก 35
".
1..!4/ก )ก, ก1 1.1ก 2, 2, 2, 2, 2, 2
2..4/ก )ก, ก1 1, +-!* ,- ,,
1. 1, 2, 1, 1, 1, 1, ...
2. 1, 3, 9, 27, 81, 243, 729, ...
3. 1, 0, 1, 0, 1, 0, ...
4. -3, 3, -3, 3, -3, 3, ...
3. .!$&? $ x10$.ก ก$ก1 4/ก ), +
1. (1 + x5 + x10 + ...)3 2. (x3 + x4 + x5 + ... )3
3. (x4 + x5 + x6)(x3 + x4 + x5 + x6 + x7)(1 + x + x2 + x3 + x4 + ...) 4. (x2 + x4 + x6 + x8 + ...)(x3 + x6 + x9 + ...)(x4 + x8 + x12 + ...)
กก 36
".
4..-)*4/ก )ก, ก1% !.1##&.ก.,ก"K!$ ก 10 ก-!*3ก
4 "3ก,* +* ,* ก
5..-)*4/ก )ก, ก1% !.1##&.ก.,Lก!$!$ ก 15 # -!*3ก 6 "3ก,* +* ,* 1 #+$,$ก+ก#, 3 # 6..!.1##&.ก.," 25 )-!*1#. 4 ",+* ,*
$) ,+$,ก.3)
7. -!* G(x)24/ก )ก, ก1 1 {ak} .! 4/ก )ก, ก1 1ก1!-!*- G(x)
1. 2a0, 2a1, 2a2, 2a3, ...
2. a1, 2a2, 3a3, 4a4, ...
กก 37
!กก%$*- ก
!กก%$*- ก<ก1+-)*-ก.1#$)ก-:.1ก : ก +*
| A ∪ B| = | A | + | B | - | A ∩ B |
1. ..1#3$#ก+$,ก 1000 !*# 7 ! 11 #
2. $$-"!,!8$ก , 1807 -$ก$ 453
#)#ก $%# 567 #) 299 #)
#ก $%# .!.1#ก+$, 3. ..1#3$#ก+$,ก 100 -!*# 5 7 +$,#
4. ..1# 8 +$,$ ก 6 #
กก 38
!กก%$*- กก:$กก#,
%.!กก%$*- ก $ -)*.1#$)ก-:.1ก$:, A, B, C +*#,
|A∪B∪C| = |A| + |B| + |C| - |A∩B| - |A∩C| - |B∩C| + |A∩B∩C|
# , $$-"!,!8$ก 1232 B> 879 B>
6 114 B>: ก.ก 103 B>6 23
B>: 14 B>6: <* ,* 2092
B>- B>!8 .!ก$B>
@>;!กก%$*- ก -!* A1, A2, ..., An2:.1ก *#
∣A1∪A2∪⋯∪An∣=
∑
1in
∣Ai∣
∑
1ijn
∣Ai∩Aj∣
∑
1ijkn
∣Ai∩Aj∩Ak∣⋯1n1∣A1∩A2∩⋯∩An∣
กก 39
".
1. .-ก.1#$)ก ::
2. .!.1#$)ก-: |A1 ∪ A2 ∪ A3| #<*$$)ก 100 - A1, 1000 -
A2 10000 - A3<*
1.A1 ⊆ A2 A2 ⊆ A3
2. ก:+$,$,#,#$กก,
3. $$)ก #!#,, : $$)ก%!8# ,-$:
3. .!.1# $!$- !กก%$*- กก: 10 : 4. ..1#3$#ก!$+$,ก 100 2.1#2ก1
.1#
กก 40
ก !กก%$*- ก
-!* Ai2:$$)ก * $ Pi.1#$)ก!$$$
Pi1, Pi2, ..., Pik*# N(Pi1 Pi2 ... Pik) +*#,
|Ai1 ∩ Ai2 ∩ ... ∩ Aik | = N(Pi1 Pi2 ... Pik)
ก1!-!*.1#$)ก+$,$$ P1, P2, ..., Pn N(P'1 P'2 ... P'k)
-!* N .1#$)ก-: +*#,
N(P'1 P'2 ... P'k) = N - |A1 ∪A2 ∪ ... ∪An |
.ก!กก%$*- ก+*
NP '1P '2⋯P 'n=N
∑
1in
NPi
∑
1ijn
NPiPj
∑
1ijkn
NPiPjPk⋯1nNP1P2⋯Pn
กก 41
#&ก "
.!.1#'(2++*!$
x1 + x2 + x3 = 11
$ x1, x2, x32.1#+$,2 x1 < 3, x2 < 4 x3 < 6
#&ก " #&กก .1#% !$.1#(%+$,ก .1#3$ก1!
%.!.1#(%+$,ก 100 ก#,.1#ก $,+$,ก 100 $ 4 .1#(%+$,ก 10 .1#(%* ก#, 10 2, 3, 5, 7
.1#(%+$,ก 100 .1#!$! 2, 3, 5, 7 +$,#
-!* P1 ก!#*# 2, P2 ก!#*# 3, P3 ก!#
*# 5, P4 ก!#*# 7 $.1#(%!#, 1 <8 100
4 + N(P'1 P'2 P'3 P'4)
กก 42
ก.1#(%!#, 0 <8 100
.ก!กก%$*-!ก ก+*#,
N(P'1 P'2 P'3 P'4) = 99 - N(P1) - N(P2) - N(P3) – N(P4) + N(P1 P2) + N(P1 P3) + N(P1 P4) + N(P2 P3) + N(P2 P4) + N(P3 P4)
- N(P1 P2 P3) - N(P1 P2 P4) - N(P2 P3 P4) + N(P1 P2 P3 P4)
N(P'1 P'2 P'3 P'4) = 99 - 100/2 - 100/3 - 100/5 - 100/7 + 100/6 + 100/10 + 100/14 + 100/15 + 100/21+ 100/35
- 100/30 - 100/42 - 100/70 - 100/105 + 100/210
– – – – – –
= 99 50 33 20 14 + 16 + 10 + 7 + 6 + 4 + 2 3 −2 −1 0 + 0
$ .1#(%* ก#, 100 21
กก 43
ก.1#4/ก )#<8
%.ก.1#4/ก )#<8.ก:$$)ก 6 #+:$$)ก 3 #
# -!* b1, b2 b32$)ก ,-: 3 #
-!* P1, P2, P3$ b1, b2, b3+$, ,-% 4/ก )
4/ก )24/ก )#<8 ก3, $ 4/ก )+$, * ก P1, P2, P3 N(P'1 P'2 P'3) = N - N(P1) - N(P2) - N(P3) + N(P1 P2) + N(P1 P3) + N(P2 P3) - N(P1 P2 P3)
$ N 2.1#4/ก )!$2++*
N(P'1 P'2 P'3) = 36 – C(3, 1)26 + C(3, 2)16 = 729 – 192 + 3 = 540
@>; -!* m n 2.1#3$#ก m > n .$.1#4/ก )#<8.ก:
$$)ก m #+:$$)ก n #!$
nm – C(n, 1)(n-1)m + C(n, 2)(n-2)m - ... + (-1)n-1C(n, n-1) 1m
กก 44
ก.1#4/ก )#<8
.1#4/ก )#<8.ก:$ m $)ก+:$ n $)ก,ก n!S2(m, n)
$ S2(m, n) Stirling number of the second kind
.#&!$2++*-กก1!!*,ก-!*กก.* "
,* +* ,* !8
.#&!$2++*-ก.ก., , 6 ,ก-!*ก3ก 3
3กก* +* , ,* !8)
.!.1#'(2++* $ก x1 + x2 + x3 = 13 $ x1, x2, x3
2.1#+$,2* ก#, 6
.#&!$2++*-ก-,ก ก,ก -"<$"<,ก
","<* $ก ,* !8ก
..1#(%* ก#, 60