• Tidak ada hasil yang ditemukan

F ก ก F

N/A
N/A
Protected

Academic year: 2024

Membagikan "F ก ก F"

Copied!
11
0
0

Teks penuh

(1)

กก

: ก (Advanced

counting technique)

กก 2

!"#$

#$$%& #ก

##$$%& #ก

#&ก!'( #$$%& #ก)* ก%&

#&ก!'( #$$%& #ก)*+$, ก%&

ก, )

#&ก!'( #$$%& #ก- ก, )

". ก

กก 3

#$$%& #ก

/0!ก/0!$#&-ก!1 กก*$ก#ก +* ), .1# n +$,$ #ก

-ก * /0!ก,#-!* ,-#$$%& #ก

$ #$$%& #ก 1 {an} $กก1#, an

- $ก, !* a1, a2, ..., an-1

ก,##,1 {cn} 2'( #$$%& #ก ก3, $ $ 1 {cn} * ก#$$%& #กก,#

กก 4

145") fn $ #$$%& #ก

fn = fn-1 + fn-2

" f1 = 1, f2 = 1

1 10 $ก 145") 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

ก1#4/ก )4ก $ก1#

n! = n · (n-1)!

" 0! = 1

145"))

(2)

กก 5

##$$%& #ก

-)*#$$%& #ก-ก.1 # /0! ),

/0! ก*: $$'*6ก$6ก 100,000 -0) $%

&-!* ก* 5% , 7 .!.1#! 30 76ก+#*

/0!ก,ก: /0!1 " Leonardo di Pisa

$$ก!,!8$ก,,!8 ,-#.0%& %)%!0

#,ก,. ,-#%& +*$ ',+ 2 $$#,ก 2

ก,# ก,!8,. กก 1 ,%)%!0 .!#$$%& #ก .1#ก,$ #',+ n

$$#,ก,ก$+$,

กก 6

/0!! 9

/0!! 9 : ! 9 ก *#ก 3 กก$

',ก$,$ก #:* ก.ก-!0,*,+

3ก * ก; ก*',ก$ '**$<*',ก$',

* #ก-ก!8"',#* $3กก#,',ก$#

ก*#

-!* Hn .1#ก*!$* % 1!, ',ก$!$

.กก$*+ก=!$ .#$$%& #ก ก1# Hn

กก 7

". ก*##$$%& #ก

1..!#$$%& #ก +$* % ก!.1# n

+$,$ ,ก .!1 $ n = 6

2. $%# !8 $-!*'*-)*-,!ก *# n # ,* $ .1# -2.1#,

.#$$%& #ก ก!.1#!2++*!$ n # 3..!#$$%& #ก Cn $ Cn ก.1#ก-,#3!$

2++* กก # n+1 .1# ), C3 = 5 "# 4 #

x0, x1, x2, x3 ก+* ((x0· x1) · x2) · x3, (x0· (x1· x2)) · x3, (x0· x1)(x2· x3), x0· ((x1· x2) · x3), x0· (x1· (x2· x3))

กก 8

#&ก!'( #$$%& #ก

-.ก!'( #$$%& #ก :8.$$ #&

-ก!). ! ก-)*ก1:1 ! ก-)*%>

$ #$$%& #ก)* ก%& ก k ก$&?#

#$$%& #ก ,-

an = c1·an-1 + c2·an-2 + ... + ck·an-k

$ c1, c2, ..., ck 2.1#. ck 0

%#,'(.ก#$$%& #ก)* ก%& .$'(# $ ก1!,# * ก#$$%& k ,

(3)

กก 9

) #$$%& #ก

#$$%& #ก ,- Pn = 1.11 Pn-1 2#$$%& #ก)*

ก%& ก 1

#$$%& #ก ,- fn = fn-1 + fn-2 2#$$%& #ก)*

ก%& ก 2

#$$%& #ก ,- an = an-5 2#$$%& #ก)* ก%&

5

#$$%& #ก ,- an = an-1 + a2n-2 +$,2#$$%& #ก )* ก%& ก 5

กก 10

$กก>(% #$$%& #ก)* ก%&

'( #$$%& #ก)* ก%& $$&?2,#.

,- an = rnก,# an = c1·an-1 + c2·an-2 + ... + ck·an-k ก3, $

rn = c1rn-1 + c2rn-2 + ... + ck rn-k

! *# rn-k

rk = c1rk-1 + c2rk-2 + ... + ck-1r + ck

ก$กก>(% (characteristic equation) ก'(+*

.ก$กก>(%#, กก>(% (characteristic roots)

กก 11

@>;'( #$$%& #ก)* ก%& ก

2

ก+$,:1

@>; -!* c1 c2 2.1#. $$#, r2 - c1·r c2 = 0 $ก,ก ก r1 r2 *# 1 {an} 2'( #$$%& #ก an = c1·an-1 + c2·an-2 ก3, $ an = α

1·r1n + α

2·r2nn = 0, 1, 2, ... $ α1

α22,#

1..!'( #$$%& #ก an = an-1 + 2an-2$ a0 = 2, a1 = 7

2..!'( 145"))

3..!'( #$$%& #ก an = 2an-1$ a0 = 3

4..!'( #$$%& #ก an = 4an-2$ a0 = 0, a1 = 4

กก 12

@>;'( #$$%& #ก)* ก%& ก

2

ก:1 ก

k

@>; -!* c1 c2 2.1#. c2 ≠ 0 $$#, r2 - c1·r c2 = 0 $ก

%ก# r0 *# 1 {an} 2'( #$$%& #ก an = c1·an-1 + c2·an-2 ก3, $ an = α

1·r0n + α

2· n · r0nn = 0, 1, 2, ... $ α1

α22,#

5. .!'( #$$%& #ก an = 6an-1 - 9an-2

@>; -!* c1, c2, ..., ck 2.1#. rk = c1rk-1 - ... - ck $ก,ก k

r1, r2, ..., rk *# 1 {an} 2'( #$$%& #ก an = c1·an-1 + c2·an-2 + ... + ck·an-k ก3, $ an = α

1·r1n + α

2· r2n + ... + α

k· rkn

n = 0, 1, 2, ... $ α1, α

2 , ....,α

k2,#

6. .!'( #$$%& #ก an = 6an-1 – 11an-2 + 6an-3

(4)

กก 13

@>;'( #$$%& #ก)* ก%& ก

k

ก:1

@>; -!* c1, c2, ..., ck 2.1#. rk = c1rk-1 - ... - ck $ก,ก t

r1, r2, ..., rt ,ก$ก:1ก m1, m2, ..., mt $1 " mi > 1 m1 + m2 + ... + mt = k *#1 {an} 2'( #$$%&

#ก an = c1·an-1 + c2·an-2 + ... + ck·an-k ก3, $

an = (α

1,0+ α

1,1n + ... + α

1,m1-1nm1-1)·r1n + (α

2,0+ α

2,1n + ... + α

2,m2-1nm2-

1)·r2n + ... + (α

t,0+ α

t,1n + ... + α

t,mt-1nmt-1)·rtnn = 0, 1, 2, ... $ αi,j 2,#

7. .!'( #$$%& #ก an = -3an-1 – 3an-2an-3, " a0 = 1, a1= -2, a2 = -1

กก 14

$กก>(% #$$%& #ก)*+$, ก%&

#$$%& #ก)*+$, ก%& $$&?2,#. ,-

an = c1·an-1 + c2·an-2 + ... + ck·an-k + F(n)

$ c1, c2, ..., ck ,# F(n)+$,-)*4/ก )

an = c1·an-1 + c2·an-2 + ... + ck·an-k

#,#$$%& #ก)* ก%& $

'( $กก,#.+*.ก'#ก '((% #$

$%& #ก)*+$, ก%& ก'(#+ #$$%& #ก )* ก%& $

กก 15

#&ก!'( #$$%& #ก)*+$, ก%&

1..!'( #$$%& #ก2++* an = 3·an-1 + 2n

<* a1 = 3 *#'(+* +

2..!'( #$$%& #ก2++* an = 5·an-1- 6·an-1 + 7n

ก!'( #$$%& #ก)*+$, ก%& ,2

ก!'((% #$$%& #ก)*+$, ก%& ก,

ก!'(#+ #$$%& #ก)* ก%& $

*#.11'(,$#$ก

กก 16

@>;'( #$$%& #ก)*+$, ก%&

@>; ก1!-!* {an-1} * ก#$$%& #ก)*+$, ก%&

an = c1·an-1 + c2·an-2 + ... + ck·an-k + F(n)

$ c1, c2, ..., ck ,# F(n) = (btnt + bt-1nt-1 + ... + b1n + b0)sn

$ b1, b2, ..., bt, s ,# s +$,-),ก #$$%& #ก)*

$ .+*'((%-

(ptnt + pt-1nt-1 + ... + p1n + p0)sn

<* s 2ก #$$%& #ก)*$:1ก m

.+*'((%-

nm(ptnt + pt-1nt-1 + ... + p1n + p0)sn

(5)

กก 17

". #$$%& #ก)*+$, ก%&

1..!'((% #$$%& #ก)*+$, ก%& an = 6·an-1 - 9 an-2 + F(n) $ F(n) = 3n, F(n) = n3n, F(n) = n22n, F(n) = (n2+1)3n

2.ก1!-!* an 2'#$ .1#3$#ก n #ก

.#, an * #$$%& #ก)*+$, ก%&

an = an-1+ n

.!.1#ก. ),# 1×2 2×2 n

2++*!$

an=

k=1 n

k

กก 18

ก, )

-ก%A"ก$! #& '*%Aก3-)*!กกก*/0!"

,/0!-!*3ก .ก+*/0!3ก%% .!'(+*

!.ก.81'(, +*$#$-!*2'( /0!$* !กก ก,#ก#,!กก, ) (Divide-and-Conquer)

$$#, #&#ก,/0! n ก2 a /0!, $ n/b

$$#,#-)*-ก#$ /0!, g(n)

-!* f(n) .1#ก1ก-กก*/0! n +*#,

f(n) = a f(n/b) + g(n)

ก$ก#ก+*#, $ก#ก, ) (divide-and- conquer recurrence relation)

กก 19

# ,$ก#ก, )

1.ก*#B ก*!ก* ก.ก* $.$ *!

"-)*กก ก <*,* ก*!,ก ก !ก*

)% <*,* ก*!* ก#, ก -!*ก:1ก)* $ 8ก $(ก:1ก* $8!

ก1!-!* f(n) .1#ก-)*-ก*!$)ก n # +*#,

f(n) = f(n/2) + 2

2.ก!,$ก* -ก %. #&-ก*!

,$ก* a1, a2, ..., an

1.ก n = 1 +*#, a1 2,,1

2.<* n > 1 ,ก ก$8!8 !,1 ก, "#&ก:1 1,1 ,!,

1 ก#$ กก 20

# ,$ก#ก, )

ก1!-!* f(n) .1#ก-)*-ก!,1

f(n) = 2f(n/2) + 2

3.ก.* $'#ก (Merge sort) !กก 1ก* ก.

, ก2 ,#, C ก ก:1ก.* $'#ก.ก, ก, $ +* ก*#1$'#กก-!*$1 :8-)*

.1#ก1ก n

ก1!-!* M(n) .1#ก1ก-)*-ก!.* $'#ก กa1, a2, ..., an

M(n) = 2M(n/2) + n

(6)

กก 21

@>;'( $ก#ก, )

@>; -!* f 24/ก )%$:8 * ก#$$%& #ก

f(n) = a f(n/b) + c

$ n ! b # a > 1 +*#, f(n) = O(log n) <* a = 1 <* a > 1

ก.ก <* n = bk *# f(n) = C1nlog_b a + C2 $ C1 = f(1) + c/(a - 1) C2 = -c/(a - 1)

1. .$.1#ก ก*#B

2. .$.1#ก% !,1 #&-* 2

fn=Onlogba

กก 22

@>;$

@>; -!* f 24/ก )%$:8 * ก#$$%& #ก

f(n) = a f(n/b) + c nd

$ n ! b # a > 1 +*#,

3. .!#$::* -ก1#'( #$$%& #ก ก.

'#ก (merge sort)

fn=

{

OOOnnnddloglog nba

}

กก 23

". ก, )

1..!.1#ก!$* ก ก*#B$$)ก 64 # 2.$$#, f(n) = f(n/3) + 1 $ n ! 3 # f(1) = 1 .! f(3), f(27),

f(729)

3.$$#, f(n) = f(n/5) + 3n2$ n ! 5 # f(1) = 4 .! f(5), f(125), f(3125)

4.$$$$ n = 2k$,%* กก * $'*)! %*$

ก$,!$ n/2 = 2k-1ก$$'*) 2k-1 $ - 1'*)!$

$,ก.! 2k-2 $

.$ก#ก .1#ก,!$.ก+*$)%

!8$

กก 24

4/ก )ก, ก1

4/ก )ก, ก1ก.กก-)* ก$ก1 (power series) $*4/ก )

# x ก1!$&? ก1 # x

$ 4/ก )ก, ก1.ก1 a0, a1, ..., ak, ... .1#.+$,.1ก

G(x) = a0 + a1x + ... + ak xk +...

$กก4/ก )ก, ก1.ก {ak} "#&ก,##, 4/ก )ก, ก1$0

# , 4/ก )ก, ก1.ก1 {an} ก1!-!*

{an}, an = 3

{an}, an = n + 1

{an}, an = 2n

=

k=0

akxk

k=0

3 xk

k=0

k1xk

k=0

2 xk

(7)

กก 25

# ,ก-)*4/ก )ก, ก1$0

1.4/ก )ก, ก1+*.ก1 1, 1, 1, 1, 1, 1, 1

G(x) = 1 + x + x2 + x3 + x4 + x5 + x6

,(x7 - 1)/(x – 1) = 1 + x + x2 + x3 + x4 + x5 + x6

G(x) = (x7 - 1)/(x - 1)

2.-!* m 2.1#3$#ก ak = C(n, k) $ k = 0, 1, 2, ..., m 4/ก ) ก, ก1$0

G(x) = C(m, 0) + C(m, 1) + ... + C(m, m)xm

.ก@>;#B+*#, G(x) = (1 + x)m

กก 26

#$.ก#ก ก$ก1

4/ก ) f(x) = 1/(1 - x) 24/ก )ก, ก1 1 1, 1, 1, ...

4/ก ) f(x) = 1/(1 - ax) 24/ก )ก, ก1 1 1, a, a2, ...

@>; ก1! *#

ก1!-!* f(x) = 1/(1 – x)2.!$&? 4/ก )ก, ก1+*.ก f 1/(1 – x) = 1 + x + x2 + ...

+*#,

fxgx=

k=0

akbkxk, fxgx=

k=0

 ∑

j=0k ajbkj

xk

f x=

k=0

akxk

1

1x2=

k=0

 ∑

j=0k 1

xk=

k=0 k1xk

gx=

k=0

bkxk

กก 27

$$&?#$

$ -!* u 2#. k 2.1#3$+$,2 $$&?

#$ #,

# ,

uk

=

{

uu1⋯ukk !1 1 if kif k0=0

}

23

=2343 ! =4

132

=121213 ! 122=161

nr

=1r

nr1r

กก 28

@>;$&?#$

$ -!* x 2#. |x| < 1 u 2.1#.

# ,.!4/ก )ก, ก1 (1 + x)-n (1 - x)-n$ n 2.1#3$#ก

1xu=

k=0

uk

xk

1xn=

k=0

nk

xk=

k=0

1k

nkk1

xk

1xn=

k=0

nk1k

xk
(8)

กก 29

/0!ก4/ก )ก, ก1

$<-)*4/ก )ก, ก1-กก*/0!ก+* "(%ก.1#ก .!$,-, C

), กก.!$, r .ก n :8$$กก'(

e1 + e2 + ... + en = C

$ C 2,#, ei2.1#3$+$,2$ +ก1!

# , ..1#'(

e1 + e2 + e3 = 17

$ e1, e2, e32.1#3$+$,2 2 < e1 < 5, 3 < e2 < 6, 4 < e3 < 7

.1#'(* ก ,$&?!* $ x17

(x2 + x3 + x4 + x5)(x3 + x4 + x5 + x6)(x4 + x5 + x6 + x7)

กก 30

# ,/0!ก-)*4/ก )ก, ก1

ก$$ก /0!ก,#$ +*.ก

$ x17+*.กก,$ก xe1ก,$ xe2ก,$$ xe3" e1+e2+e3=17

%#,$&?!* x17 3 :821 * ก

ก#,ก!'(ก,# .+$,+*,ก#,ก. C ,#&ก$<

1+-)*กกก#* ก4/ก )%>+*

# , ..1##&2++*!$ ก.กกก)+$,ก,ก -!*ก3ก) ก 3ก!0 3ก) ",+*กก+$,1ก#, ) +$,ก)

#&1 $-)*1!3ก,+* (x2 + x3 + x4) $ #$3ก

$+*4/ก )ก, ก1- (x2 + x3 + x4)3"* ก$&?

!* $ x8 $$ก ก2++*!ก#&.ก (3, 3, 2), (4, 2, 2)

กก 31

ก-)*4/ก )ก, ก1ก*#$$%& #ก

$<!'( #$$%& #ก+*"-)*4/ก )ก, ก1 ),

# , .!'( #$$%& #ก ak = 3ak-1 +$* a0=2

#&1 -!* G(x) 24/ก )ก, ก1 1 {ak} ก,#

ก#,

% a0 = 2 ak = 3ak-1 +*#,

Gx=

k=0

akxk

x Gx=

k=0

akxk1=

k=1

ak1xk

Gx3 x Gx=

k=0

akxk3

k=1

ak1xk

=a0

k=1

ak3 ak1xk=2

กก 32

ก-)*4/ก )ก, ก1ก*#$$%& #ก

+*#, G(x) = 2/(1 - 3x)

,

+*#,

ak = 2 · 3k 1

1a x=

k=0

akxk

Gx=2

k=0

3kxk=

k=0

23kxk

(9)

กก 33

# ,ก-)*4/ก )ก, ก1ก*#$$%& #ก

# , $$! $+*ก *## n #:8* $ ,# -!* an

.1#! $+* n +*#,1* * ก#$$%&

#ก an = 8 an-1 + 10n-1 ... (1)

+$* a1 = 9 .-)*4/ก )ก, ก1! an

#&1 -!* (1) **# xn+*

an xn = 8 an-1 xn + xn10n-1 ... (2)

-!* Gx=

24/ก )ก, ก1 1 a0, a1, a2, ...

k=0

akxk Gx1=

n=1

anxn=

n=1

8 an1xn10n1xn=8

n=1

an1xn1

n=1

10n1xn

=8 x

n=1

an1xn1x

n=1

10n1xn1=8 x Gx x 110 x

กก 34

ก-)*4/ก )ก, ก1ก*#$$%& #ก

+*#, G(x) – 1 = 8 x G(x) + x/(1 – 10 x)

*,+*#,

+*#, an = 0.5 (8n + 10n)

Gx= 19 x

18 x110 x

Gx=1

2

18 x1 110 x1

=1

2

 ∑

n=0 8nxn

n=0 10nxn

=

n=0

1

28n10nxn

กก 35

".

1..!4/ก )ก, ก1 1.1ก 2, 2, 2, 2, 2, 2

2..4/ก )ก, ก1 1, +-!* ,- ,,

1. 1, 2, 1, 1, 1, 1, ...

2. 1, 3, 9, 27, 81, 243, 729, ...

3. 1, 0, 1, 0, 1, 0, ...

4. -3, 3, -3, 3, -3, 3, ...

3. .!$&? $ x10$.ก ก$ก1 4/ก ), +

1. (1 + x5 + x10 + ...)3 2. (x3 + x4 + x5 + ... )3

3. (x4 + x5 + x6)(x3 + x4 + x5 + x6 + x7)(1 + x + x2 + x3 + x4 + ...) 4. (x2 + x4 + x6 + x8 + ...)(x3 + x6 + x9 + ...)(x4 + x8 + x12 + ...)

กก 36

".

4..-)*4/ก )ก, ก1% !.1##&.ก.,ก"K!$ ก 10 ก-!*3ก

4 "3ก,* +* ,* ก

5..-)*4/ก )ก, ก1% !.1##&.ก.,Lก!$!$ ก 15 # -!*3ก 6 "3ก,* +* ,* 1 #+$,$ก+ก#, 3 # 6..!.1##&.ก.," 25 )-!*1#. 4 ",+* ,*

$) ,+$,ก.3)

7. -!* G(x)24/ก )ก, ก1 1 {ak} .! 4/ก )ก, ก1 1ก1!-!*- G(x)

1. 2a0, 2a1, 2a2, 2a3, ...

2. a1, 2a2, 3a3, 4a4, ...

(10)

กก 37

!กก%$*- ก

!กก%$*- ก<ก1+-)*-ก.1#$)ก-:.1ก : ก +*

| A B| = | A | + | B | - | A B |

1. ..1#3$#ก+$,ก 1000 !*# 7 ! 11 #

2. $$-"!,!8$ก , 1807 -$ก$ 453

#)#ก $%# 567 #) 299 #)

#ก $%# .!.1#ก+$, 3. ..1#3$#ก+$,ก 100 -!*# 5 7 +$,#

4. ..1# 8 +$,$ ก 6 #

กก 38

!กก%$*- กก:$กก#,

%.!กก%$*- ก $ -)*.1#$)ก-:.1ก$:, A, B, C +*#,

|ABC| = |A| + |B| + |C| - |AB| - |AC| - |BC| + |ABC|

# , $$-"!,!8$ก 1232 B> 879 B>

6 114 B>: ก.ก 103 B>6 23

B>: 14 B>6: <* ,* 2092

B>- B>!8 .!ก$B>

@>;!กก%$*- ก -!* A1, A2, ..., An2:.1ก *#

A1A2∪⋯∪An∣=

1in

Ai

1ijn

AiAj

1ijkn

AiAjAk∣⋯1n1A1A2∩⋯∩An

กก 39

".

1. .-ก.1#$)ก ::

2. .!.1#$)ก-: |A1 A2 A3| #<*$$)ก 100 - A1, 1000 -

A2 10000 - A3<*

1.A1A2 A2A3

2. ก:+$,$,#,#$กก,

3. $$)ก #!#,, : $$)ก%!8# ,-$:

3. .!.1# $!$- !กก%$*- กก: 10 : 4. ..1#3$#ก!$+$,ก 100 2.1#2ก1

.1#

กก 40

ก !กก%$*- ก

-!* Ai2:$$)ก * $ Pi.1#$)ก!$$$

Pi1, Pi2, ..., Pik*# N(Pi1 Pi2 ... Pik) +*#,

|Ai1 Ai2 ... Aik | = N(Pi1 Pi2 ... Pik)

ก1!-!*.1#$)ก+$,$$ P1, P2, ..., Pn N(P'1 P'2 ... P'k)

-!* N .1#$)ก-: +*#,

N(P'1 P'2 ... P'k) = N - |A1 A2 ... An |

.ก!กก%$*- ก+*

NP '1P '2P 'n=N

1in

NPi

1ijn

NPiPj

1ijkn

NPiPjPk⋯1nNP1P2Pn

(11)

กก 41

#&ก "

.!.1#'(2++*!$

x1 + x2 + x3 = 11

$ x1, x2, x32.1#+$,2 x1 < 3, x2 < 4 x3 < 6

#&ก " #&กก .1#% !$.1#(%+$,ก .1#3$ก1!

%.!.1#(%+$,ก 100 ก#,.1#ก $,+$,ก 100 $ 4 .1#(%+$,ก 10 .1#(%* ก#, 10 2, 3, 5, 7

.1#(%+$,ก 100 .1#!$! 2, 3, 5, 7 +$,#

-!* P1 ก!#*# 2, P2 ก!#*# 3, P3 ก!#

*# 5, P4 ก!#*# 7 $.1#(%!#, 1 <8 100

4 + N(P'1 P'2 P'3 P'4)

กก 42

ก.1#(%!#, 0 <8 100

.ก!กก%$*-!ก ก+*#,

N(P'1 P'2 P'3 P'4) = 99 - N(P1) - N(P2) - N(P3) – N(P4) + N(P1 P2) + N(P1 P3) + N(P1 P4) + N(P2 P3) + N(P2 P4) + N(P3 P4)

- N(P1 P2 P3) - N(P1 P2 P4) - N(P2 P3 P4) + N(P1 P2 P3 P4)

N(P'1 P'2 P'3 P'4) = 99 - 100/2 - 100/3 - 100/5 - 100/7 + 100/6 +100/10 + 100/14 + 100/15 + 100/21+ 100/35

- 100/30 - 100/42 - 100/70 - 100/105 + 100/210

= 99 50 33 20 14 + 16 + 10 + 7 + 6 + 4 + 2 3 −2 −1 0 + 0

$ .1#(%* ก#, 100 21

กก 43

ก.1#4/ก )#<8

%.ก.1#4/ก )#<8.ก:$$)ก 6 #+:$$)ก 3 #

# -!* b1, b2 b32$)ก ,-: 3 #

-!* P1, P2, P3$ b1, b2, b3+$, ,-% 4/ก )

4/ก )24/ก )#<8 ก3, $ 4/ก )+$, * ก P1, P2, P3 N(P'1 P'2 P'3) = N - N(P1) - N(P2) - N(P3) + N(P1 P2) + N(P1 P3) + N(P2 P3) - N(P1 P2 P3)

$ N 2.1#4/ก )!$2++*

N(P'1 P'2 P'3) = 36 – C(3, 1)26 + C(3, 2)16 = 729 – 192 + 3 = 540

@>; -!* m n 2.1#3$#ก m > n .$.1#4/ก )#<8.ก:

$$)ก m #+:$$)ก n #!$

nm – C(n, 1)(n-1)m + C(n, 2)(n-2)m - ... + (-1)n-1C(n, n-1) 1m

กก 44

ก.1#4/ก )#<8

.1#4/ก )#<8.ก:$ m $)ก+:$ n $)ก,ก n!S2(m, n)

$ S2(m, n) Stirling number of the second kind

.#&!$2++*-กก1!!*,ก-!*กก.* "

,* +* ,* !8

.#&!$2++*-ก.ก., , 6 ,ก-!*ก3ก 3

3กก* +* , ,* !8)

.!.1#'(2++* $ก x1 + x2 + x3 = 13 $ x1, x2, x3

2.1#+$,2* ก#, 6

.#&!$2++*-ก-,ก ก,ก -"<$"<,ก

","<* $ก ,* !8ก

..1#(%* ก#, 60

Referensi

Dokumen terkait

L G0 ก1 erix-design concepts

กก2 Manufacturing Management ก'ก

[r]

[r]

income of the elderly and household income positively affect the demand for most types of LTC services, while only demand for formal caregivers and day care services is negatively and

The sea is one of our abundant natural resources which the southern people along Thai bay and Andaman of Thailand earn for their living.. As we know that the fishermen’s living are

CSC662 CSC662 Data mining, Data warehouse and

[r]