• Tidak ada hasil yang ditemukan

100.12.08 範圍第7 回三角函數(3) 班級三年班姓名座號一 - 明誠

N/A
N/A
Protected

Academic year: 2023

Membagikan "100.12.08 範圍第7 回三角函數(3) 班級三年班姓名座號一 - 明誠"

Copied!
9
0
0

Teks penuh

(1)

高雄市明誠中學 高三數學平時測驗 日期:100.12.08 範

圍 第

7

回三角函數(3) 班級 三年 班 姓 座號

一、填充題(每題

10

分)

1、 f x ( ) = cos

2

x − 3sin x + 1

x為實數,試求 f x( )之最大值為________,最小值為________.

答案:4; 2−

解析:

f x ( ) = − (1 sin

2

x ) 3sin − x + 1

[sin2 3sin ( ) ]3 2 17

2 4

x x

= − + + + 3 2 17

(sin )

2 4

= − x+ +

,

− ≤ 1 sin x ≤ 1 ,

sinx=1, ( )f x = − − + = −1 3 2 2為最小值,

sinx= −1, ( )f x = − + + =1 3 2 4為最大值.

2、

4 x 3

π π

− ≤ ≤ 時,試求

f x ( ) = − sec

2

x + 2 tan x + 1

的最大值為________.

答案:1

解析:

f x ( ) = − + (1 tan

2

x ) + 2 tan x + 1

tan2x 2 tanx

= − +

(tan

2

x 2 tan x 1) 1

= − − + +

(tan x 1)

2

1

= − − +

當tan 1, x= x=

π

4

時, f x( )有最大值

1.

3、

f x( )=3cosx−4 sinx+1,且

x

為實數,試求 f x( )之最大值為________,最小值為________.

答案:6; 4−

解析: ( ) 5( cos3 4sin ) 1

5 5

f x = xx + =5(sin cos

φ

x−cos sin ) 1

φ

x + =5sin(

φ

− +x) 1

,

∵− ≤1 sin(

φ

x) 1≤

,

∴− ≤5 5sin(

φ

x)≤5⇒ − ≤4 5sin(

φ

− + ≤x) 1 6

, 最大值 = 6

,最小值= −4

.

4、

( ) 2 sin( ) 2 cos 1 f x = x

π

6 + x

,

5

6 x 6

π π

− ≤ ≤ ,則

(1)當 x = ________時,

f x( )之最大值為________;

(2)當 x = ________時,

f x( )之最小值為________.

答案: ;1; ,5 ; 1

3 6 6

π

π π

解析: ( ) 2 sin( ) 2 cos 1, 5

6 6 6

f x = x

π

+ x− − ≤ ≤

π

x

π

2[sin cos cos sin ] 2 cos 1

6 6

x

π

x

π

x

= − + −

3 1

2[sin cos ] 2 cos 1

2 2

x x x

= ⋅ − + −

(2)

3 sin x cos x 1

= + −

3 1

2[sin cos ] 1

2 2

x x

= ⋅ + ⋅ − 2[sin cos cos sin ] 1

6 6

x

π

x

π

= + − 2 sin( ) 1

x

π

6

= + −

,

5

6

π

x 6

π

− ≤ ≤ 0

x

π π

6

⇒ ≤ + ≤

,

0 sin( ) 1

x

π

6

⇒ ≤ + ≤ 0 2 sin( ) 2

x

π

6

⇒ ≤ + ≤ 1 2 sin( ) 1 1

x

π

6

⇒ − ≤ + − ≤

,

x+ =

π π

6 2 ⇒ =x

π

3

f x( )有最大值=1

當 0 x+ =

π

6

或 ,5 6 6 x= −

π π

f x( )有最小值= −1

. 5、

x

為實數,則1 sin

3 cos x

x +

+ 之最大值為________,最小值為________.

答案:3; 0 4

解析:設 1 sin 1 sin 3 cos

3 cos

y x x y y x

x

= + ⇒ + = +

+

sinx ycosx 3y 1

⇒ − = −

2

2 2

1 (sin 1 cos ) 3 1

1 1

y x x y y

y y

⇒ + ⋅ − ⋅ = −

+ +

1 y2 sin(x ) 3y 1

⇒ + − θ = − ,其中

2 2

cos 1 , sin

1 1

y

y y

θ = θ =

+ +

2

3 1

sin( ) 1 x y

y

⇒ − θ = − +

2

3 1

1 sin( ) 1 1 1

1 x y

y

− ≤ − θ ≤ ⇒ − ≤ − ≤ +

2

3 1

| | 1

1 y

y

⇒ − ≤

+

| 3y 1| 1 y2

⇒ − ≤ +

2 2 2

(3 y 1) 1 y 4 y 3 y 0

⇒ − ≤ + ⇒ − ≤

y(4y− ≤3) 0 0 3

y 4

⇒ ≤ ≤ , 最大值 3

=4,最小值

= 0 . 6、

θ

在第二象限,試求:

tan θ + cot θ

之最大值為________.

答案:−2

解析:∵

θ

在第二象限⇒tan

θ

<0, cot

θ

<0 ( tan ) ( cot )

( tan )( cot ) 2

θ θ θ θ

− + −

≥ − −

(算幾不等式)

(tan

θ

cot )

θ

2 1

⇒ − + ≥ ⋅

tan θ cot θ 2

⇒ + ≤ − , ∴最大值為

−2

.

(3)

7、 f x ( ) = sin

2

x + 2 sin cos x x + 3cos

2

x

,則 f x( )之最大值為________,最小值為________.

答案:2+ 2; 2− 2

解析: ( ) 1 cos 2 sin 2 3 1 cos 2

2 2

x x

f x = − + x+ ⋅ +

sin 2 x cos 2 x 2

= + + 1 1

2( sin 2 cos 2 ) 2

2 x 2 x

= + +

2(sin 2 cos cos 2 sin ) 2

4 4

x

π

x

π

= + + 2 sin(2 ) 2

x

π

4

= + +

,

∵ 1 sin(2 ) 1 x 4

− ≤ +

π

≤ ⇒

2 2 sin(2 ) 2

x

π

4

− ≤ + ≤

2 2 2 sin(2 ) 2 2 2

x

π

4

⇒ − ≤ + + ≤ +

,

最大值

= + 2 2

,最小值

= − 2 2 .

8、

sin(

θ

+ ° +60 ) 2 sin(

θ

− ° −60 ) 3 cos(120° −

θ

)=

________.

答案:0

解析:∵(

θ

+ ° +60 ) (120° −

θ

)=180 ,°

∴cos(120° −

θ

)=cos[180° −(

θ

+ ° = −60 )] cos(

θ

+ °60 ), 原式=[sin(

θ

+ ° +60 ) 3 cos(

θ

+ ° +60 )] 2 sin(

θ

− °60 )

1 3

2[ sin( 60 ) cos( 60 )] 2 sin( 60 )

2

θ

2

θ θ

= + ° + + ° + − °

2[sin(

θ

60 ) cos 60 cos(

θ

60 ) sin 60 ] 2 sin(

θ

60 )

= + ° ° + + ° ° + − °

2 sin(

θ

60 60 ) 2 sin(60

θ

)

= + ° + ° − ° − 2 sin(

θ

120 ) 2 sin(60

θ

)

= + ° − ° −

2 sin(180 (60

θ

)) 2 sin(60

θ

)

= ° − ° − − ° −

2 sin(60

θ

) 2 sin(60

θ

)

= ° − − ° −

= 0 .

9、

f x( )=5 cosx−12 sinx,且當

x = x

0時, f x( )有最大值

M,則序對 (tan x M

0

, ) = ________.

答案:( 5 ,13)

−12

解析: ( ) 52 12 (2 5 cos 12sin )

13 13

f x = + xx

13(sin cos

φ

x cos sin )

φ

x

= − =13sin(x

φ

)

,

∵− ≤1 sin(x

φ

) 1≤

,

∴− ≤13 13sin(x

φ

) 13,≤

13

M =

⇒sin(x

φ

)=1

2 , ,

x

φ

n

π π

2 n

⇒ − = + ∈ 2

x

φ

n

π π

2

⇒ = + +

tan tan( 2 )

x

φ

n

π π

2

⇒ = + + = −cot

φ

5 0

12 tanx

= − =

,

∴(tanx M0, )= −( 5 ,13)

.

(4)

10、設 270 ° < < A 360 °

3 sin A + cos A = 2 sin 2012 °

,若

A = ° m

,則

m = __________。

答案:

298°

解析:

3 sin A + cos A = 2 sin 2012 °

3 1

2( sin cos ) 2 sin 2012

2 A 2 A

⇒ ⋅ + ⋅ = °

2(cos 30 sinA sin 30 cos )A 2 sin 2012

⇒ °⋅ + °⋅ = °

2 sin(A 30 ) 2 sin 2012

⇒ + ° = °

sin(A 30 ) sin 2012 sin(360 5 212 ) sin 212 sin 32

⇒ + ° = ° = °× + ° = ° = − °

sin(A 30 ) sin 32

⇒ + ° = − °

,

270 ° < < A 360 ° ,

∴sin(A+ ° = −30 ) sin 32° =sin(360° − ° =32 ) sin 328° ⇒ A+ ° =30 328° ⇒ A=298°

. 11、

試將下列極坐標化為直角坐標:

(1)

A(3, )

π

________; (2)

(4,2 )

B 3

π

________;

(3)

(4, 7 )

C 6

π

− ⇒

________; (4)

D(3, 2)⇒

________.

答案:(1)( 3, 0)−

(2)

( 2, 2 3)−

(3)

( 2 3, 2)−

(4)

(3cos 2, 3sin 2) 解析:(1)A(3cos , 3sin )

π π

= −( 3, 0)

.

(2)

(4 cos2 , 4 sin 2 ) ( 2, 2 3)

3 3

B

π π

= −

. (3)

(4 cos( 7 ), 4 sin( 7 )) ( 2 3, 2)

6 6

C

π

π

= −

. (4)

D(3cos 2, 3sin 2)

.

12、

試將下列直角坐標化為極坐標:(取r>0, 0≤ <

θ

2

π )

(1)

A( 2, 0)− ⇒

________; (2)

B(− 3, 3)− ⇒

________;

(3)

C( 2,− 6)⇒

________; (4)

D( 3, 3)⇒

________;

(5)

(4 cos , 4 sin )

5 5

E

π π

________;(6)

F(1− 3,1+ 3)⇒

________.

答案:(1)(2, )

π (2)

(2 3,4 ) 3

π (3)

(2 2,5 ) 3

π (4)

( 6, ) 4

π (5)

(4, ) 5

π (6)

(2 2,7 ) 12

π

解析:

(1)

.

(2)

.

2 2

( 2)− +0 =2, A(2, )

π

2 2 4

( 3) ( 3) 2 3, (2 3, )

B 3

π

− + − =

(5)

(3)

.

(4)

.

2 2 5

( 2) ( 6) 2 2, (2 2, )

C 3

π

+ − =

2 2

( 3) ( 3) 2 3, ( 6, ) D

π

4

+ =

(5)

(4, ) E

π

5

.

(6)

2 2

(1 + 3) + − (1 3)

=2 2, 7 (2 2, )

F 12

π

. 13、 z = 2 z + 1 ,

Arg( 1)

3 z

z

π

+ = ,則

z = ________;

Arg( )z =

________.

答案:2 3 7;

3 6

π

解析:∵

z = 2 z + 1

1 1 1 2

z z

z z

+ +

⇒ = =

1 1 1 1 3

(cos sin ) ( )

2 3 3 2 2 2

z i i

z

π π

⇒ + = + = +

1 1 3

1 4 4 i

⇒ + = +z

1 3 3 3 3

4 4 4

i i z

⇒ = − + = − +

2

4( 3 3 ) 4( 3 3 ) 4( 3 3 )

9 3 9 3

( 3 3 )( 3 3 )

i i i

z i i i

− − − − − −

⇒ = = =

− +

− + − −

3 3 3 2 3 7 7

1 (cos sin )

3 3 3 6 6

i i

π

i

π

= − − = − − = +

,

2 3

z = 3

,

Arg( ) 7 z = 6

π

. 14、 (cos137 sin 763 )(cos 317 sin 223 )

sin124 cos( 56 )

i i

i

° + ° ° + ° =

° + − ° ________.

答案:1 3 2+ 2 i

解析:

cos137 ° + i sin 763 ° = − cos 43 ° + i sin 43 ° = cos137 ° + i sin137 ° ,

cos 317° +isin 223°

= cos 43 ° − i sin 43 °

=cos( 43 )− ° +isin( 43 )− °

,

sin124° +icos( 56 )− °

= cos 34 ° + i sin 34 ° ,

(6)

∴所求 (cos137 sin137 )[cos( 43 ) sin( 43 )]

cos 34 sin 34

i i

i

° + ° − ° + − °

= ° + °

cos[137 ( 43 ) 34 ] isin[137 ( 43 ) 34 ]

= ° + − ° − ° + ° + − ° − °

= cos 60 ° + i sin 60 °

1 3 2 2 i

= +

.

15、 3

20

( )

2

+ i = ________.

答案:

− 512 512 3i

解析:

20 20

20

20 10

20 20

[2(cos sin )] 2 [cos sin ]

3 6 6 6 6

( )

2 2 2

i i

i

π

+

π π

+

π

+ = =

10 10 10

2 [cos sin ]

3

π

i 3

π

= + 4 4

1024(cos sin ) 3

π

i 3

π

= +

1 3

1024( )

2 2 i

= − −

= − 512 512 3i − .

16、設

1 3

2

x= + i,則1+ +x x2+ +… x13 =

________.

答案:3 3 2+ 2 i 解析: 1 3

2 2

x= + i cos sin 3 1

3 i 3 x

=

π

+

π

⇒ =

,

14

2 13

1( 1)

1 1

x x x x

x + + + + = −

… −

x14=(x3 4) ⋅x2 =x2

, 所求

2 1 3 3

1 1 2 2

x x i

x

= − = + = +

.

17、 (sin15 ° + i cos15 ) ° =

10

________.

答案: 3 1 2 +2i

解析:原式

= (cos 75 ° + i sin 75 ) °

10

= cos 750 ° + i sin 750 ° = cos 30 ° + i sin 30 °

3 1 2 2i

= +

.

18、 cos( 26 ) sin 334

(cos137 sin 763 )(cos 369 sin171 ) i

i i

− ° − °

° + ° ° + ° = ________.

答案: 1 3 2 2 i

− −

解析:原式

cos 26 sin 26

(cos137 sin137 )(cos 9 sin 9 ) i

i i

° + °

= ° + ° ° + °

cos(26 137 9 ) isin(26 137 9 )

= ° − ° − ° + ° − ° − ° =cos( 120 )− ° +isin( 120 )− ° 1 3 2 2 i

= − −

.

(7)

19、

(1 cos sin )6

3 i 3

π π

+ + =

________.

答案:

− 27

解析:原式 (1 1 3 )6 2 2 i

= + + 3 3 6

( )

2 2 i

= + 3 1 6

[ 3( )]

2 2i

= + 3 (cos3 sin )6

6 i 6

π π

= +

27(cos

π

isin )

π

= +

= − 27 .

20、 f x ( ) = x

120

+ x

60

+ x

6

,

( 6 2 6 2 )

4 4

f − + + i =

________.

答案:i

解析: 6 2 6 2 cos5 sin5

4 4 i 12

π

i 12

π

− + + = +

,

6 2 6 2

( )

4 4

f − + + i 5 5 120 5 5 60 5 5 6

(cos sin ) (cos sin ) (cos sin )

12

π

i 12

π

12

π

i 12

π

12

π

i 12

π

= + + + + +

5 5

cos 50 sin 50 cos 25 sin 25 cos sin

2 2

i i

π

i

π

π π π π

= + + + + + = + − +1 ( 1) i =i

. 21、

cos2 sin2

5 5

z

π

i

π

= +

, z

65

+ z

66

+ z

67

+ + … z

365

= ________.

答案:1

解析:∵ cos2 sin2 5 1

5 5

z=

π

+i

π

z =

.

所求

= ( z

5 13

) + ( z

5 13

) ⋅ + + z … ( z

5 73

)

2 3 4 2 3 4

(1 z z z z ) (1 z z z z ) 1

= + + + + + + + + … + + + = + + + 0 … 0 1

=1

.

22、若

z 1 3

+ =z ,則z12 112

+z =

________.

答案:2

解析:

z

2

− 3 z + = 1 0

3 3 4 3 1

2 2 2

z ± − i

⇒ = = ±

,

(1)

3 1

2 2

z= + i cos sin

6 i 6

π π

= +

,

z12 112 z12 z 12 z

+ = + (cos sin )12 (cos sin ) 12

6 i 6 6 i 6

π π π π

= + + +

cos 2

π

isin 2

π

cos( 2 )

π

isin( 2 )

π

= + + − + −

= + + + 1 0 1 0

=2

.

(2)

3 1

2 2

z= − i cos( ) sin( )

6 i 6

π π

= − + −

,

12 12 12

12

z 1 z z

z

+ = + [cos( ) sin( )]12 [cos( ) sin( )]12

6 i 6 6 i 6

π π π π

= − + − + − + −

cos( 2 )

π

isin( 2 ) cos 2

π π

isin 2

π

= − + − + + = +1 1=2

.

z12 112 2 + z =

.

(8)

23、若

4 8

(1 2 ) (1 ) ( 3 )

i i

z i

− +

= + ,則

z = ________.

答案:72 解析:

4 8

4 8

|1 2 | |1 | 3 2

| 3 | 2

i i

z

i

− + ⋅

= =

+

9 16 2

= ⋅

= 72 .

24、設 z

1

= − + 2 i , z

2

= − 3 i , Arg( ) z

1

= θ

1

, Arg( ) z

2

= θ

2

, 0 < θ θ

1

,

2

< 2 π

,則

(1) cos( θ θ

1

+

2

) = ________;(2) θ θ

1

+

2

= ________.

答案:(1) 2

− 2

(2)

3 4

π

解析:

1

cos 2

5

θ = − ,

1

1 sin

5

θ = ,

2

3

cos

10

θ = ,

2

1

sin

10 θ = − ,

(1) cos( θ θ

1

+

2

) = cos θ

1

cos θ

2

− sin θ

1

sin θ

2

2 3 1 1

5 10 5 10

= − + 6 1

5 2 5 2

= − + 1 2

2 2

= − = − .

(2) sin( θ θ

1

+

2

) = sin θ

1

cos θ

2

+ sin θ

2

cos θ

1

1 3 1 2

5 10 10 5

− −

= ⋅ + ⋅ 3 2

5 2 5 2

= + 1

= 2

2

= 2

,

sin( θ θ

1

+

2

) > 0 , cos( θ θ

1

+

2

) < 0 , ∴

1 2 3 4

θ θ

+ =

π .

25、以

x8+x4+ =1 0之各根為頂點之正多邊形面積為________.

答案:

3 1 +

解析:∵x8+x4+ =1 0

⇒ ( x

4

− 1)( x

8

+ x

4

+ = 1) 0

x12− =1 0

12 1

x =

= cos 0 + i sin 0

=cos(2k

π

)+isin(2k

π

),k∈

1

[cos(2 ) sin(2 )] ,

12

0,1, 2, ,11

x

k

k π i k π k

⇒ = + = 

2 2

cos sin ,

12 12

k k

π

i

π

= +

x≠ ± ±1, i,

∴ cos sin , 1, 2, 4, 5, 7,8,10,11,

6 6

k

k k

x =

π

+i

π

k=

面積 4 (1 1 1 sin 60 ) 4 (1 1 1 sin 30 )

2 2

= ⋅ ⋅ ⋅ ⋅  + ⋅ ⋅ ⋅ ⋅ 

= 3 1 + .

(9)

26、設複數 z = − 1 i

;若1+ +z z2 ++z9 = +a bi

,

其中a b, 為實數,則

a = , b =

答案:

32

;−1

解析:

10 10 2 5 5

2 9

1 (1 ) 1 (1 ) 1 [(1 ) ] 1 [ 2 ]

1 1 1 (1 )

z i i i

z z z

z i i i

⋅ − − − − − − −

+ + + + = = = =

− − −



1 { 32 } i

5

1 32 i 32 i

i i

− − +

= = = −

a = 32

b = − 1

Referensi

Dokumen terkait

有關甲 Felis domesticus、乙 Bos domesticus、丙 Felis tigris,以上三種生物,下列敘述何者正確? A甲、乙為同一種 B甲、丙為同一科 C乙、丙為同一屬 D甲、乙為同一屬 11.. 下列哪一位生物學者曾進行航海,大量蒐集加拉巴哥群島物種的資料?A孟德爾 B達爾文 C虎克 D牛頓