• Tidak ada hasil yang ditemukan

Outline

N/A
N/A
Protected

Academic year: 2024

Membagikan "Outline"

Copied!
8
0
0

Teks penuh

(1)

6.  Multiple Regression Analysis:

Quadratics, Interaction Terms and Model Selection

Read Wooldridge (2013) , Chapter 6.2-6.3

6. Quadratics, Interaction Terms and Model Selection . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat

Outline

I. Quadratic Function II. Interaction Terms III. Adjusted R‐Squared IV. AIC and SIC

V. Selection of Regressors

I. Quadratic II. Interaction III. Adjust R

2

IV. AIC&SIC V. Selection 2

6. Quadratics, Interaction Terms and Model Selection . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat

I.  Models with Quadratics

• Consider a model

y : wage; x : exper y =   0 +   1 x +   2 x 2 + u

• Quadratic functions are used to capture decreasing or  increasing marginal effects.

 2 < 0; (  1 > 0) decreasing marginal effect

 2 > 0; (  1 < 0) increasing marginal effect

• Interpretation: slope coefficients. 

y = (  1 + 2  2 x)x

Questions: 1) What is the marginal effect of x on y?

2) What is  ?

I. Quadratic II. Interaction III. Adjust R

2

IV. AIC&SIC V. Selection 3

6. Quadratics, Interaction Terms and Model Selection . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat I. Models with Quadratics

Example: Quadratic equation of wages.

=  3.73 + 0.298exper – 0.0061exper 2 s.e. (0.35)     (0.41) (0.0009) t‐stat    [10.77]    [7.28]      [‐6.79]

n = 526R 2 = 0.093

Interpretation:

1.  exper has a diminishing effect on wage ( <0)

2.  The marginal effect of exper on wage:  The return to the  second year of experience is less than the first.  

Compare 1 st year (.298), 2 nd year (.286) and the 11 th year. 

(0.176)

3.  The marginal effect of exper on wage will eventually be  negative. (26 th year – going from 25 to 26 years.) (‐.007)

I. Quadratic II. Interaction III. Adjust R

2

IV. AIC&SIC V. Selection 4

6. Quadratics, Interaction Terms and Model Selection . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat I. Models with Quadratics

Dependent Variable: WAGE

Sample: 1 526 Included observations: 526

Variable Coefficient Std. Error t-Statistic Prob.

C 3.725406 0.345939 10.76896 0

EXPER 0.2981 0.040966 7.27685 0

EXPER^2 -0.00613 0.000903 -6.79199 0

R-squared 0.092769 Mean dependent var 5.896103

Adjusted R-squared 0.0893 S.D. dependent var 3.693086

S.E. of regression 3.524334 Akaike info criterion 5.362947

Sum squared resid 6496.147 Schwarz criterion 5.387274

Log likelihood -1407.46 F-statistic 26.73982

Durbin-Watson stat 1.801688 Prob(F-statistic) 0

(2)

Regress wage on exper and exper 2

Dependent Variable: WAGE Sample: 1 526

Included observations: 526

Variable Coefficient Std. Error t-Statistic Prob.

C 3.725406 0.345939 10.76896 0

EXPER 0.2981 0.040966 7.27685 0

EXPER^2 -0.00613 0.000903 -6.79199 0

R-squared 0.092769 Mean dependent var 5.896103

Adjusted R-squared 0.0893 S.D. dependent var 3.693086

S.E. of regression 3.524334 Akaike info criterion 5.362947

Sum squared resid 6496.147 Schwarz criterion 5.387274

Log likelihood -1407.46 F-statistic 26.73982

Durbin-Watson stat 1.801688 Prob(F-statistic) 0

I. Quadratic II. Interaction III. Adjust R

2

IV. AIC&SIC V. Selection 5

6. Quadratics, Interaction Terms and Model Selection . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat I. Models with Quadratics

Quadratic has a parabolic shape.

I. Quadratic II. Interaction III. Adjust R

2

IV. AIC&SIC V. Selection 6

6. Quadratics, Interaction Terms and Model Selection . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat I. Models with Quadratics

The turning point

• The turning point is the  absolute value of the  coefficient of x over twice  the coefficient of x 2 .

x* = .298/2(.0061) 

=  24.4 years.

• Is it true that the return on 

“exper” is negative after 24  years of experience?  

Tabulation of EXPER Date: 05/20/03 Time: 11:49 Sample: 1 526

Included observations: 526 Number of categories: 6

Value Count

Cumulative Count

[0, 10) 206 206

[10, 20) 129 335

[20, 30) 80 415

[30, 40) 66 481

[40, 50) 43 524

[50, 60) 2 526

Total 526 526

years 4 . ˆ 24 2

* ˆ

2

1

  x 

In the "Series”

window, choose View/One Way Tabulations

I. Quadratic II. Interaction III. Adjust R

2

IV. AIC&SIC V. Selection 7

6. Quadratics, Interaction Terms and Model Selection . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat I. Models with Quadratics

Evaluation:  Is x* =  24.4 years realistic? May be not.

(1) The estimated effect of exper on wage may be biased,  perhaps since we control for too few other factors.

(2) The functional relationship between wage and exper may  be incorrect.

To find the marginal effect of x on y, we  often use the average value of x.  For  example in the wage equation,

= 17.1 

y/x = .2981 ‐ 2*(.006)(17.01) =.09398

I. Quadratic II. Interaction III. Adjust R

2

IV. AIC&SIC V. Selection 8

6. Quadratics, Interaction Terms and Model Selection . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat I. Models with Quadratics

Sample: 1 526

EXPER WAGE

Mean 17.01711 5.896103

Median 13.5 4.65

Maximum 51 24.98

Minimum 1 0.53

Std. Dev. 13.57216 3.693086 Skewness 0.706865 2.007325 Kurtosis 2.357318 7.970083 Jarque-Bera 52.85587 894.6195

Probability 0 0

Observations 526 526

(3)

Sample: 1 526

EXPER WAGE

Mean 17.01711 5.896103

Median 13.5 4.65

Maximum 51 24.98

Minimum 1 0.53

Std. Dev. 13.57216 3.693086

Skewness 0.706865 2.007325

Kurtosis 2.357318 7.970083

Jarque-Bera 52.85587 894.6195

Probability 0 0

Observations 526 526

Sample Averages: View/Descriptive Statistic/Common Sample

I. Quadratic II. Interaction III. Adjust R

2

IV. AIC&SIC V. Selection 9

6. Quadratics, Interaction Terms and Model Selection . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat I. Models with Quadratics

Quadratic

y =  0 +  1 x +  2 x 2 + u

1)  So far we learn the quadratic that captures the decreasing  effect of x on y.

> 0;  < 0 2) Increasing effect of x on y

< 0;  > 0

– See Example 6.2 Effect of Pollution on Housing Prices

I. Quadratic II. Interaction III. Adjust R

2

IV. AIC&SIC V. Selection 10

6. Quadratics, Interaction Terms and Model Selection . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat I. Models with Quadratics

Quadratic has a U-shape.

I. Quadratic II. Interaction III. Adjust R

2

IV. AIC&SIC V. Selection 11

6. Quadratics, Interaction Terms and Model Selection . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat I. Models with Quadratics

No turning points

• 3) Increases in x always have a positive and increasing effect  on y

> 0;  > 0

• 4) Increases in x have a negative and decreasing effect on y.

< 0;  < 0

I. Quadratic II. Interaction III. Adjust R

2

IV. AIC&SIC V. Selection 12

6. Quadratics, Interaction Terms and Model Selection . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat I. Models with Quadratics

(4)

II.  Model with interaction terms

• Consider a model

log(wage) =  0 +  1 educ +  2 tenure +  3 educ*tenure + u log(y) =  0 +  1 x 1 +  2 x 2 +  3 x 1 *x 2 + u

• What is the partial effect of educ on log(wage)?

The semi‐elasticity of wages with respect to education is 

log(y)/x 1  =  1  +  3 x 2

• Suppose that  1 >0 and  3 >0 

This implies that an additional year of education yields a higher  percentage increase in wages for more years with the firm.  

I. Quadratic II. Interaction III. Adjust R

2

IV. AIC&SIC V. Selection 13

6. Quadratics, Interaction Terms and Model Selection . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat II. Model with interaction terms

Example: Wage equation with interaction terms

log(wage) =  0 +  1 educ +  2 tenure +  3 educ*tenure + u

log( ) = .514 + .078educ +.0088tenure +.0014educ*tenure s.e. (.113)    (.00884)     (.010685)       (.000857)  

t‐stat [4.53]     [8.78]       [0.83]      [1.64]

n=526,  R 2 =0.312065

I. Quadratic II. Interaction III. Adjust R

2

IV. AIC&SIC V. Selection 14

6. Quadratics, Interaction Terms and Model Selection . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat II. Model with interaction terms

Dependent Variable: LOG(WAGE) Method: Least Squares Sample: 1 526 Included observations: 526

Variable Coefficient Std. Error t-Statistic Prob.

C 0.514352 0.113442 4.534045 0

EDUC 0.07763 0.00884 8.781627 0

TENURE 0.008848 0.010685 0.828035 0.408 EDUC*TENURE 0.001405 0.000857 1.640133 0.1016 R-squared 0.312065 Mean dependent var 1.623268 Adjusted R-squared 0.308111 S.D. dependent var 0.531538 S.E. of regression 0.442133 Akaike info criterion 1.213162 Sum squared resid 102.0413 Schwarz criterion 1.245598 Log likelihood -315.062 F-statistic 78.9308 Durbin-Watson stat 1.777168 Prob(F-statistic) 0

• What is  or what is the return to education?

log(y)/x 1  =  1  +  3 ̅ 2 = .085

• How to test that the return to education at mean  value of tenure with the firm is statistically  significant using Eviews?

log(y)/x 1  =  1  +  3 ̅ 2

Sample: 1 526

WAGE EDUC TENURE

Mean 5.896103 12.56274 5.104563

Dependent Variable: LOG(WAGE) Method: Least Squares

Sample: 1 526

Included observations: 526

Variable Coefficient Std. Error t-Statistic Prob.

C 0.514352 0.113442 4.534045 0

EDUC 0.07763 0.00884 8.781627 0

TENURE 0.008848 0.010685 0.828035 0.408

EDUC*TENURE 0.001405 0.000857 1.640133 0.1016

R-squared 0.312065 Mean dependent var 1.623268

Adjusted R-squared 0.308111 S.D. dependent var 0.531538 S.E. of regression 0.442133 Akaike info criterion 1.213162 Sum squared resid 102.0413 Schwarz criterion 1.245598

Log likelihood -315.062 F-statistic 78.9308

Durbin-Watson stat 1.777168 Prob(F-statistic) 0

log(wage) c educ tenure educ*tenure

I. Quadratic II. Interaction III. Adjust R

2

IV. AIC&SIC V. Selection 15

6. Quadratics, Interaction Terms and Model Selection . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat II. Model with interaction terms

Sample: 1 526

WAGE EDUC TENURE

Mean 5.896103 12.56274 5.104563

Median 4.65 12 2

Maximum 24.98 18 44

Minimum 0.53 0 0

Std. Dev. 3.693086 2.769022 7.224462

Skewness 2.007325 -0.61957 2.110273

Kurtosis 7.970083 4.884245 7.658076

Jarque-Bera 894.6195 111.4653 865.9427

Probability 0 0 0

Observations 526 526 526

Sample Averages: View/Descriptive Statistic/Common Sample

I. Quadratic II. Interaction III. Adjust R

2

IV. AIC&SIC V. Selection 16

6. Quadratics, Interaction Terms and Model Selection . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat II. Model with interaction terms

(5)

Dependent Variable: LOG(WAGE) Sample: 1 526

Included observations: 526

Variable Coefficient Std. Error t-Statistic Prob.

C 0.514352 0.113442 4.534045 0

EDUC 0.084794 0.007059 12.01189 0

TENURE 0.008848 0.010685 0.828035 0.408

EDUC*(TENURE-5.1) 0.001405 0.000857 1.640133 0.1016

R-squared 0.312065 Mean dependent var 1.623268

Adjusted R-squared 0.308111 S.D. dependent var 0.531538

S.E. of regression 0.442133 Akaike info criterion 1.213162

Sum squared resid 102.0413 Schwarz criterion 1.245598

Log likelihood -315.062 F-statistic 78.9308

Durbin-Watson stat 1.777168 Prob(F-statistic) 0

H 0 :  1 +  3 2 = 0

I. Quadratic II. Interaction III. Adjust R

2

IV. AIC&SIC V. Selection 17

6. Quadratics, Interaction Terms and Model Selection . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat II. Model with interaction terms

III.  R 2 and Adjusted R‐Squared

• R 2 measures the variation in y explained by x 1 , x 2 , …, x k

• Cautions in using R 2

1) Choosing x 1 , x 2 , …, x k in terms of R 2 can lead to a  nonsensible model.

2)  Small R 2 does not imply that the model is useless.

3)  R 2 can never fall when a new x is added to the model.

I. Quadratic II. Interaction III. Adjust R

2

IV. AIC&SIC V. Selection 18

6. Quadratics, Interaction Terms and Model Selection . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat III. R2 and Adjusted R-Squared

R 2 and Adjusted R‐Squared

• R‐Squared defined R 2 = SSE/SST

• Population R‐squared

R 2 = 1 –(SSR/n)/(SST/n) = 1 ‐  u 2 / y 2

SSR/n =   u 2 is the population variance of u i SST/n =   y 2 is the population variance of y i

I. Quadratic II. Interaction III. Adjust R

2

IV. AIC&SIC V. Selection 19

6. Quadratics, Interaction Terms and Model Selection . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat III. R2 and Adjusted R-Squared

Adjusted R‐Squared defined

• Note that 

2 =SSR/(n‐k‐1) is the unbiased estimator of  u 2 SST/(n‐1) is the unbiased estimator of  y 2

• Adjusted R 2 is defined as

R 2 = 1 – [SSR/(n‐k‐1)] / [SST/(n‐1)]

Term: Corrected R‐squared, Adjusted R‐squared

• In terms of unbiasedness, adjusted R 2 is not a better estimator  of R 2 .

1 k n

1 ) n R 1 ( 1

R 2 2

 

I. Quadratic II. Interaction III. Adjust R

2

IV. AIC&SIC V. Selection 20

6. Quadratics, Interaction Terms and Model Selection . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat III. R2 and Adjusted R-Squared

(6)

Properties of Adj. R 2

R 2 ‐bar imposes a penalty for adding additional regressors

to the model (k  )

In summary, an additional regressor is added R 2 

n‐k‐1  ‐‐ penalty

R‐bar squared ‐ helps to choose a model.

• t‐, F‐Statistics and R 2 ‐bar

R 2  ‐bar squared increases when 

– t‐statistic on the new variable is greater than one.

– F‐statistic for joint significance of a group of new  variables is greater than one.

1 k n

1 ) n R 1 ( 1

R 2 2

 

I. Quadratic II. Interaction III. Adjust R

2

IV. AIC&SIC V. Selection 21

6. Quadratics, Interaction Terms and Model Selection . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat III. R2 and Adjusted R-Squared

Choosing nonnested models based on R

2

-bar

log( ) = 11.10 +.068years +.016gamesyr+ .0014bavg +.0359hrunsyr t-stat [41.48] [5.59] [10.08] [1.33] [4.96]

n=353; R

2

=.625388 R

2

-bar=.621082

log( ) = 11.27 +.070years +.011gamesyr+ .00074bavg +.0165rbisyr t-stat [41.2] [5.78] [5.20] [0.69] [5.12]

n=353; R

2

=.626937 R

2

-bar=.62264

I. Quadratic II. Interaction III. Adjust R

2

IV. AIC&SIC V. Selection 22

Choosing nested models based on R 2 ‐bar

log( ) = .514 + .078educ +.0088tenure +.0014educ*tenure t‐stat         [4.53]     [8.78]       [0.83]      [1.64]

n=526,  R 2 =0.312065, R 2 ‐bar=.308111 log( ) = .404 + .087educ +.0258tenure

t‐stat [4.41]  [12.38]       [9.63] 

n=526,  R 2 =0.308520, R 2 ‐bar=.305875

6. Quadratics, Interaction Terms and Model Selection . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat III. R2 and Adjusted R-Squared

R 2 and R 2 ‐bar are useless

• Example: CEO salary of 177 firms

salary 1990 compensation, $1000s sales 1990 firm sales, millions

mktval market value, end 1990, millions.

ceoten years as ceo with company

log( ) = 4.504 + .163log(sales) +.109log(mktval) + .0117ceoten t‐stat [17.51]     [4.15]      [2.20]      [2.20]

n=177, R 2 =0.31815, R 2 ‐bar=.306327

= 613.43 +.019sales + .0234mktval + 12.703ceoten

t‐stat  [9.40]       [1.89]      [2.47]      [2.26]

n=177, R 2 = 0.201274, R2‐bar=.187424

• Which model is preferred?

I. Quadratic II. Interaction III. Adjust R

2

IV. AIC&SIC V. Selection 23

6. Quadratics, Interaction Terms and Model Selection . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat III. R2 and Adjusted R-Squared

IV. AIC and SIC

• Akaike Information Criterion (AIC) and Schwartz Information  Criterion (SIC) are defined mathematically as follows.

where k is number of parameters.

• In comparing two or more models, the model with the lowest  values of AIC and SIC is preferred.

n e u

AIC  2 k / n  ˆ i 2

n n u SIC 

k/n

 ˆ

2

I. Quadratic II. Interaction III. Adjust R

2

IV. AIC&SIC V. Selection 24

6. Quadratics, Interaction Terms and Model Selection . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat IV. AIC and SIC

(7)

Example: Baseball player’s salary revisited.

log( ) = 11.10 +.068years +.016gamesyr+ .0014bavg +.0359hrunsyr n=353;  R 2 =.625388 R 2 ‐bar=.621082

AIC=2.216709 SIC=2.271474

log( ) = 11.27 +.070years +.011gamesyr+ .00074bavg +.0165rbisyr n=353;  R 2 =.626937 R 2 ‐bar=.622649

AIC = 2.12566 SIC = 2.267332

Example: Wage models in linear and quadratic functions

=  3.73 + 0.298exper – 0.0061exper 2 n = 526 R 2 = 0.092769 R 2 ‐bar = .089300

AIC=5.362947 SIC=5.382947

=  5.37 + 0.0307exper n = 526  R 2 = .012747 R 2 ‐bar = .010863

AIC=5.443674  SIC=5.45989

I. Quadratic II. Interaction III. Adjust R

2

IV. AIC&SIC V. Selection 25

6. Quadratics, Interaction Terms and Model Selection . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat IV. AIC and SIC

V.  Selection of Regressors

Controlling for two many factors

• Suppose we want to study the effect of project investment on 

employment of state enterprises in the energy sector.  Variables are as  follows.

empnum number of employees employed (persons) invsize amount of money invested (millions of baht) product output produced by the project (millions) years duration of the project

= 65.07 ‐.045invsize +.0802product ‐26.43years t‐stat         [.623]    [‐2.27]      [5.91]       [‐1.23]

n=25 R 2 =.802802, R 2 ‐bar=.774630

= 717.7 +.118invsize ‐148.69years t‐stat         [3.72]     [6.29]       [‐4.41] 

n=25 R 2 =.601889 R 2 ‐bar=.565697

I. Quadratic II. Interaction III. Adjust R

2

IV. AIC&SIC V. Selection 26

6. Quadratics, Interaction Terms and Model Selection . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat V. Selection of Regressors

Tradeoff when adding Regressors

• Tradeoff: new variable is correlated with regressors – Adding a new independent variable may exacerbate 

multicollinearity problem

– But adding a regressor generally reduces error variance.

• Add a regressor:

We should add a regressor that affects y but is uncorrelated  with all of the independent variables of interest.

I. Quadratic II. Interaction III. Adjust R

2

IV. AIC&SIC V. Selection 27

6. Quadratics, Interaction Terms and Model Selection . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat V. Selection of Regressors

Example: Effect of wine consumption in  fifty states

• Wine Equation

wine =  0 +  1 price +  2 income + u

• We may want to include individual characteristics to the regression to better explain the variation in y. (eg. age and level of education)

wine =  0 +  1 price +  2 income +  3 age +  4 educ + u

28

28

I. Quadratic II. Interaction III. Adjust R

2

IV. AIC&SIC V. Selection

6. Quadratics, Interaction Terms and Model Selection . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat V. Selection of Regressors

(8)

Functional Form

• We’ve seen that a linear regression can really fit nonlinear  relationships

• Can use logs on RHS, LHS or both

• Can use quadratic forms of x’s 

• Can use interactions of x’s

• How do we know if we’ve gotten the right functional form for  our model?

I. Quadratic II. Interaction III. Adjust R

2

IV. AIC&SIC V. Selection 29

6. Quadratics, Interaction Terms and Model Selection . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat V. Selection of Regressors

Functional Form

• First, use economic theory to guide you.

• Think about the interpretation.

• Does it make more sense for x to affect y in percentage (use  logs) or absolute terms?

• Does it make more sense for the derivative of x 1 to vary with  x 1 (quadratic) or with x 2 (interactions) or to be fixed?

I. Quadratic II. Interaction III. Adjust R

2

IV. AIC&SIC V. Selection 30

6. Quadratics, Interaction Terms and Model Selection . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat V. Selection of Regressors

Recap of MLR: 

Quadratic and Interaction

 Quadratic Function

 Interaction Terms

 Adjusted R‐Squared

 AIC and SIC

 Selection of Regressors

I. Quadratic II. Interaction III. Adjust R

2

IV. AIC&SIC V. Selection 31

6. Quadratics, Interaction Terms and Model Selection . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat

Referensi

Dokumen terkait

Dependent Variable: XCPOT Method: Two-Stage Least Squares Date: 11/09/15 Time: 08:55 Sample: 1 48. Included

Dependent Variable: QD Method: Least Squares Date: 11/10/15 Time: 08:41 Sample: 1997 2014. Included

Dependent Variable: UDP Method: Least Squares Date: 09/05/10 Time: 22:01 Sample: 1 111. Included

Included observations: 671 after adjustments Convergence achieved after 7 iterations. Variable Coefficient

Dependent Variable: CAR1-3 Method: Least Squares Date: 03/10/15 Time: 11:43 Sample: 1 37. Included

Dependent Variable: MACR1 Method: Least Squares Date: 05/21/08 Time: 13:31 Sample: 1 77.. Included

Variable Fixed Random Var(Diff.) Prob. corrected) WARNING: estimated coefficient covariance matrix is of reduced rank.. Variable Coefficient Std. Error t-Statistic

Dependent Variable: ROA Method: Least Squares Date: 04/18/13 Time: 15:30 Sample: 1 91. Included