高雄市明誠中學 高三數學平時測驗 日期:100.12.08 範
圍 第
7
回三角函數(3) 班級 三年 班 姓 座號名
一、填充題(每題
10
分)1、 f x ( ) = cos
2x − 3sin x + 1
,x為實數,試求 f x( )之最大值為________,最小值為________.答案:4; 2−
解析:
f x ( ) = − (1 sin
2x ) 3sin − x + 1
[sin2 3sin ( ) ]3 2 172 4
x x
= − + + + 3 2 17
(sin )
2 4
= − x+ +
,
∵
− ≤ 1 sin x ≤ 1 ,
sinx=1, ( )f x = − − + = −1 3 2 2為最小值,
sinx= −1, ( )f x = − + + =1 3 2 4為最大值.
2、
當4 x 3
π π
− ≤ ≤ 時,試求
f x ( ) = − sec
2x + 2 tan x + 1
的最大值為________.答案:1
解析:
f x ( ) = − + (1 tan
2x ) + 2 tan x + 1
tan2x 2 tanx= − +
(tan
2x 2 tan x 1) 1
= − − + +
(tan x 1)
21
= − − +
當tan 1, x= x=
π
4時, f x( )有最大值
1.
3、
f x( )=3cosx−4 sinx+1,且x
為實數,試求 f x( )之最大值為________,最小值為________.答案:6; 4−
解析: ( ) 5( cos3 4sin ) 1
5 5
f x = x− x + =5(sin cos
φ
x−cos sin ) 1φ
x + =5sin(φ
− +x) 1,
∵− ≤1 sin(
φ
−x) 1≤,
∴− ≤5 5sin(
φ
−x)≤5⇒ − ≤4 5sin(φ
− + ≤x) 1 6, 最大值 = 6
,最小值= −4.
4、
( ) 2 sin( ) 2 cos 1 f x = x−π
6 + x−,
56 x 6
π π
− ≤ ≤ ,則
(1)當 x = ________時,
f x( )之最大值為________;(2)當 x = ________時,
f x( )之最小值為________.答案: ;1; ,5 ; 1
3 6 6
π
−π π
−解析: ( ) 2 sin( ) 2 cos 1, 5
6 6 6
f x = x−
π
+ x− − ≤ ≤π
xπ
2[sin cos cos sin ] 2 cos 1
6 6
x
π
xπ
x= − + −
3 1
2[sin cos ] 2 cos 1
2 2
x x x
= ⋅ − + −
3 sin x cos x 1
= + −
3 1
2[sin cos ] 1
2 2
x x
= ⋅ + ⋅ − 2[sin cos cos sin ] 1
6 6
x
π
xπ
= + − 2 sin( ) 1
x
π
6= + −
,
∵ 5
6
π
x 6π
− ≤ ≤ 0
x
π π
6⇒ ≤ + ≤
,
0 sin( ) 1x
π
6⇒ ≤ + ≤ 0 2 sin( ) 2
x
π
6⇒ ≤ + ≤ 1 2 sin( ) 1 1
x
π
6⇒ − ≤ + − ≤
,
當x+ =π π
6 2 ⇒ =xπ
3, f x( )有最大值=1
當 0 x+ =
π
6或 ,5 6 6 x= −
π π
, f x( )有最小值= −1
. 5、
若x
為實數,則1 sin3 cos x
x +
+ 之最大值為________,最小值為________.
答案:3; 0 4
解析:設 1 sin 1 sin 3 cos
3 cos
y x x y y x
x
= + ⇒ + = +
+
sinx ycosx 3y 1
⇒ − = −
2
2 2
1 (sin 1 cos ) 3 1
1 1
y x x y y
y y
⇒ + ⋅ − ⋅ = −
+ +
1 y2 sin(x ) 3y 1
⇒ + − θ = − ,其中
2 2
cos 1 , sin
1 1
y
y y
θ = θ =
+ +
2
3 1
sin( ) 1 x y
y
⇒ − θ = − +
又 2
3 1
1 sin( ) 1 1 1
1 x y
y
− ≤ − θ ≤ ⇒ − ≤ − ≤ +
2
3 1
| | 1
1 y
y
⇒ − ≤
+
| 3y 1| 1 y2
⇒ − ≤ +
2 2 2
(3 y 1) 1 y 4 y 3 y 0
⇒ − ≤ + ⇒ − ≤
⇒y(4y− ≤3) 0 0 3
y 4
⇒ ≤ ≤ , 最大值 3
=4,最小值
= 0 . 6、
若θ
在第二象限,試求:tan θ + cot θ
之最大值為________.答案:−2
解析:∵
θ
在第二象限⇒tanθ
<0, cotθ
<0 ( tan ) ( cot )( tan )( cot ) 2
θ θ θ θ
− + −
≥ − −
(算幾不等式)
(tanθ
cot )θ
2 1⇒ − + ≥ ⋅
tan θ cot θ 2
⇒ + ≤ − , ∴最大值為
−2.
7、 f x ( ) = sin
2x + 2 sin cos x x + 3cos
2x
,則 f x( )之最大值為________,最小值為________.答案:2+ 2; 2− 2
解析: ( ) 1 cos 2 sin 2 3 1 cos 2
2 2
x x
f x = − + x+ ⋅ +
sin 2 x cos 2 x 2
= + + 1 1
2( sin 2 cos 2 ) 2
2 x 2 x
= + +
2(sin 2 cos cos 2 sin ) 2
4 4
x
π
xπ
= + + 2 sin(2 ) 2
x
π
4= + +
,
∵ 1 sin(2 ) 1 x 4
− ≤ +
π
≤ ⇒2 2 sin(2 ) 2
x
π
4− ≤ + ≤
2 2 2 sin(2 ) 2 2 2
x
π
4⇒ − ≤ + + ≤ +
,
最大值
= + 2 2
,最小值= − 2 2 .
8、
sin(θ
+ ° +60 ) 2 sin(θ
− ° −60 ) 3 cos(120° −θ
)=________.
答案:0
解析:∵(
θ
+ ° +60 ) (120° −θ
)=180 ,°∴cos(120° −
θ
)=cos[180° −(θ
+ ° = −60 )] cos(θ
+ °60 ), 原式=[sin(θ
+ ° +60 ) 3 cos(θ
+ ° +60 )] 2 sin(θ
− °60 )1 3
2[ sin( 60 ) cos( 60 )] 2 sin( 60 )
2
θ
2θ θ
= + ° + + ° + − °
2[sin(
θ
60 ) cos 60 cos(θ
60 ) sin 60 ] 2 sin(θ
60 )= + ° ° + + ° ° + − °
2 sin(
θ
60 60 ) 2 sin(60θ
)= + ° + ° − ° − 2 sin(
θ
120 ) 2 sin(60θ
)= + ° − ° −
2 sin(180 (60
θ
)) 2 sin(60θ
)= ° − ° − − ° −
2 sin(60
θ
) 2 sin(60θ
)= ° − − ° −
= 0 .
9、
若 f x( )=5 cosx−12 sinx,且當x = x
0時, f x( )有最大值M,則序對 (tan x M
0, ) = ________.
答案:( 5 ,13)
−12
解析: ( ) 52 12 (2 5 cos 12sin )
13 13
f x = + x− x
13(sin cos
φ
x cos sin )φ
x= − =13sin(x−
φ
),
∵− ≤1 sin(x−
φ
) 1≤,
∴− ≤13 13sin(x−
φ
) 13,≤13
M =
⇒sin(x−φ
)=12 , ,
x
φ
nπ π
2 n⇒ − = + ∈ 2
x
φ
nπ π
2⇒ = + +
tan tan( 2 )
x
φ
nπ π
2⇒ = + + = −cot
φ
5 012 tanx
= − =
,
∴(tanx M0, )= −( 5 ,13)
.
10、設 270 ° < < A 360 °
且3 sin A + cos A = 2 sin 2012 °
,若A = ° m
,則m = __________。
答案:
298°
解析:
3 sin A + cos A = 2 sin 2012 °
3 1
2( sin cos ) 2 sin 2012
2 A 2 A
⇒ ⋅ + ⋅ = °
2(cos 30 sinA sin 30 cos )A 2 sin 2012
⇒ °⋅ + °⋅ = °
2 sin(A 30 ) 2 sin 2012
⇒ + ° = °
sin(A 30 ) sin 2012 sin(360 5 212 ) sin 212 sin 32
⇒ + ° = ° = °× + ° = ° = − °
sin(A 30 ) sin 32
⇒ + ° = − °
,
∵
270 ° < < A 360 ° ,
∴sin(A+ ° = −30 ) sin 32° =sin(360° − ° =32 ) sin 328° ⇒ A+ ° =30 328° ⇒ A=298°
. 11、
試將下列極坐標化為直角坐標:(1)
A(3, )π
⇒________; (2)
(4,2 )B 3
π
⇒________;
(3)
(4, 7 )C 6
π
− ⇒
________; (4)
D(3, 2)⇒________.
答案:(1)( 3, 0)−
(2)
( 2, 2 3)−(3)
( 2 3, 2)−(4)
(3cos 2, 3sin 2) 解析:(1)A(3cos , 3sin )π π
= −( 3, 0).
(2)
(4 cos2 , 4 sin 2 ) ( 2, 2 3)3 3
B
π π
= −. (3)
(4 cos( 7 ), 4 sin( 7 )) ( 2 3, 2)6 6
C −
π
−π
= −. (4)
D(3cos 2, 3sin 2).
12、
試將下列直角坐標化為極坐標:(取r>0, 0≤ <θ
2π )
(1)
A( 2, 0)− ⇒________; (2)
B(− 3, 3)− ⇒________;
(3)
C( 2,− 6)⇒________; (4)
D( 3, 3)⇒________;
(5)
(4 cos , 4 sin )5 5
E
π π
⇒________;(6)
F(1− 3,1+ 3)⇒________.
答案:(1)(2, )
π (2)
(2 3,4 ) 3π (3)
(2 2,5 ) 3π (4)
( 6, ) 4π (5)
(4, ) 5π (6)
(2 2,7 ) 12π
解析:(1)
.
(2)
.
2 2
( 2)− +0 =2, A(2, )
π
2 2 4
( 3) ( 3) 2 3, (2 3, )
B 3
π
− + − =
(3)
.
(4)
.
2 2 5
( 2) ( 6) 2 2, (2 2, )
C 3
π
+ − =
2 2
( 3) ( 3) 2 3, ( 6, ) D
π
4+ =
(5)
(4, ) Eπ
5.
(6)
2 2
(1 + 3) + − (1 3)
=2 2, 7 (2 2, )F 12
π
. 13、 z = 2 z + 1 ,
Arg( 1)3 z
z
π
+ = ,則
z = ________;
Arg( )z =________.
答案:2 3 7;
3 6
π
解析:∵
z = 2 z + 1
1 1 1 2z z
z z
+ +
⇒ = =
1 1 1 1 3
(cos sin ) ( )
2 3 3 2 2 2
z i i
z
π π
⇒ + = + = +
1 1 3
1 4 4 i
⇒ + = +z
1 3 3 3 3
4 4 4
i i z
⇒ = − + = − +
2
4( 3 3 ) 4( 3 3 ) 4( 3 3 )
9 3 9 3
( 3 3 )( 3 3 )
i i i
z i i i
− − − − − −
⇒ = = =
− +
− + − −
3 3 3 2 3 7 7
1 (cos sin )
3 3 3 6 6
i i
π
iπ
= − − = − − = +
,
∴ 2 3
z = 3
,
Arg( ) 7 z = 6π
. 14、 (cos137 sin 763 )(cos 317 sin 223 )
sin124 cos( 56 )
i i
i
° + ° ° + ° =
° + − ° ________.
答案:1 3 2+ 2 i
解析:
cos137 ° + i sin 763 ° = − cos 43 ° + i sin 43 ° = cos137 ° + i sin137 ° ,
cos 317° +isin 223°= cos 43 ° − i sin 43 °
=cos( 43 )− ° +isin( 43 )− °,
sin124° +icos( 56 )− °= cos 34 ° + i sin 34 ° ,
∴所求 (cos137 sin137 )[cos( 43 ) sin( 43 )]
cos 34 sin 34
i i
i
° + ° − ° + − °
= ° + °
cos[137 ( 43 ) 34 ] isin[137 ( 43 ) 34 ]
= ° + − ° − ° + ° + − ° − °
= cos 60 ° + i sin 60 °
1 3 2 2 i= +
.
15、 3
20( )
2
+ i = ________.
答案:
− 512 512 3i −
解析:20 20
20
20 10
20 20
[2(cos sin )] 2 [cos sin ]
3 6 6 6 6
( )
2 2 2
i i
i
π
+π π
+π
+ = =
10 10 10
2 [cos sin ]
3
π
i 3π
= + 4 4
1024(cos sin ) 3
π
i 3π
= +
1 3
1024( )
2 2 i
= − −
= − 512 512 3i − .
16、設
1 32
x= + i,則1+ +x x2+ +… x13 =
________.
答案:3 3 2+ 2 i 解析: 1 3
2 2
x= + i cos sin 3 1
3 i 3 x
=
π
+π
⇒ =,
∴
14
2 13
1( 1)
1 1
x x x x
x + + + + = −
… −
又x14=(x3 4) ⋅x2 =x2
, 所求
2 1 3 3
1 1 2 2
x x i
x
= − = + = +
−
.
17、 (sin15 ° + i cos15 ) ° =
10________.
答案: 3 1 2 +2i
解析:原式
= (cos 75 ° + i sin 75 ) °
10= cos 750 ° + i sin 750 ° = cos 30 ° + i sin 30 °
3 1 2 2i= +
.
18、 cos( 26 ) sin 334
(cos137 sin 763 )(cos 369 sin171 ) i
i i
− ° − °
° + ° ° + ° = ________.
答案: 1 3 2 2 i
− −
解析:原式
cos 26 sin 26
(cos137 sin137 )(cos 9 sin 9 ) i
i i
° + °
= ° + ° ° + °
cos(26 137 9 ) isin(26 137 9 )
= ° − ° − ° + ° − ° − ° =cos( 120 )− ° +isin( 120 )− ° 1 3 2 2 i
= − −
.
19、
(1 cos sin )63 i 3
π π
+ + =
________.
答案:
− 27
解析:原式 (1 1 3 )6 2 2 i
= + + 3 3 6
( )
2 2 i
= + 3 1 6
[ 3( )]
2 2i
= + 3 (cos3 sin )6
6 i 6
π π
= +
27(cos
π
isin )π
= +
= − 27 .
20、 f x ( ) = x
120+ x
60+ x
6,
( 6 2 6 2 )4 4
f − + + i =
________.
答案:i
解析: 6 2 6 2 cos5 sin5
4 4 i 12
π
i 12π
− + + = +
,
6 2 6 2
( )
4 4
f − + + i 5 5 120 5 5 60 5 5 6
(cos sin ) (cos sin ) (cos sin )
12
π
i 12π
12π
i 12π
12π
i 12π
= + + + + +
5 5
cos 50 sin 50 cos 25 sin 25 cos sin
2 2
i i
π
iπ
π π π π
= + + + + + = + − +1 ( 1) i =i
. 21、
cos2 sin25 5
z
π
iπ
= +
, z
65+ z
66+ z
67+ + … z
365= ________.
答案:1
解析:∵ cos2 sin2 5 1
5 5
z=
π
+iπ
⇒z =.
所求= ( z
5 13) + ( z
5 13) ⋅ + + z … ( z
5 73)
2 3 4 2 3 4
(1 z z z z ) (1 z z z z ) 1
= + + + + + + + + … + + + = + + + 0 … 0 1
=1.
22、若
z 1 3+ =z ,則z12 112
+z =
________.
答案:2
解析:
z
2− 3 z + = 1 0
3 3 4 3 12 2 2
z ± − i
⇒ = = ±
,
(1)
3 12 2
z= + i cos sin
6 i 6
π π
= +
,
∴z12 112 z12 z 12 z
+ = + − (cos sin )12 (cos sin ) 12
6 i 6 6 i 6
π π π π
−= + + +
cos 2
π
isin 2π
cos( 2 )π
isin( 2 )π
= + + − + −
= + + + 1 0 1 0
=2.
(2)
3 12 2
z= − i cos( ) sin( )
6 i 6
π π
= − + −
,
12 12 12
12
z 1 z z
z
+ = + − [cos( ) sin( )]12 [cos( ) sin( )]12
6 i 6 6 i 6
π π π π
−= − + − + − + −
cos( 2 )
π
isin( 2 ) cos 2π π
isin 2π
= − + − + + = +1 1=2
.
∴z12 112 2 + z =
.
23、若
4 8
(1 2 ) (1 ) ( 3 )
i i
z i
− +
= + ,則
z = ________.
答案:72 解析:
4 8
4 8
|1 2 | |1 | 3 2
| 3 | 2
i i
z
i
− + ⋅
= =
+
9 16 2
= ⋅
= 72 .
24、設 z
1= − + 2 i , z
2= − 3 i , Arg( ) z
1= θ
1, Arg( ) z
2= θ
2, 0 < θ θ
1,
2< 2 π
,則(1) cos( θ θ
1+
2) = ________;(2) θ θ
1+
2= ________.
答案:(1) 2
− 2
(2)
3 4π
解析:1
cos 2
5
θ = − ,
11 sin
5
θ = ,
23
cos
10
θ = ,
21
sin
10 θ = − ,
(1) cos( θ θ
1+
2) = cos θ
1cos θ
2− sin θ
1sin θ
22 3 1 1
5 10 5 10
= − + 6 1
5 2 5 2
= − + 1 2
2 2
= − = − .
(2) sin( θ θ
1+
2) = sin θ
1cos θ
2+ sin θ
2cos θ
11 3 1 2
5 10 10 5
− −
= ⋅ + ⋅ 3 2
5 2 5 2
= + 1
= 2
2= 2
,
∵
sin( θ θ
1+
2) > 0 , cos( θ θ
1+
2) < 0 , ∴
1 2 3 4θ θ
+ =π .
25、以
x8+x4+ =1 0之各根為頂點之正多邊形面積為________.答案:
3 1 +
解析:∵x8+x4+ =1 0
⇒ ( x
4− 1)( x
8+ x
4+ = 1) 0
⇒x12− =1 012 1
⇒x =
= cos 0 + i sin 0
=cos(2kπ
)+isin(2kπ
),k∈1
[cos(2 ) sin(2 )] ,
120,1, 2, ,11
x
kk π i k π k
⇒ = + =
2 2
cos sin ,
12 12
k k
π
iπ
= +
又x≠ ± ±1, i,
∴ cos sin , 1, 2, 4, 5, 7,8,10,11,
6 6
k
k k
x =
π
+iπ
k=面積 4 (1 1 1 sin 60 ) 4 (1 1 1 sin 30 )
2 2
= ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅
= 3 1 + .
26、設複數 z = − 1 i
;若1+ +z z2 ++z9 = +a bi,
其中a b, 為實數,則a = , b =
答案:32
;−1解析:
10 10 2 5 5
2 9
1 (1 ) 1 (1 ) 1 [(1 ) ] 1 [ 2 ]
1 1 1 (1 )
z i i i
z z z
z i i i
⋅ − − − − − − −
+ + + + = = = =
− − −
1 { 32 } i
51 32 i 32 i
i i
− − +
= = = −
∴