• Tidak ada hasil yang ditemukan

Calculus (I)

N/A
N/A
Protected

Academic year: 2023

Membagikan "Calculus (I)"

Copied!
38
0
0

Teks penuh

(1)

Calculus (I)

WEN-CHING LIEN

Department of Mathematics National Cheng Kung University

2008

WEN-CHINGLIEN Calculus (I)

(2)

Ch2-4: Some Limit Theorems

Theorem (Uniqeness of a Limit) If lim

xcf(x) =L and lim

xcf(x) =M , then L=M.

Pf:

Assume that L6=M Since lim

xcf(x) =L,∃δ1>0 s.t.

if 0<|xc|< δ1, then

|f(x)−L|< ǫ≡ |LM|

2

WEN-CHINGLIEN Calculus (I)

(3)

Ch2-4: Some Limit Theorems

Theorem (Uniqeness of a Limit) If lim

xcf(x) =L and lim

xcf(x) =M , then L=M.

Pf:

Assume that L6=M Since lim

xcf(x) =L,∃δ1>0 s.t.

if 0<|xc|< δ1, then

|f(x)−L|< ǫ≡ |LM|

2

WEN-CHINGLIEN Calculus (I)

(4)

Ch2-4: Some Limit Theorems

Theorem (Uniqeness of a Limit) If lim

xcf(x) =L and lim

xcf(x) =M , then L=M.

Pf:

Assume that L6=M Since lim

xcf(x) =L,∃δ1>0 s.t.

if 0<|xc|< δ1, then

|f(x)−L|< ǫ≡ |LM|

2

WEN-CHINGLIEN Calculus (I)

(5)

Ch2-4: Some Limit Theorems

Theorem (Uniqeness of a Limit) If lim

xcf(x) =L and lim

xcf(x) =M , then L=M.

Pf:

Assume that L6=M Since lim

xcf(x) =L,∃δ1>0 s.t.

if 0<|xc|< δ1, then

|f(x)−L|< ǫ≡ |LM|

2

WEN-CHINGLIEN Calculus (I)

(6)

Ch2-4: Some Limit Theorems

Theorem (Uniqeness of a Limit) If lim

xcf(x) =L and lim

xcf(x) =M , then L=M.

Pf:

Assume that L6=M Since lim

xcf(x) =L,∃δ1>0 s.t.

if 0<|xc|< δ1, then

|f(x)−L|< ǫ≡ |LM|

2

WEN-CHINGLIEN Calculus (I)

(7)

Ch2-4: Some Limit Theorems

Theorem (Uniqeness of a Limit) If lim

xcf(x) =L and lim

xcf(x) =M , then L=M.

Pf:

Assume that L6=M Since lim

xcf(x) =L,∃δ1>0 s.t.

if 0<|xc|< δ1, then

|f(x)−L|< ǫ≡ |LM|

2

WEN-CHINGLIEN Calculus (I)

(8)

And∃δ2>0 s.t.

if 0<|xc|< δ2, then

|f(x)−M|< ǫ Let x1 satisfy 0<|x1c|<min{δ1, δ2}, then|f(x1)−L|< |LM|2 ,|f(x1)−M|< |LM|2

⇒ |LM| ≤ |Lf(x1)|+|f(x1)−M|

<|LM| Contradiction. 2

WEN-CHINGLIEN Calculus (I)

(9)

And∃δ2>0 s.t.

if 0<|xc|< δ2, then

|f(x)−M|< ǫ Let x1 satisfy 0<|x1c|<min{δ1, δ2}, then|f(x1)−L|< |LM|2 ,|f(x1)−M|< |LM|2

⇒ |LM| ≤ |Lf(x1)|+|f(x1)−M|

<|LM| Contradiction. 2

WEN-CHINGLIEN Calculus (I)

(10)

And∃δ2>0 s.t.

if 0<|xc|< δ2, then

|f(x)−M|< ǫ Let x1 satisfy 0<|x1c|<min{δ1, δ2}, then|f(x1)−L|< |LM|2 ,|f(x1)−M|< |LM|2

⇒ |LM| ≤ |Lf(x1)|+|f(x1)−M|

<|LM| Contradiction. 2

WEN-CHINGLIEN Calculus (I)

(11)

And∃δ2>0 s.t.

if 0<|xc|< δ2, then

|f(x)−M|< ǫ Let x1 satisfy 0<|x1c|<min{δ1, δ2}, then|f(x1)−L|< |LM|2 ,|f(x1)−M|< |LM|2

⇒ |LM| ≤ |Lf(x1)|+|f(x1)−M|

<|LM| Contradiction. 2

WEN-CHINGLIEN Calculus (I)

(12)

And∃δ2>0 s.t.

if 0<|xc|< δ2, then

|f(x)−M|< ǫ Let x1 satisfy 0<|x1c|<min{δ1, δ2}, then|f(x1)−L|< |LM|2 ,|f(x1)−M|< |LM|2

⇒ |LM| ≤ |Lf(x1)|+|f(x1)−M|

<|LM| Contradiction. 2

WEN-CHINGLIEN Calculus (I)

(13)

And∃δ2>0 s.t.

if 0<|xc|< δ2, then

|f(x)−M|< ǫ Let x1 satisfy 0<|x1c|<min{δ1, δ2}, then|f(x1)−L|< |LM|2 ,|f(x1)−M|< |LM|2

⇒ |LM| ≤ |Lf(x1)|+|f(x1)−M|

<|LM| Contradiction. 2

WEN-CHINGLIEN Calculus (I)

(14)

And∃δ2>0 s.t.

if 0<|xc|< δ2, then

|f(x)−M|< ǫ Let x1 satisfy 0<|x1c|<min{δ1, δ2}, then|f(x1)−L|< |LM|2 ,|f(x1)−M|< |LM|2

⇒ |LM| ≤ |Lf(x1)|+|f(x1)−M|

<|LM| Contradiction. 2

WEN-CHINGLIEN Calculus (I)

(15)

And∃δ2>0 s.t.

if 0<|xc|< δ2, then

|f(x)−M|< ǫ Let x1 satisfy 0<|x1c|<min{δ1, δ2}, then|f(x1)−L|< |LM|2 ,|f(x1)−M|< |LM|2

⇒ |LM| ≤ |Lf(x1)|+|f(x1)−M|

<|LM| Contradiction. 2

WEN-CHINGLIEN Calculus (I)

(16)

And∃δ2>0 s.t.

if 0<|xc|< δ2, then

|f(x)−M|< ǫ Let x1 satisfy 0<|x1c|<min{δ1, δ2}, then|f(x1)−L|< |LM|2 ,|f(x1)−M|< |LM|2

⇒ |LM| ≤ |Lf(x1)|+|f(x1)−M|

<|LM| Contradiction. 2

WEN-CHINGLIEN Calculus (I)

(17)

The Sandwich Theorem

Theorem (Comparison)

If f(x)≤g(x),x ∈(a,b)and x 6=c , c ∈(a,b) then lim

xcf(x)≤ lim

xcg(x) Theorem

If f(x)≤g(x)≤h(x),x ∈(a,b)and x 6=c , c∈(a,b) and lim

xcf(x) = lim

xch(x) =L, then lim

xcg(x) =L

WEN-CHINGLIEN Calculus (I)

(18)

The Sandwich Theorem

Theorem (Comparison)

If f(x)≤g(x),x ∈(a,b)and x 6=c , c ∈(a,b) then lim

xcf(x)≤ lim

xcg(x) Theorem

If f(x)≤g(x)≤h(x),x ∈(a,b)and x 6=c , c∈(a,b) and lim

xcf(x) = lim

xch(x) =L, then lim

xcg(x) =L

WEN-CHINGLIEN Calculus (I)

(19)

The Sandwich Theorem

Theorem (Comparison)

If f(x)≤g(x),x ∈(a,b)and x 6=c , c ∈(a,b) then lim

xcf(x)≤ lim

xcg(x) Theorem

If f(x)≤g(x)≤h(x),x ∈(a,b)and x 6=c , c∈(a,b) and lim

xcf(x) = lim

xch(x) =L, then lim

xcg(x) =L

WEN-CHINGLIEN Calculus (I)

(20)

The Sandwich Theorem

Theorem (Comparison)

If f(x)≤g(x),x ∈(a,b)and x 6=c , c ∈(a,b) then lim

xcf(x)≤ lim

xcg(x) Theorem

If f(x)≤g(x)≤h(x),x ∈(a,b)and x 6=c , c∈(a,b) and lim

xcf(x) = lim

xch(x) =L, then lim

xcg(x) =L

WEN-CHINGLIEN Calculus (I)

(21)

Example1: lim

x→0x sin1 x Example2: lim

x→0

sin x Pf: x

0<x < π 2, BD= x, OA=cos x, AD =sin x, BC =tan x.

Area △OAD≤ Area∢OBD ≤Area △OBC

12cos x sin x121x121 tan x

WEN-CHINGLIEN Calculus (I)

(22)

Example1: lim

x→0x sin1 x Example2: lim

x→0

sin x Pf: x

0<x < π 2, BD= x, OA=cos x, AD =sin x, BC =tan x.

Area △OAD≤ Area∢OBD ≤Area △OBC

12cos x sin x121x121 tan x

WEN-CHINGLIEN Calculus (I)

(23)

Example1: lim

x→0x sin1 x Example2: lim

x→0

sin x Pf: x

0<x < π 2, BD= x, OA=cos x, AD =sin x, BC =tan x.

Area △OAD≤ Area∢OBD ≤Area △OBC

12cos x sin x121x121 tan x

WEN-CHINGLIEN Calculus (I)

(24)

Example1: lim

x→0x sin1 x Example2: lim

x→0

sin x Pf: x

0<x < π 2, BD= x, OA=cos x, AD =sin x, BC =tan x.

Area △OAD≤ Area∢OBD ≤Area △OBC

12cos x sin x121x121 tan x

WEN-CHINGLIEN Calculus (I)

(25)

Example1: lim

x→0x sin1 x Example2: lim

x→0

sin x Pf: x

0<x < π 2, BD= x, OA=cos x, AD =sin x, BC =tan x.

Area △OAD≤ Area∢OBD ≤Area △OBC

12cos x sin x121x121 tan x

WEN-CHINGLIEN Calculus (I)

(26)

Example1: lim

x→0x sin1 x Example2: lim

x→0

sin x Pf: x

0<x < π 2, BD= x, OA=cos x, AD =sin x, BC =tan x.

Area △OAD≤ Area∢OBD ≤Area △OBC

12cos x sin x121x121 tan x

WEN-CHINGLIEN Calculus (I)

(27)

Example1: lim

x→0x sin1 x Example2: lim

x→0

sin x Pf: x

0<x < π 2, BD= x, OA=cos x, AD =sin x, BC =tan x.

Area △OAD≤ Area∢OBD ≤Area △OBC

12cos x sin x121x121 tan x

WEN-CHINGLIEN Calculus (I)

(28)

Example1: lim

x→0x sin1 x Example2: lim

x→0

sin x Pf: x

0<x < π 2, BD= x, OA=cos x, AD =sin x, BC =tan x.

Area △OAD≤ Area∢OBD ≤Area △OBC

12cos x sin x121x121 tan x

WEN-CHINGLIEN Calculus (I)

(29)

Example1: lim

x→0x sin1 x Example2: lim

x→0

sin x Pf: x

0<x < π 2, BD= x, OA=cos x, AD =sin x, BC =tan x.

Area △OAD≤ Area∢OBD ≤Area △OBC

12cos x sin x121x121 tan x

WEN-CHINGLIEN Calculus (I)

(30)

Example1: lim

x→0x sin1 x Example2: lim

x→0

sin x Pf: x

0<x < π 2, BD= x, OA=cos x, AD =sin x, BC =tan x.

Area △OAD≤ Area∢OBD ≤Area △OBC

12cos x sin x121x121 tan x

WEN-CHINGLIEN Calculus (I)

(31)

⇒ cos xx

sin x ≤ 1 cos x

⇒ 1

cos x ≥ sin x

x ≥cos x

⇒ lim

x→0

sin x

x =1. 2

WEN-CHINGLIEN Calculus (I)

(32)

⇒ cos xx

sin x ≤ 1 cos x

⇒ 1

cos x ≥ sin x

x ≥cos x

⇒ lim

x→0

sin x

x =1. 2

WEN-CHINGLIEN Calculus (I)

(33)

⇒ cos xx

sin x ≤ 1 cos x

⇒ 1

cos x ≥ sin x

x ≥cos x

⇒ lim

x→0

sin x

x =1. 2

WEN-CHINGLIEN Calculus (I)

(34)

Exercise:

1 lim

x→∞

ln x x =?

2 lim

x→0

sin(2x)

3x =?

3 lim

x→0

1−cos x

x =?

4 lim

x→0x2sin1 x =?

WEN-CHINGLIEN Calculus (I)

(35)

Exercise:

1 lim

x→∞

ln x x =?

2 lim

x→0

sin(2x)

3x =?

3 lim

x→0

1−cos x

x =?

4 lim

x→0x2sin1 x =?

WEN-CHINGLIEN Calculus (I)

(36)

Exercise:

1 lim

x→∞

ln x x =?

2 lim

x→0

sin(2x)

3x =?

3 lim

x→0

1−cos x

x =?

4 lim

x→0x2sin1 x =?

WEN-CHINGLIEN Calculus (I)

(37)

Exercise:

1 lim

x→∞

ln x x =?

2 lim

x→0

sin(2x)

3x =?

3 lim

x→0

1−cos x

x =?

4 lim

x→0x2sin1 x =?

WEN-CHINGLIEN Calculus (I)

(38)

Thank you.

WEN-CHINGLIEN Calculus (I)

Referensi

Dokumen terkait

Cognitive Strategies in the Pragmatic Competence Acquisition Childhood Preschool The use of cognitive strategies in English language acquisition in early childhood include several

日本語学習者の動機づけと自律性に関する実態調査 −動機づけ変容の可視化と言語学習史の分析− 鈴木 由衣 首都大学東京大学院システムデザイン研究科 博士後期課程 〒191-0065東京都日野市旭ヶ丘6-6 E-mail: suzuki-yui@ed.tmu.ac.jp 概要