• Tidak ada hasil yang ditemukan

一、 第一类贝塞耳函数 - Dr. Huang

N/A
N/A
Protected

Academic year: 2023

Membagikan "一、 第一类贝塞耳函数 - Dr. Huang"

Copied!
10
0
0

Teks penuh

(1)

§5 贝塞耳函数

一、 第一类贝塞耳函数

[第一类贝塞耳函数的定义与表达式]

k k z z

z

J k

k

k

a r g 2)

)( 1 (

! ) 1 ) (

( 2

0

称为第一类阶贝塞耳函数,它在除去半实轴(,0)的z平面内单值解析(当为整数时,

) (z

J 在全平面上解析).它满足贝塞耳微分方程

(1 ) 0 (1) dz

dw 1 dz d

2 2 2

2    w

z v z

w

方程中常数(实数或复数)称为方程的阶或解的阶.

当 n(整数)时,e2z(t1t)Jn(z)的母函数:

)

( 1 2t t z

e =

 



n

n

n z t t z

J ( ) 0 ,

且有

Jn(z)(1)nJn(z)





 

z

z z

z z z z

J n n n

n

s i n d )

( d ) 2

1 ( )

( 1

2

1





 





2

0(2 )!( 2 )!(2 )2

)!

2 ( ) 1 ) (

sin( 2 2

n

k k

k

z k n k

k n z n

z





 





 

2 1

0 (2 1)!( 2 1)!(2 )2 1

)!

1 2 ( ) 1 ) (

cos( 2

n

k k

k

z k

n k

k n z n

(n0,1,2,)





z

z z

z z z z

J n n

n

c o s d )

( d ) 2

( 1

2

1





 





2

0(2 )!( 2 )!(2 )2

)!

2 ( ) 1 ) (

cos( 2 2

n

k k

k

z k n k

k n z n

z





 





 

2 1

0 (2 1)!( 2 1)!(2 )2 1

)!

1 2 ( ) 1 ) (

sin( 2

n

k k

k

z k

n k

k n z n

(n0,1,2,)

0 2 2

2

0( ) ( 1) 2 ( !)

k k

k k

k z z

J

 

0 2

2

1 2 !( 1)!

) 1 ( ) 2

(

k k

k k

k k

z z z

J

(2)

z z z

J 2 s i n

) (

2

1 z

z z

J 2 c o s

) (

2

1

s i n c o s)

2 ( ) (

2

3 z

z z z z

J  

 c o s)

s i n 2 (

) (

2

3 z

z z z z

J   





  

 

 

z

z z z

z z

J 3c o s

s i n 3 1

) 2

( 2

2

5





 

 

 

z

z z z z z

J 3 1 c o s

s i n 3 ) 2

( 2

2

5

[积分表达式]

  

0

2 d

s i n ) cos cos(

2) ( 1 2) ( )

( n

n

n z

n z z

J (泊松积分表示)

  

c o s ( s i n)d 2

1 n z (贝塞耳积分表示)

1

1

2 1

2) d

1 ( 2) ( 1 2) ( )

( t e t

z z

J i z t

  )

2 ( R e 1

0  

0  ) sh

( d

d sin ) sin

1 cos( z

e z

(Re 0,Rez0)

)

2 Re 1 2 , 1 0 ( d ) 1 (

sin 2 )

(1 2) ( 2 )

( 1

2 1 2

t x

t xt x

x J

0 )ch( )d ( 0,1Re 1) ch 2

2 sin(   

x t t t x

  (1 )( 2 1) 21 d 2)

(1 2

2) 2 )(

(1 )

(

z

B

izt t e t

i z z

J

, , 2 ,3 2

(  1  在B点,arg(t2 1)0) 积分路线如图12.4的“8 ”字形,在B

a r g (t1)a r g (t1)0.

d (a r g )

) 2

( 0 1 4

1

2

t e t t

i z z

J t

t z

[有关公式]



 

0 1 2 1 2 1 1

1 , ,

) 2 2 4 (

, d 0

) ( )

(  

n m n

n t m

t J

t J

t n m





 

[ ( )] , , 1

2 1

1 , ,

0 d

) ( )

( 2

1 1

0  

 

J m n

n m t

t J t tJ

m n

m

其中m,n,为函数J(x)的两个正零点.

(3)

01tJ(mt)J(nt)dt

 





 

 

2 , 1 ,

)]

( )[

( )]

( 2 [

1

2 , 1 ,

0

2 2

2 2

22     

J m n

J

n m

m m

m m

m

其中m,n为函数zJ(z)aJ(z)的两个正零点,且 2

1

  ,a是任意给定的常数.



k

k n k

n x y J x J y

J ( ) ( ) ( ) (加法公式)

1

2 1 2

0 1 0 2

1 2 2 2 1

0( 2 c o s) ( ) ( ) 2 ( ) ( )c o s ,

m

m

m r J r m

J r

J r J r

r r r

J  

其中r1r2表示原点O到平面上任意两点P1,P2的距离, 为OP1OP2的交角.

[渐近表达式]

J(z)





 

n

k

n k

k

z O z

k k

k

z z 0

2 2 2

) ( )

2 2)(

2 1 ( )!

2 (

2) 2 1 ( ) 1 ( 4)

cos( 2 2

 







 

( )

) 2 2)(

2 1 ( )!

1 2 (

2) 2 3 ( 4)

sin( 2

2 1 2 3

0 2 1

n n

k k

z O z

k k

k

z z

 



(固定, z ,argz )



 

( )

2

~ 1 )

( 2)ln 1

( 1

ln2

z e O

J

z (z固定, )

) 1 ( ) 2

(

 x

x

J (x0)

)

4 c o s ( 2

2 ) ( )

( 2

1  

  x 

x x

J (x)

x x J x

J

) 2 ( )

( 21

2  (x )

) 1 ( 2 ) 1

(   

ey

z z

J (其中 )

2 , 1

Im 

zy

二、 第二类贝塞耳函数(诺伊曼函数)

[第二类贝塞耳函数的定义与其他表达式]

( ,a r g )

s i n

) ( c o s

) ) (

( 





  

J z J z z z

z N

称为第二类贝塞耳函数(有的书中N(z)也记作Y(z)),又称为诺伊曼函数,它也是贝塞耳微

分方程(1)的解,式中J(z)为第一类贝塞耳函数,

N(z) J(z)sin N(z)cos

) (z

NN(z)在除去半实轴(,0)的z平面内的单值解析.



 

0 2

2

) 1 (

! ) 2

1 ( 2) )(

sin cos(

) 1 (

k k

k k

k k

z z z

N  



(4)



 

 (

) 1 (

! ) 2 1 ( 2)

(

0 2

2

k k

k k

k k

z

z 整数)

 

1

0

)2

(2

! )!

1 (

) 1 ( 2 )

2 (ln ) ( lim ) (

n

k

n k n n

n

z k

k z n

z J z

N z

N  

 

 

0 1 1

2 1 1)

( 2) )!( (

! ) 1 ( 1

k

k

m

k n

m k

n k

m m

z k n

k

(n0,1,2,,a r gz , 为欧拉常数)

Nn(z)(1)nNn(z)

z

z z

z z z z

J z

N n n n

n n n

) cos d ( d ) 2

1 ( ) ( )

1 ( )

( 1 1

2 1 1 2

1

   



 





 

2

1

0

1 2

)!

1 2 ( )!

1 2 (

) 2 ( )!

1 2 ) (

1 ( 2 )

2 sin(

n

k

k k

k n k

z k

n z n

z



 





k

n

k

k

k z n k

k n z

z n 2

2

0

) 2 )!( 2 ( )!

2 (

)!

2 ( ) 1 ) (

cos( 

(n0,1,2,)

0,1,2,

s i n) ( d ) ( d ) 2

( ) 1 ( )

( 1

2 1 2

1   

n

z z z

z z z z

J z

N n n

n n

n

 

 

k

m k k

k

m z

z k z J

z N

1 2

1 2

0 0

) 1 (2 )

! (

) 1 ( ) 2

( 2 )

( l n ) 2

(  

) ( 2 )

2(ln )

( 1

1 z J z

z

N

 

 

 

 

 

1

1 1

1 2 1

1 2 1

)!

1 (

! 2) ( ) 1 1 (

2 k

m k

k k

k m k

k z z 

z z z

N 2 cos

) (

2

1

z z z

N 2 s i n

) (

2

1

c o s) ( s i n ) 2

(

2

3 z

z z z z

N  

) sin cos

2 ( )

(

2

3 z

z z z z

N  

[积分表达式]



   

 

0 sin( sin )d 0 ( cos( )) sinh d ) 1

(z z t t t e e e t

N t t z t ( R ez 0)

) 0 2, Re 1 2 ( 1 d

) 1 (

cos 2 )

(1 2) ( 2 )

(

1

2 1 2

 

x t

t xt x

x

N

0 )ch d

1Re 1, 0

ch 2 2 cos(

x t

t t

x   

(5)

xt t t

t t t

t xt x t

N sin( )d

1 ) 1 ln(

d 4 ) 1 sin(

arcsin ) 4

( 1

0 1 2

2 2 2

0 2

(x0)

[渐近表达式]









 

1

0

2 2

2 ( )

2) 2 1 ( )!

2 (

2) 2 1 ( )

2 (

) 1 ) (

4 sin( 2

) 2 (

n

k

n k

k

z O k

k

k z z

z z N

 



 









 

( )

2) 2 1 ( ) 1 2 (

2) 2 3 ( )

2 (

) 1 ) (

4

c o s ( 2 2 3

1

0 2 1

n n

k k

k

z O k

k

k z z

 



(固定, z ,argz )

2 ( ) ( 0, 0)

)

(     x

x x

N

x x

N 2

2ln )

0(  (x0)

三、 第三类贝塞耳函数(汉克尔函数)

[第三类贝塞耳函数的定义与表达式]

) s i n (

) ( ) ) (

( ) ( ) (

) 1

( 



i

e z J z z J

iN z J z H

i

 (z ,a r gz )

) s i n (

) ( )

) ( ( ) ( ) (

) 2

( 



i

z J e z z J

iN z J z H

i

称为第三类贝塞耳函数,H(1)(z)和H(2)(z)分别称为第一类和第二类汉克尔函数,它们在除去

半实轴(,0)的z平面内单值解析,且满足贝塞耳微分方程(1).

H(1)(z)eiH(1)(z) H(2)(z)eiH(2)(z) l i mH(1)(z) Hn(1)(z)

n

l i mH(2)(z) Hn(2)(z)

n

( ) ( ) ( 1) ( )

2 1 1 2

1 )

1 (

2

1 z J z i J z

H

n n n

n

  

) ( ) d

( d ) 2

1

( 1

z e z z z

i z

iz n n

n

 

k n

k k iz n

z k n k

k i n

e

zi (2 )

1 )!

(

! )!

( 2

0

1

 

( ) ( ) ( 1) ( )

2 1 1 2

1 )

2 (

2

1 z J z i J z

H

n n n

n

  

) ( ) d

( d ) 2

1

( 1

z e z z z

i z

iz n n

n

 

 

n

k k

k iz

n

z k n k

k i n

e

zi 0

1

) 2 (

1 )!

(

! )!

) ( 2 (

( ) ( 1) (1) ( )

2 1 )

1 (

2

1 z i H z

H

n n

n

 

( ) ( 1) (2) ( )

2 1 )

2 (

2

1 z i H z

H

n n

n

 

(6)

i e z z

H

iz

 ) 2

)(

1 ( 2

1eiz z z

H

) 2

)(

1 (

2

1

i e z z

H

iz

 

 ) 2

)(

2 ( 2

1 e iz z z

H

 ) 2

)(

2 (

2 1

[积分表达式]

1 d (0 arg , 1 Re 1)

)

( 2 ch

) 1

(

    



e e t z

z i

H iz t t

i

( ) ch d ( arg 0, 1 Re 1)

2 )

2

(       

 



e t z

i z e

H iz t t

i

)

2 Re 1 , 0 (Im d

) 1 ( 2 )

(1 2) ( 2 )

( 1

2 1 2

) 1

(  

 

t z

t e i z

z H

izt

)

2 Re 1 , 0 (Im d

) 1 ( 2 )

(1 2) ( 2 )

( 1

2 1 2

) 2

(  

t z

t e i z

z H

izt

t

z t it

e e z z i

H t

z i

d 2 ) 1 ( 2)

( 1 ) 2

( 0

2 1 2

) 1 4 2 ( 1 )

1

(



  a r g )

, 2 2

( R e 1   z

t

z t it

e e z z i

H t

z i

d 2 ) 1 ( 2)

( 1 ) 2

( 0

2 1 2

) 1 4 2 ( 1 )

2

(

 



  )

a r g 2 2,

( R e 1   z

e t t

i z z

H i

i z t( 1) d 2)

(1 2) 2 )(

(1 )

( 1

1

2 1 2

) 1

(

 

e t t

i z z

H i

i z t

d ) 1 ( 2)

(1 2) 2 )(

(1 )

( 1

1

2 1 2

) 2

(

 



   2 , 1 0

( R ez  正整数,arg(t2 1) )

积分路线如图 12.5.

[渐近表达式]





n

k

n k

k z

i O z

k k

iz

k ze

z H

0 ) 1 4 2 ) (

1

( ( )

2) ( 1

! ) 2 (

2) ( 1

) 1 2 (

) (



(固定, z , argz2)





n

k

n k

z

i O z

k k

iz

k ze

z H

0 ) 1 4 ( 2 )

2

( ( )

2) ( 1

! ) 2 (

2) ( 1

) 2 (



(7)

(固定, z ,2 argz)

( ) ( 0, 0)

2) ( )

)(

1

(   x

i x x

H

( ) ( 0, 0)

2) ( ) (

) 2

(    x

i x x

H

i x x

H 2

2 ln )

)(

1 (

0  (x0)

i x x

H 2

2ln )

)(

2 (

0  (x0)

四、 各类贝塞耳函数之间的关系与有关公式

[自递推关系] 下面Z(z)表示贝塞耳函数J(z),N(z),H(1)(z)及H(2)(z). zZ1(z)zZ1(z)2Z(z)

[ ( ) ( )]

2 ) 1 d (

d

1

1 z Z z

Z z

zZ

1( ) ( ) Z (z) Z 1(z) z z

zZ z

Z   

) [ ( )] ( )

d

( d z Z z z Z z

z

z m

m

m

) [ ( )] ( 1) ( )

d

( d z Z z z Z z

z

z m

m m m

 

Zn(z)(1)nZn(z) Zn(z) [各类贝塞耳函数之间的关系]

( ) ( )

) s i n (

) c o s ( ) ( ) ) (

( N z N z H(1) z iN z

z

J



  

( ( ) ( ))

2 ) 1 ( )

( (1) (2)

) 2

( z iN z H z H z

H

( ) ( )

) s i n (

) ( ) c o s ( ) ) (

( J z J z iJ z iH(1) z

z

N n



   

[ ( ) ( )]

) 2 ( )

( (2) (1)

) 2

( i H z H z

z iJ z

iH

) s i n (

) ( )

( )

s i n (

) ( )

) ( (

) 1

(  





z N e z N i

z J e z z J

H

i

i

 

 J(z)iN(z)

) s i n (

) ( )

( )

s i n ( ) ( ) ) (

(

) 2

(  





z N e z N i

z J z J z e

H

i

i   

J(z)iN(z) [其他有关公式]

z z J z J z J z

J



) sin(

) 2 ( ) ( ) ( )

( 1 1   J(z)J(z)J(z)J(z)

2 ( ) ( ) ( ) ( )

) ( ) ( )

( )

( 1 1 J z N z J z N z

z z J z N z N z

J

 

 

2 ( ) ( ) ( ) ( )

) ( ) ( )

( )

( (1)1 1 (1) J z H(1) z J z H(1) z

z z i H z J z H z

J

2 ( ) ( ) ( ) ( )

) ( ) ( )

( )

( (2)1 1 (2) J z H(2) z J z H(2) z

z z i H z J z H z

J

 

 

 

(8)

4 ( ) ( ) )

( ) ( )

( )

( (2)1 (1)1 (2) (1) (2)

) 1

( H z H z

z z i H z H z H z

H   

H(1)(z)H(2)(z)

)

2 ( 1

)] 1 ( ) ( 2[

1 2 2

2

2     

  

J x N x x x

x

五、 变型贝塞耳函数

[变型贝塞耳函数的定义与表达式]

) ( ,a r g )

(2 ) 1 (

! ) 1

( 2

0

 

k k z z z

z

I k

k

) s i n (

) ( ) ( ) 2

2 ( ) 2 (

)

( (1) (2)



z I z iz I

H i iz

H i z

K k k

 

(a r gz , 0,1,2,)

分别称为第一类和第二类变型贝塞耳函数,K(z)也称为白塞特(Basset)函数,它们在除去

半实轴(,0)的z平面内单值解析 I (z) e 2 J (iz)

i



) a r g 2 (  z e 2 J ( iz)

i

 a r g )

(2

z K(z)K(z)

In(z) In(z) (n为正整数)

)

) ( l n2 ( ) 1 ( ) ( l i m )

( 1

  

z z I z

K z

K n n

n n

1

0

)2

(2

!

)!

1 (

) 1 ( 2 1 n

k

n k

k z

k k n

  

 

  k

m

k n

m k

n k

n

m m

z k n

k 1 1

2 0

1) ( 1

2) )!( (

! 1 2

) 1 (

(n0,1,2,, 为欧拉常数)

n

k k

k z

n k n k z

k e n

z z I

) 0 2

( 1 !( )!(2 )

)!

( ) 1 ( 2

) 1

(  

 

n

k k

z n

z k n k

k e n

0 1

) 2 ( )!

(

!

)!

) ( 1 (

n

k k

z

n k n k k

k e n

z z K

) 0 2

( 1 !( )!(2 )

)!

( ) 2

( 

z e z z z

z

z n n

n

 )

d ( d ) 2

1

(  1

(n0,1,2,)

0 2

2

0 ,

)

! (

2) ( ) (

k

k

k z z

I

 

 

0

1 2 0

1 !( 1)!

2) ( )

( ) (

k

k

k k

z z

I z I

0 2 2 1

2 0

0

1 )

! ( ) 2

( 2 )

( l n )

(

k

k

k m k

m k

z z z I

z

K

z

z z

I 2sh

) (

2

1 z z z

I 2ch

) (

2

1

e z

z z

K

) 2 (

2 1

;1 2 ;2 )

2 (1 2)

)( 1 ( ) 1

( z e 1F1 z

z

I z  

 

 

Referensi

Dokumen terkait

Tinnitus retraining therapy for patients with tinnitus and decreased sound tolerance.. Insights on the origins of tinnitus: An overview of recent