• Tidak ada hasil yang ditemukan

本篇論文的研究目的係評估 GMAPA 對於華語正常聽力與聽力損失受試者 在穩態噪音中語音理解及主觀音質感受的改善效益。本研究結果顯示,與未處理

情境來比較,發現GMAPA對於正常聽力者來說能夠降低背景雜音的感受程度,

但未能顯著地改善語音辨識能力,亦未增加整體聲音聆聽的音質與自然程度;而

對於聽力損失者而言,可降低背景雜音的感受程度,然而噪音下的語音經

GMAPA處理與否,語音辨識度並無顯著差異。

另外,研究中也將GMAPA與其他噪音消除演算法比較,結果顯示,對於 正常聽力者而言,GMAPA比起MLSA能降低背景雜音的感受,然而在噪聲中

的語音辨識度及對於音質、自然程度與語音清晰程度的感知卻差於MLSA;而

GMAPA與MAPA相較,在語音辨識與音質感知測驗的表現結果則是相當。對

於聽力損失者而言,本研究中所評估的三種噪音消除演算法在語音辨識表現皆無

差異,而在音質感受中,GMAPA的自然感知程度比MLSA差,與MAPA相較 則無顯著的音質感知差異。

總結來說,GMAPA適應性噪音消除演算法能顯著地降低聆聽者對於背景噪 音的感受程度,雖未能顯著改善華語正常聽力與聽力損失者在噪聲中的語音辨識

能力及對於整體聲音品質的感受。

此外,本研究結果也引出工程搭配臨床驗證助聽器聲音處理技術效益的重要

性,然而由於研究樣本數量較少,因此,本研究所呈現的分析結果僅能代表少數

華語聽損者的表現。建議未來若要推論眾多噪音消除技術助聽器使用者的母群體,

則需要增加受試者人數。另外,受限於研究中所使用的耳機及電腦音效卡解析度

等實驗設備條件限制,可能導致聽損者所聆聽的音量未必達到其實際的最大舒適

音量,因而未能達到最佳的語音辨識或音質感受。再者,在本研究中噪音消除演

算法是被單獨研究的,並且使用線性的增益方式補償未分頻放大,使得聲音無法

透過壓縮將其大部分資訊放入聽覺動態範圍中,建議未來如進行類似研究,可將

動態範圍壓縮技術(Wide dynamic-range compression)或是聽損補償處方架構加

入,使聽力損失較重度的受試者聆聽適當補償後的聲音,並且嘗試利用聲場播音

的模式進行測試。

參考文獻

中文部分

行政院主計處綜合統計處(2014)。身心障礙者人數。2014.05.12取自

http://www.mohw.gov.tw/cht/DOS/DisplayStatisticFile.aspx?d=31923&s=1 蕭素惠(2008)助聽器通用與專屬選配法之主客觀成效比較(未出版之碩士

論文)。國立高雄師範大學聽力學與語言治療研究所,高雄市。2014.04.01

取自http://handle.ncl.edu.tw/11296/ndltd/45767707746318349187

英文部分

Alcantara, J. I., Moore, B. C. J., Kuhnel, V., & Launer, S. (2003). Evaluation of the noise reduction system in a commercial digital hearing aid. International Journal of Audiology, 42, 34-42.

American National Standards Institute (1995). Method for Coupler Calibration of Earphones. ANSI S3.7-1995 (R 2008). New York: American National Standards Institute, Inc.

Arehart, K. H., Hansen, J. H. L., Gallant, S., & Kalstein, L. (2003). Evaluation of an auditory masked threshold noise suppression algorithm in normal-hearing and hearing-impaired listeners. Speech Communication, 40, 575-592. Doi:

10.1016/S0167-6393(02)00183-8

Benesty, J., Makono, S., & Chen, J. (Eds.). (2005). Speech enhancement: Signals and communication technology [Adobe Digital Editions version]. Doi:

10.1007/3-540-27489-8

Bentler, R. (2005). Effectiveness of directional microphones and noise reduction schemes in hearing aids: a systematic review of the evidence. J Am Acad Audiol, 16(7), 473-484.

Bentler, R. & Chiou, L.-K. (2006). Digital noise reduction: an overview. Trends in

Amplification, 10(2). 67-82. Doi: 10.1177/1084713806289514

Brons, I., Houben, R., & Dreschler, W. (2014). Effects of noise reduction on speech intelligibility, perceived listening effort, and personal preference in

hearing-impaired listeners. Trends in Hearing, 18, 1-10. Doi:

10.1177/2331216514553924

Chung, K. (2004). Challenges and recent developments in hearing aids: part I.

speech understanding in noise, microphone technologies and noise reduction algorithms. Trends in Amplification, 8(83), 83-124. Doi:

10.1177/108471380400800302

Dillon, H. (2012). Hearing aids.(2nd ed.). New York: Thieme.

Hu, Y. & Loizou, P. C. (2007a). A comparative intelligibility study of speech enhancement algorithms. IEEE International Conference on Acoustics, Speech and Signal Processing, 4, 561-564. Doi: 10.1109/ICASSP.2007.366974

Hu, Y. & Loizou, P. C. (2007b). Subjective comparison and evaluation of speech enhancement algorithms. Speech Communication, 49(7), 588-601. Doi:

10.1109/ICASSP.2006.1659980

Kates, J. M. (2008). Digital hearing aids. United Kingdom: Plural Publishing, Inc..

Kjems, U. & Jensen, J. (2012). Maximum likelihood based noise covariance matrix

estimation for multi-microphone speech enhancement. European Signal Processing Conference, Romania. 295-299.

Kochkin, S. (2010). MarkeTrak VIII: Consumer satisfaction with hearing aids is slowly increasing. The Hearing Journal, 63(1), 19-27.

Kuk, F., Ludvigsen, C. & Paludan-Muller, C. (2002). Improving hearing aid performance in noise: challenges and strategies. The Hearing Journal, 55(4), 34-43.

Lai, Y.-H., Su, Y.-C., Tsao, Y., & Young, S.-T. (2013). Evaluation of generalized maximum a posteriori spectral amplitude (GMAPA) speech enhancement algorithm in hearing aids. IEEE International Symposium on Consumer Electronics, 17, 245-246. Doi: 10.1109/ISCE.2013.6570208

Levitt, H. (2001). Noise reduction in hearing aids: a review. Journal of Rehabilitation Research and Development, 38(1). 111-121.

Loizou, P. C. & Kim, G. (2011). Reasons why current speech-enhancement

algorithms do not improve speech intelligibility and suggested solutions. IEEE Trans Audio Speech Lang Processing, 19(1), 47-56. Doi:

10.1109/TASL.2010.2045180

Lotter, T. & Vary, P. (2005). Speech enhancement by MAP spectral amplitude

estimation using a Super-Gaussian speech model. Journal on Applied Signal Processing, 7, 1110-1126.

Lurquin, P., Delacressonniere, C. & May, A. (2001). Examination of a multi-band noise cancelation system. The Hearing Review, 8(1), 48-54, 60-60.

Luts, H., Eneman, K. & Wouters, J. (2010). Multicenter evaluation of signal enhancement algorithms for hearing aids. Journal of the Acoustical Society of America, 127, 1491-1505.

Moore, B. C. J. (1996). Perceptual consequences of cochlear hearing loss and their implications for the design of hearing aids. Ear and Hearing, 17(2), 133-161.

Pakulski, L. (1999). Conveying information to patients. In. Robert, W. S. (ed.).

Counseling for hearing aid fittings (pp. 91-97). London: Singular Publishing Ltd.

Peeters, H., Kuk, F., Lau, C-C., & Keenan, D. (2009). Subjective and objective evaluation of noise management algorithms. J Am Acad Audiol, 20, 89-98.

Ricketts, T. A. & Hornsby, B. W. Y. (2005). Sound quality measures for speech in noise through a commercial hearing aid implementing “digital noise

reduction”. J Am Acad Audiol, 16, 270-277.

Shanks, J. E., Wilson, R. H., Larson, V., & Williams, D. (2002). Speech recognition

performance of patients with sensorineural hearing loss under unaided and aided conditions using linear and compression hearing aids. Ear and Hearing, 23(4), 280-290.

Su, Y.-C., Tsao, Y., Wu, J.-E., & Jean, F.-R. (2013). Speech enhancement using generalize maximum a posteriori spectral amplitude estimator. IEEE International Conference on Acoustics, Speech and Signal Processing,

Vancouver, Canada. 7467-7471. Doi: 10.1109/ICASSP.2013.6639114 Tsai, K.-S., Tseng, L.-H., Wu, C.-J., & Young, S.-T. (2009). Development of a

Mandarin monosyllable recognition test. Ear and Hearing, 30(1), 90-99. Doi:

0196/0202/09/3001-0090/0

Whitmal, N. A., Rutledge, J. C., & Cohen, J. (1996). Reducing correlated noise in digital hearing aids. IEEE Engineering in Medicine and Biology Magazine, 15(5), 88-96. Doi:10.1109/51.537064

Wong, L. L N., Soli, S. D. Liu, S., Han, N., & Huang M.-W. (2007). Development of the Mandarin hearing in noise test (MHINT). Ear and Hearing, 28(2). 70-74.

Doi:0196/0202/07/282

World Health Origination. (2014). Deafness and Hearing Loss. Retrieved June 24, 2015, from http://www.who.int/mediacentre/factsheets/fs300/en/

附錄一、臨床試驗同意證明書

附錄二、華語語音單字詞聽辨測驗語料表

List 1 3 4 5

SNR +2 dB -6 dB +6 dB -2 dB

1. ˋ

2. ˋ ˊ ˊ ˊ

3. ˋ ˊ ˇ ˋ

4. ˊ ˇ ˊ ˇ

5. ˋ ˋ ˋ ˋ

6. ˋ ˊ ˋ ˋ

7. ˋ ˊ ˋ

8. ˋ ˋ ˇ

9. ˇ ˋ ˊ

10. ˋ ˇ ˇ ˋ

11. ˊ

12. ˊ ˋ ˋ ˊ

13. ˊ ˋ ˊ ˋ

14. ˇ ˋ ˋ

15. ˇ

16. ˇ ˋ

17. ˊ ˊ ˋ

18. ˊ ˇ ˊ ˋ

19. ˋ ˇ ˊ

20. ˇ ˊ ˇ

21. ˊ ˋ ˋ

22. ˊ ˇ ˊ

23. ˋ ˊ ˊ

24. ˋ ˇ ˊ

25. ˋ ˋ

附錄三 噪音下華語語句聽辨測驗語料表

附錄四 聲音品質評估問卷

!

!

附錄五 受試者基本資料空白表

受試者基本資料料表

基本資料料

姓名 填寫日期

出生年年月日 性別

E-mail 連連絡電話

請勾選以下問題(可複選)

Q1.母語 □國語 □客語 □台語 □其他外語或方言

Q2.主要溝通方式 □口語 □手語 □其他溝通方式

Q3.能否書寫注音 □能,熟練練 □能,但不不熟練練 □不不能

Q4.有無配戴助器 □有,且時間超過一年年 □有,但未滿一年年 □無

Q5.近三個月內是 否有做過聽力力 檢查

□有,可檢附聽力力圖 □有,但無聽力力圖 □無

Q6.是否有以下障 礙或特殊疾病

□無

□聽力力損失 □傳導性聽力力損失

□長期或慢性中耳炎

□耳蝸後神神經病變/聽神神經病變

□中樞聽覺處理理異異常

□腦損傷

□中風

□其他,_____________________________

附錄六 受試者同意書

附錄七 實驗程序指導說明書

!

!

"

"

"

!

!

!

Dokumen terkait