物理資優營微積分教材2
2005/11/15
a x
b y y= f
( )
x曲線y=f(x)的面積約為PN
i=1f(xi)∆x,
∆x = b−a N
xi = a+ (i−1)∆x
x1 = a, xN =b−∆x, xN+1=b 當N → ∞時,∆x → 0,此時PN
i=1f(xi)∆x會趨近於一 個極限值,記為Rb
a f(x)dx,其中 f(x)是被積函數(integrand)
x是積分變數(integration variable) b, a則分別是積分的上、下限。
• 微積分基本定理:
(a) 若F (x) =Rx
x0f(˜x)dx,則F˜ 0(x) =f(x) (b) 若G0(x) =f(x),則Rb
a f(x)dx=G(b)−G(a) 証明:(a)
F0(x) = lim
∆→0
F (x+∆)−F(x)
∆
= lim
∆→0
½f(x)·∆
∆
¾
=f(x) 証明:(b) 定義F (x) =Rx
a f(˜x)dx˜,由(a)知F0(x) =f(x),因此 F0(x) =G0(x) =⇒ G(x) =F (x) +C
F (a) = 0 =⇒ C =G(a) 即
F (x) =G(x)−G(a) Z b
a
f(˜x)d˜x=F (b) =G(b)−G(a) Example 1 Rb
a xndx 因dxd
µ 1
n+ 1xn+1
¶
=xn,故 Z b
a
xndx= 1 n+ 1
¡bn+1−an+1¢
• 不定積分:
由微積分基本定理知:若F0(x) =f(x),則 Z b
a
f(x)dx= F(x)|ba≡F (b)−F (a) 如果不特別強調積分區間,可記為R
f(x)dx=F(x) +C,其中C稱微積分常數。
• 積分基本性質:
1. 線性:
(a) 若c是常數 Z
cf(x)dx=c Z
f(x)dx (b)
Z
{f(x) +g(x)}dx= Z
f(x)dx+ Z
g(x)dx 綜合(a)、(b)
Z
{c1f(x) +c2g(x)}dx=c1
Z
f(x)dx+c2
Z
g(x)dx 2. 變數變換(與連鎖律有關)
Z
f(g(x))g0(x)dx
令u=g(x)則du=g0(x)dx,故 Z
f(g(x))g0(x)dx= Z
f(u)du 如果是定積分,則變數變換後
Z b a
f(g(x))g0(x)dx= Z g(b)
g(a)
f(u)du Example 2 R dx
(3 + 2x)2令u= 3 + 2x =⇒ du = 2dx
=⇒
Z dx (3 + 2x)2 =
Z 1 2
du u2 =−1
2 1
u +C=− 1
2 (3 + 2x)+C Example 3 R exdx
(1 +ex)2令u=ex =⇒ du=exdx
=⇒
Z exdx (1 +ex)2 =
Z du
(1 +u)2 =−1
2(1 +u)−1+C =− 1
2 (1 +ex) +C
Example 4 R dx
1 +ex =R e−xdx
e−x+ 1,令u=e−x =⇒ du=−e−xdx
=⇒
Z dx 1 +ex =
Z −du
1 +u =−ln (1 +u) +C =−ln¡
1 +e−x¢ +C Example 5 求y =x2與y=x13在−1≤x≤1間所夾的面積
在−1≤x≤0間x2 ≥x13;在0≤x≤1間x13 ≥x2 A =
Z 0
−1
³
x2−x13
´ dx+
Z 1 0
³
x13 −x2
´ dx
= µ1
3x3− 3 4x43¶¯¯¯¯
0
−1
+ µ3
4x43 − 1 3x3¶¯¯¯¯
1
0
= − µ−1
3 − 3 4
¶ +
µ3 4 −1
3
¶
= 3 2 HW 1. 求Ra
0 x√
a2−x2dx HW 2. f(x) =Rx
0
t−1
1 +t2dt, x∈[0,2]求f(x)的極小值
• 基本函數的積分 (a) 指數函數:
Z
eaxdx= 1 aeax (b) 三角函數:
Z
sinxdx = −cosx Z
cosxdx = sinx Z
tanxdx =
Z sinx
cosxdx=−ln (cosx) Z
cotxdx =
Z cosx
sinxdx= ln (sinx) Z
secxdx =
Z 1
cosxdx=
Z cosx cos2xdx=
Z d(sinx) 1−sin2x = 1
2ln
µ1 + sinx 1−sinx
¶ Z
cscxdx = −1 2ln
µ1 + cosx 1−cosx
¶
3. 分部積分(萊布尼茲律)
{f(x)g(x)}0 =f0(x)g(x) +f(x)g0(x) Z
dx:f(x)g(x) = Z
f0(x)g(x)dx+ Z
f(x)g0(x)dx
=⇒ Z
f(x)g0(x)dx= f(x)g(x)
先對第二項積分|{z}
− Z
f0(x)
| {z }g(x)dx
對第一項微分
Example 6 Z
xexdx=xex− Z
exdx =xex−ex 檢查:
{xex−ex}0 =ex+xex−ex =xex Example 7
Z
lnxdx = Z
(lnx) 1dx= (lnx)x− Z µ1
x
¶ xdx
= xlnx−x Example 8
Z ∞
0
e−xcosxdx = e−xsinx¯¯∞
| {z 0}
=0
+ Z ∞
0
e−xsinxdx
= e−x(−cosx)¯¯∞
0 −
Z ∞
0
e−xcosxdx
=⇒ 2 Z ∞
0
e−xcosxdx= 1即 Z ∞
0
e−xcosxdx= 1 2 方法2:
Z ∞
0
e−xcosxdx = Re
½Z ∞
0
e−(1−i)xdx
¾
= Re
½
− 1
1−ie−(1−i)x
¯¯
¯¯
∞ 0
¾
= Re
½ 1 1−i
¾
= Re
½1 +i 2
¾
= 1 2 HW 3. R xex
(x+ 1)2dx Example 9
an = Z ∞
0
xne−xdx= xn¡
−e−x¢¯¯∞
| {z 0}
=0
+ Z ∞
0
nxn−1e−xdx
=⇒
an = nan−1
an−1 = (n−1)an−2
an−2 = (n−2)an−3
.. . a1 = 1·a0
a0 = Z ∞
0
e−xdx= −e−x¯¯∞
0 = 1
=⇒ an=n!
Gamma函數:
Γ(x)≡ Z ∞
0
tx−1e−tdt
• 反三角函數:
(1) R dx
√a2−x2,令x=asinu =⇒ dx=acosudu
=⇒
Z dx
√a2−x2 =
Z acosudu
acosu =u= arcsin³x a
´
因arcsin³x a
´
+ arccos³x a
´
= π
2,上式的不定積分也可寫成−arccos³x a
´
(2) R dx
√a2+x2,令x=asinhu =⇒ dx=acoshudu
=⇒
Z dx
√a2+x2 =
Z acoshudu
acoshu =u= sinh−1³x a
´
= ln
"
x+√
x2+a2 a
#
(3) R dx
√x2−a2,令x=acoshu =⇒ dx=asinhudu
=⇒
Z dx
√x2−a2 =
Z asinhudu
asinhu =u= cosh−1
³x a
´
= ln
∙x+√
x2−a2 a
¸
其他類似的變數變換:
½ (2)1 + tan2x= sec2x (3)sec2x−1 = tan2x (4) R dx
a2+x2,令x=atanu =⇒ dx=asec2u
=⇒
Z dx a2+x2 =
Z asec2udu a2sec2u = u
a = 1
aarctan³x a
´
HW 4. 求R
(a2−x2)−3/2dx、R
(a2+x2)3/2dx及R
(x2−a2)−3/2。 更一般的情況:
Z dx
√ax2+bx+c =
Z dx
s a
µ x+ b
2a
¶2
− ∆ 4a
,∆≡b2−4ac
(1) a <0,∆>0,令 µ
x+ b 2a
¶
=
√∆
−2asinu, dx=
√∆
−2acosudu
Z dx
√ax2+bx+c = Z
√∆
−2acosudu r ∆
−4acosu
= r 1
−aarcsin
∙−2a
√∆ µ
x+ b 2a
¶¸
(2) a >0,∆<0,令 µ
x+ b 2a
¶
=
√−∆
2a sinhu, dx=
√−∆
2a coshudu
Z dx
√ax2+bx+c = r1
aln
½ 1
√−∆ h
(2ax+b) +p
a(ax2+bx+c)i¾
(3) a >0,∆>0,令 µ
x+ b 2a
¶
=
√∆
2a coshu, dx=
√∆
2a sinhudu
Z dx
√ax2+bx+c = r1
aln
½ 1
√∆ h
(2ax+b) +p
a(ax2+bx+c)i¾
Z dx
ax2+bx+c =
Z dx
a µ
x+ b 2a
¶2
− ∆ 4a (4) ∆<0,令
µ x+ b
2a
¶
=
√−∆
2|a| tanu, dx=
√−∆
2|a| sec2udu
Z dx
ax2+bx+c = Z
√−∆
2|a| sec2udu (−∆)
4a sec2u
= 2a
|a|√
−∆arctan
∙ 1
√∆(2ax+b)
¸
(4') ∆>0,令 µ
x+ b 2a
¶
=
√∆
2|a|u, dx=
√∆
2|a|du
Z dx
ax2+bx+c = Z
√∆ 2|a|udu
∆
4a(u2−1)
= a
|a|√
∆ln
⎡
⎢⎢
⎢⎣
¯¯
¯¯
¯¯
¯¯
¯ x+ b
2a +
√∆ 2|a| x+ b
2a −
√∆ 2|a|
¯¯
¯¯
¯¯
¯¯
¯
⎤
⎥⎥
⎥⎦
HW 5. 求R
arcsin (x)dx及R
arctan (x)dx 一般的有理式:化成部分分式
Example 10 Z dx
x3+ 1 =
Z dx
(x+ 1) (x2−x+ 1) 1
(x+ 1) (x2−x+ 1) = a
x+ 1 + bx+c x2−x+ 1
=⇒ 1 = a¡
x2−x+ 1¢
+ (bx+c) (x+ 1) 恆等式,可令x=−1 =⇒ 1 = a(3) =⇒ a= 1
3
=⇒ (bx+c) (x+ 1) = 1 3
¡2 +x−x2¢
= 1
3(1 +x) (2−x) (bx+c) = 1
3(2−x) Z dx
x3+ 1 = 1 3
Z ½ 1
x+ 1 + 2−x x2−x+ 1
¾ dx
= 1 3
⎧⎪
⎨
⎪⎩ln (x+ 1) + Z ⎡
⎢⎣−1
2(2x−1) x2−x+ 1 +
3 2 x2−x+ 1
⎤
⎥⎦dx
⎫⎪
⎬
⎪⎭
= 1
3ln (x+ 1)− 1 6ln¡
x2−x+ 1¢ + 1
√3arctan
∙ 1
√3(2x−1)
¸
HW 6. 求R dx
(x+ 1)2(x+ 2)。
HW 7. 求arctan (x)在x= 0的泰勒展開。
• R
sinmxcosnxdx, m, n為正整數 (1) m或n是奇數
(a) n是奇數,令u= sinx,du= cosxdx
=⇒ Z
sinmxcosnxdx= Z
um¡
1−u2¢n−21 du (b) m是奇數,令u= cosx,du=−sinxdx
=⇒ Z
sinmxcosnxdx=−Z ¡
1−u2¢m2−1 undu (2) m、n都是偶數
先利用sinxcosx= 1
2sin 2x,再利用sin2x= 1
2(1−cos 2x)或cos2x= 1
2(1−cos 2x)把 剩下的sin2x或cos2x降次。
Example 11 R
sin4xcos2xdx (i) sin2xcos2 =
µ1 2sin 2x
¶2
(ii) sin2x= 1
2(1−cos 2x)
=⇒ Z
sin4xcos2xdx
= 1
8
½Z
sin2(2x)dx− Z
sin2(2x) cos (2x)dx
¾
= 1
8
½Z 1
2[1−cos (4x)]dx− Z
sin2(2x)1
2dsin (2x)
¾
= 1
16
½ x− 1
4sin (4x)− 1
3sin3(2x)
¾
HW 8. 求R
sin4xcos4xdx HW 9. 求R √
a2−x2dx, R √
a2+x2dx, R
(a2−x2)3/2dx (3) R
sinmxcosnxdx, R
sinmxsinnxdx或R
cosmxcosnxdx可以利用積化和差
⎧⎪
⎪⎪
⎪⎨
⎪⎪
⎪⎪
⎩
sinmxcosnx= 1
2sin (m+n)x+1
2sin (m−n)x sinmxsinnx= −1
2 cos (m+n)x+1
2cos (m−n)x cosmxcosnx= 1
2cos (m+n)x+1
2cos (m−n)x HW 10. m, n都是整數,證明
(i) RL 0 sin
µ2πmx L
¶ cos
µ2πnx L
¶
dx= 0 (ii)RL
0 sin
µ2πmx L
¶ sin
µ2πnx L
¶
dx= L 2δmn
(iii)RL 0 cos
µ2πmx L
¶ cos
µ2πnx L
¶
dx= L 2δmn
(4) R
tannxdx(或R
cotnxdx) 利用tan2x= sec2x−1 = d
dx(tanx)−1 令In(x) =R
tannxdx=R
tann−2x{d(tanx)−dx}
=⇒ In(x) =−In−2(x) + 1
n−1tann−1x HW 11. 求R
tan4xdx,R
tan5xdx (5) R
secnxdx(或R
cscnxdx)
(a) n是偶數
令u= tanx, du= sec2udu,sec2x= 1 + tan2x= 1 +u2 Z
secnxdx=Z ¡
1 +u2¢n−22 du (b) n是奇數
令
In(x) = Z
secnxdx= secn−2xd(tanx)
= secn−2xtanx− Z
(n−2) secn−3xsecxtanxtanxdx In(x) = secn−2xtanx−(n−2)
Z
secn−2x¡
sec2x−1¢ dx
=⇒ (n−1)In(x) = (n−2)In−2(x) + secn−2xtanx HW 12. 求R
sec3xdx,R
sec4xdx (6) sinx及cosx有理式的積分
令u= tan³x 2
´
, du= sec2³x 2
´dx
2 , dx= 2du 1 +u2 tanx= 2u
1−u2 =⇒ sinx= 2u
1 +u2,cosx= 1−u2 1 +u2 因此積分可化為u的有理式。
Example 12 |a|<1
Z dx
1 +acosx =
Z 1
1 +a1−u2 1 +u2
2du 1 +u2 =
Z 2du
(1−a)u2+ (1 +a)
令u=
r1 +a 1−atanθ
Z dx
1 +acosx = Z 2
r1 +a
1−asec2θdθ
(1 +a) sec2θ = 2
√1−a2θ
= 2
√1−a2 arctan
"r 1−a
1 +atan³x 2
´#
HW 13. 求R2π 0
sinxdx
1 +asinx,|a|<1