• Tidak ada hasil yang ditemukan

Calculus (I)

N/A
N/A
Protected

Academic year: 2024

Membagikan "Calculus (I)"

Copied!
87
0
0

Teks penuh

(1)

Calculus (I)

WEN-CHING LIEN

Department of Mathematics National Cheng Kung University

2008

(2)

10.4

Theorem (1) If p >0, then lim

n→∞

np=1

(3)

10.4

Theorem (1) If p >0, then lim

n→∞

np=1

(4)

pf:

(i) If p =1, trivial

(ii) If p >1, set xn =√np−1 (>0),

then (1+xn)n=p ≥1+n·xn (the binomial theorem)

⇒ 0<xnp−1 n

⇒ lim

n→∞

xn=0

⇒ lim

n→∞

np=1

(iii) If p <1, then√np = 1

n

q1 p

→1. 2

(5)

pf:

(i)If p =1, trivial

(ii)If p >1, set xn =√np−1 (>0),

then (1+xn)n=p ≥1+n·xn (the binomial theorem)

⇒ 0<xnp−1 n

⇒ lim

n→∞

xn=0

⇒ lim

n→∞

np=1

(iii) If p <1, then√np = 1

q1 →1. 2

(6)

pf:

(i) If p =1, trivial

(ii) If p >1, set xn =√np−1 (>0),

then (1+xn)n=p ≥1+n·xn (the binomial theorem)

⇒ 0<xnp−1 n

⇒ lim

n→∞

xn=0

⇒ lim

n→∞

np=1

(iii) If p <1, then√np = 1

n

q1 p

→1. 2

(7)

pf:

(i) If p =1, trivial

(ii)If p >1, set xn =√np−1 (>0),

then (1+xn)n=p ≥1+n·xn (the binomial theorem)

⇒ 0<xnp−1 n

⇒ lim

n→∞

xn=0

⇒ lim

n→∞

np=1

(iii) If p <1, then√np = 1

q1 →1. 2

(8)

pf:

(i) If p =1, trivial

(ii) If p >1, set xn =√np−1 (>0),

then (1+xn)n=p ≥1+n·xn (the binomial theorem)

⇒ 0<xnp−1 n

⇒ lim

n→∞

xn=0

⇒ lim

n→∞

np=1

(iii) If p <1, then√np = 1

n

q1 p

→1. 2

(9)

pf:

(i) If p =1, trivial

(ii) If p >1, set xn =√np−1 (>0),

then (1+xn)n=p ≥1+n·xn (the binomial theorem)

⇒ 0<xnp−1 n

⇒ lim

n→∞

xn=0

⇒ lim

n→∞

np=1

(iii) If p <1, then√np = 1

q1 →1. 2

(10)

pf:

(i) If p =1, trivial

(ii) If p >1, set xn =√np−1 (>0),

then (1+xn)n=p ≥1+n·xn (the binomial theorem)

⇒ 0<xnp−1 n

⇒ lim

n→∞

xn=0

⇒ lim

n→∞

np=1

(iii) If p <1, then√np = 1

n

q1 p

→1. 2

(11)

pf:

(i) If p =1, trivial

(ii) If p >1, set xn =√np−1 (>0),

then (1+xn)n=p ≥1+n·xn (the binomial theorem)

⇒ 0<xnp−1 n

⇒ lim

n→∞

xn=0

⇒ lim

n→∞

np=1

(iii)If p <1, then√np = 1

q1 →1. 2

(12)

pf:

(i) If p =1, trivial

(ii) If p >1, set xn =√np−1 (>0),

then (1+xn)n=p ≥1+n·xn (the binomial theorem)

⇒ 0<xnp−1 n

⇒ lim

n→∞

xn=0

⇒ lim

n→∞

np=1

(iii) If p <1,then√np = 1

n

q1 p

→1. 2

(13)

pf:

(i) If p =1, trivial

(ii) If p >1, set xn =√np−1 (>0),

then (1+xn)n=p ≥1+n·xn (the binomial theorem)

⇒ 0<xnp−1 n

⇒ lim

n→∞

xn=0

⇒ lim

n→∞

np=1

(iii)If p <1, then√np = 1

q1 →1. 2

(14)

pf:

(i) If p =1, trivial

(ii) If p >1, set xn =√np−1 (>0),

then (1+xn)n=p ≥1+n·xn (the binomial theorem)

⇒ 0<xnp−1 n

⇒ lim

n→∞

xn=0

⇒ lim

n→∞

np=1

(iii) If p <1,then√np = 1

n

q1 p

→1. 2

(15)

pf:

(i) If p =1, trivial

(ii) If p >1, set xn =√np−1 (>0),

then (1+xn)n=p ≥1+n·xn (the binomial theorem)

⇒ 0<xnp−1 n

⇒ lim

n→∞

xn=0

⇒ lim

n→∞

np=1

(iii) If p <1, then√np = 1

q1 →1. 2

(16)

Theorem (2)

nlim→∞

n

n=1

(17)

Theorem (2)

nlim→∞

n

n=1

(18)

pf:

Let xn =√n

n−1≥0

n= (1+xn)nn(n−1) 2 xn2

⇒ 0≤xn

r 2 n−1

⇒ lim

n→∞

xn=0

⇒ lim

n→∞

n

n=1 2

(19)

pf:

Let xn =√n

n−1≥0

n= (1+xn)nn(n−1) 2 xn2

⇒ 0≤xn

r 2 n−1

⇒ lim

n→∞

xn=0

⇒ lim

n→∞

n

n=1 2

(20)

pf:

Let xn =√n

n−1≥0

n= (1+xn)nn(n−1) 2 xn2

⇒ 0≤xn

r 2 n−1

⇒ lim

n→∞

xn=0

⇒ lim

n→∞

n

n=1 2

(21)

pf:

Let xn =√n

n−1≥0

n= (1+xn)nn(n−1) 2 xn2

⇒ 0≤xn

r 2 n−1

⇒ lim

n→∞

xn=0

⇒ lim

n→∞

n

n=1 2

(22)

pf:

Let xn =√n

n−1≥0

n= (1+xn)nn(n−1) 2 xn2

⇒ 0≤xn

r 2 n−1

⇒ lim

n→∞

xn=0

⇒ lim

n→∞

n

n=1 2

(23)

pf:

Let xn =√n

n−1≥0

n= (1+xn)nn(n−1) 2 xn2

⇒ 0≤xn

r 2 n−1

⇒ lim

n→∞

xn=0

⇒ lim

n→∞

n

n=1 2

(24)

Theorem (3)

nlim→∞(1+xn)n=ex

(25)

Theorem (3)

nlim→∞(1+xn)n=ex

(26)

pf:

(i) For x =0, trivial.

(ii) For x 6=0, ln(1+ x

n)n =n ln(1+ x

n) =x· ln(1+xn)−ln 1

x n

nlim→∞

ln(1+ x

n)−ln 1

x n

= d

dt(ln t)|t=1=1

∴ lim

n→∞

ln(1+ xn)n=x

∴ lim

n→∞

(1+ xn)n=ex 2

(27)

pf:

(i)For x =0, trivial.

(ii)For x 6=0, ln(1+ x

n)n =n ln(1+ x

n) =x· ln(1+xn)−ln 1

x n

nlim→∞

ln(1+ x

n)−ln 1

x n

= d

dt(ln t)|t=1=1

∴ lim

n→∞

ln(1+ xn)n=x

∴ lim

n→∞

(1+ xn)n=ex 2

(28)

pf:

(i) For x =0, trivial.

(ii) For x 6=0, ln(1+ x

n)n =n ln(1+ x

n) =x· ln(1+xn)−ln 1

x n

nlim→∞

ln(1+ x

n)−ln 1

x n

= d

dt(ln t)|t=1=1

∴ lim

n→∞

ln(1+ xn)n=x

∴ lim

n→∞

(1+ xn)n=ex 2

(29)

pf:

(i) For x =0, trivial.

(ii)For x 6=0, ln(1+ x

n)n =n ln(1+ x

n) =x· ln(1+xn)−ln 1

x n

nlim→∞

ln(1+ x

n)−ln 1

x n

= d

dt(ln t)|t=1=1

∴ lim

n→∞

ln(1+ xn)n=x

∴ lim

n→∞

(1+ xn)n=ex 2

(30)

pf:

(i) For x =0, trivial.

(ii) For x 6=0, ln(1+ x

n)n =n ln(1+ x

n) =x· ln(1+xn)−ln 1

x n

nlim→∞

ln(1+ x

n)−ln 1

x n

= d

dt(ln t)|t=1=1

∴ lim

n→∞

ln(1+ xn)n=x

∴ lim

n→∞

(1+ xn)n=ex 2

(31)

pf:

(i) For x =0, trivial.

(ii) For x 6=0, ln(1+ x

n)n =n ln(1+ x

n) =x· ln(1+xn)−ln 1

x n

nlim→∞

ln(1+ x

n)−ln 1

x n

= d

dt(ln t)|t=1=1

∴ lim

n→∞

ln(1+ xn)n=x

∴ lim

n→∞

(1+ xn)n=ex 2

(32)

pf:

(i) For x =0, trivial.

(ii) For x 6=0, ln(1+ x

n)n =n ln(1+ x

n) =x· ln(1+xn)−ln 1

x n

nlim→∞

ln(1+ x

n)−ln 1

x n

= d

dt(ln t)|t=1=1

∴ lim

n→∞

ln(1+ xn)n=x

∴ lim

n→∞

(1+ xn)n=ex 2

(33)

pf:

(i) For x =0, trivial.

(ii) For x 6=0, ln(1+ x

n)n =n ln(1+ x

n) =x· ln(1+xn)−ln 1

x n

nlim→∞

ln(1+ x

n)−ln 1

x n

= d

dt(ln t)|t=1=1

∴ lim

n→∞

ln(1+ xn)n=x

∴ lim

n→∞

(1+ xn)n=ex 2

(34)

pf:

(i) For x =0, trivial.

(ii) For x 6=0, ln(1+ x

n)n =n ln(1+ x

n) =x· ln(1+xn)−ln 1

x n

nlim→∞

ln(1+ x

n)−ln 1

x n

= d

dt(ln t)|t=1=1

∴ lim

n→∞

ln(1+ xn)n=x

∴ lim

n→∞

(1+ xn)n=ex 2

(35)

Remark:(Cauchy sequence)

Theorem

(1)Every convergent sequence is a Cauchy sequence (2)Every Cauchy sequence is convergent

(36)

Remark:(Cauchy sequence)

Theorem

(1)Every convergent sequence is a Cauchy sequence (2)Every Cauchy sequence is convergent

(37)

Remark:(Cauchy sequence)

Theorem

(1)Every convergent sequence is a Cauchy sequence (2)Every Cauchy sequence is convergent

(38)

Remark:(Cauchy sequence)

Theorem

(1)Every convergent sequence is a Cauchy sequence (2)Every Cauchy sequence is convergent

(39)

pf :

(1)

Let anL

We want to show that ∀ǫ >0, ∃an index K s.t.

|anam|< ǫ for all m,nK

For givenǫ >0,

K s.t. |anL|< ǫ

2 for nK Thus, if m,nK ,

|anam| ≤ |anL|+|Lam|< ǫ 2 + ǫ

2 =ǫ 2

(40)

pf :

(1)

Let anL

We want to show that ∀ǫ >0, ∃an index K s.t.

|anam|< ǫ for all m,nK

For givenǫ >0,

K s.t. |anL|< ǫ

2 for nK Thus, if m,nK ,

|anam| ≤ |anL|+|Lam|< ǫ 2 + ǫ

2 =ǫ 2

(41)

pf :

(1)

Let anL

We want to show that ∀ǫ >0, ∃an index K s.t.

|anam|< ǫ for all m,nK

For givenǫ >0,

K s.t. |anL|< ǫ

2 for nK Thus, if m,nK ,

|anam| ≤ |anL|+|Lam|< ǫ 2 + ǫ

2 =ǫ 2

(42)

pf :

(1)

Let anL

We want to show that ∀ǫ >0, ∃an index K s.t.

|anam|< ǫ for all m,nK

For givenǫ >0,

K s.t. |anL|< ǫ

2 for nK Thus, if m,nK ,

|anam| ≤ |anL|+|Lam|< ǫ 2 + ǫ

2 =ǫ 2

(43)

pf :

(1)

Let anL

We want to show that ∀ǫ >0, ∃an index K s.t.

|anam|< ǫ for all m,nK

For givenǫ >0,

K s.t. |anL|< ǫ

2 for nK Thus, if m,nK ,

|anam| ≤ |anL|+|Lam|< ǫ 2 + ǫ

2 =ǫ 2

(44)

pf :

(1)

Let anL

We want to show that ∀ǫ >0, ∃an index K s.t.

|anam|< ǫ for all m,nK

For givenǫ >0,

K s.t. |anL|< ǫ

2 for nK Thus, if m,nK ,

|anam| ≤ |anL|+|Lam|< ǫ 2 + ǫ

2 =ǫ 2

(45)

pf :

(1)

Let anL

We want to show that ∀ǫ >0, ∃an index K s.t.

|anam|< ǫ for all m,nK

For givenǫ >0,

K s.t. |anL|< ǫ

2 for nK Thus, if m,nK ,

|anam| ≤ |anL|+|Lam|< ǫ 2 + ǫ

2 =ǫ 2

(46)

(2)

Let{an}be a Cauchy sequence Want to prove that {an}is convergent

(47)

(2)

Let{an}be a Cauchy sequence Want to prove that {an}is convergent

(48)

(2)

Let{an}be a Cauchy sequence Want to prove that {an}is convergent

(49)

Lemma:

For any nN, an<bn, In ≡[an,bn] (a)∀nN, InIn+1, then

T

n=1

In6=φ (b)If lim

n→∞

(bnan) =0, then

T

n=1

Inis a set containing exactly one point

(50)

Lemma:

For any nN, an<bn, In ≡[an,bn] (a)∀nN, InIn+1, then

T

n=1

In6=φ (b)If lim

n→∞

(bnan) =0, then

T

n=1

Inis a set containing exactly one point

(51)

Lemma:

For any nN, an<bn, In ≡[an,bn] (a)∀nN, InIn+1, then

T

n=1

In6=φ (b)If lim

n→∞

(bnan) =0, then

T

n=1

Inis a set containing exactly one point

(52)

Lemma:

For any nN, an<bn, In ≡[an,bn] (a)∀nN, InIn+1, then

T

n=1

In6=φ (b)If lim

n→∞

(bnan) =0, then

T

n=1

Inis a set containing exactly one point

(53)

Lemma:

For any nN, an<bn, In ≡[an,bn] (a)∀nN, InIn+1, then

T

n=1

In6=φ (b)If lim

n→∞

(bnan) =0, then

T

n=1

Inis a set containing exactly one point

(54)

pf:

(a)

a1a2≤. . .an≤ · · · ≤bn ≤. . .b2b1

Set a=sup{ak :kN},

∵completeness ⇒aR

And anabn, ∀na

T

n=1

In

(b) If a,b

T

n=1

In,

then 0≤ |ab| ≤bnan, ∀n But lim (ba ) =0, ⇒a=b 2

(55)

pf:

(a)

a1a2≤. . .an≤ · · · ≤bn ≤. . .b2b1

Set a=sup{ak :kN},

∵completeness ⇒aR

And anabn, ∀na

T

n=1

In

(b) If a,b

T

n=1

In,

then 0≤ |ab| ≤bnan, ∀n

(56)

pf:

(a)

a1a2≤. . .an≤ · · · ≤bn ≤. . .b2b1

Set a=sup{ak :kN},

∵completeness ⇒aR

And anabn, ∀na

T

n=1

In

(b) If a,b

T

n=1

In,

then 0≤ |ab| ≤bnan, ∀n But lim (ba ) =0, ⇒a=b 2

(57)

pf:

(a)

a1a2≤. . .an≤ · · · ≤bn ≤. . .b2b1

Set a=sup{ak :kN},

∵completeness ⇒aR

And anabn, ∀na

T

n=1

In

(b) If a,b

T

n=1

In,

then 0≤ |ab| ≤bnan, ∀n

(58)

pf:

(a)

a1a2≤. . .an≤ · · · ≤bn ≤. . .b2b1

Set a=sup{ak :kN},

∵completeness ⇒aR

And anabn, ∀na

T

n=1

In

(b) If a,b

T

n=1

In,

then 0≤ |ab| ≤bnan, ∀n But lim (ba ) =0, ⇒a=b 2

(59)

pf:

(a)

a1a2≤. . .an≤ · · · ≤bn ≤. . .b2b1

Set a=sup{ak :kN},

∵completeness ⇒aR

And anabn, ∀na

T

n=1

In

(b) If a,b

T

n=1

In,

then 0≤ |ab| ≤bnan, ∀n

(60)

pf:

(a)

a1a2≤. . .an≤ · · · ≤bn ≤. . .b2b1

Set a=sup{ak :kN},

∵completeness ⇒aR

And anabn, ∀na

T

n=1

In

(b) If a,b

T

n=1

In,

then 0≤ |ab| ≤bnan, ∀n But lim (ba ) =0, ⇒a=b 2

(61)

pf:

(a)

a1a2≤. . .an≤ · · · ≤bn ≤. . .b2b1

Set a=sup{ak :kN},

∵completeness ⇒aR

And anabn, ∀na

T

n=1

In

(b) If a,b

T

n=1

In,

then 0≤ |ab| ≤bnan, ∀n

(62)

pf:

(a)

a1a2≤. . .an≤ · · · ≤bn ≤. . .b2b1

Set a=sup{ak :kN},

∵completeness ⇒aR

And anabn, ∀na

T

n=1

In

(b) If a,b

T

n=1

In,

then 0≤ |ab| ≤bnan, ∀n But lim (ba ) =0, ⇒a=b 2

(63)

proof of (2):

n1N s.t. |akaj|< 1

22, ∀k,jn1

n2N s.t. |akaj|< 1

22+1, ∀k,jn2 (∴n2n1) We can construct a sequence nlnl+1, ∀lN

and|akaj|< 1

2l+1, ∀k,jnl

(64)

proof of (2):

n1N s.t. |akaj|< 1

22, ∀k,jn1

n2N s.t. |akaj|< 1

22+1, ∀k,jn2 (∴n2n1) We can construct a sequence nlnl+1, ∀lN

and|akaj|< 1

2l+1, ∀k,jnl

(65)

proof of (2):

n1N s.t. |akaj|< 1

22, ∀k,jn1

n2N s.t. |akaj|< 1

22+1, ∀k,jn2 (∴n2n1) We can construct a sequence nlnl+1, ∀lN

and|akaj|< 1

2l+1, ∀k,jnl

(66)

proof of (2):

n1N s.t. |akaj|< 1

22, ∀k,jn1

n2N s.t. |akaj|< 1

22+1, ∀k,jn2 (∴n2n1) We can construct a sequence nlnl+1, ∀lN

and|akaj|< 1

2l+1, ∀k,jnl

(67)

proof of (2):

n1N s.t. |akaj|< 1

22, ∀k,jn1

n2N s.t. |akaj|< 1

22+1, ∀k,jn2 (∴n2n1) We can construct a sequence nlnl+1, ∀lN

and|akaj|< 1

2l+1, ∀k,jnl

(68)

Set Il

anl − 1

2l,anl + 1 2l

(i)

Il+1Il, ∀lN If bIl+1,

banl+1

< 1

2l+1 Since

anl+1anl

< 1

2l+1, thus|banl|< 1

2lbIl

(69)

Set Il

anl − 1

2l,anl + 1 2l

(i)

Il+1Il, ∀lN If bIl+1,

banl+1

< 1

2l+1 Since

anl+1anl

< 1

2l+1, thus|banl|< 1

2lbIl

(70)

Set Il

anl − 1

2l,anl + 1 2l

(i)

Il+1Il, ∀lN If bIl+1,

banl+1

< 1

2l+1 Since

anl+1anl

< 1

2l+1, thus|banl|< 1

2lbIl

(71)

Set Il

anl − 1

2l,anl + 1 2l

(i)

Il+1Il, ∀lN If bIl+1,

banl+1

< 1

2l+1 Since

anl+1anl

< 1

2l+1, thus|banl|< 1

2lbIl

(72)

Set Il

anl − 1

2l,anl + 1 2l

(i)

Il+1Il, ∀lN If bIl+1,

banl+1

< 1

2l+1 Since

anl+1anl

< 1

2l+1, thus|banl|< 1

2lbIl

(73)

Set Il

anl − 1

2l,anl + 1 2l

(i)

Il+1Il, ∀lN If bIl+1,

banl+1

< 1

2l+1 Since

anl+1anl

< 1

2l+1, thus|banl|< 1

2lbIl

(74)

(ii)

nlim→∞|Il|=0, so by lemma

∃a point p in R s.t.

T

l=1

Il ={p} Want to prove that lim

n→∞

an=p Givenǫ >0,∃lN s.t. 1

2l < ǫ We have

ananl+1

< 1

2l+2 if n>nl+1

pIl+1

panl+1

< 1

2l+1

(75)

(ii)

nlim→∞|Il|=0, so by lemma

∃a point p in R s.t.

T

l=1

Il ={p} Want to prove that lim

n→∞

an=p Givenǫ >0,∃lN s.t. 1

2l < ǫ We have

ananl+1

< 1

2l+2 if n>nl+1

pIl+1pan

< 1

(76)

(ii)

nlim→∞|Il|=0, so by lemma

∃a point p in R s.t.

T

l=1

Il ={p} Want to prove that lim

n→∞

an=p Givenǫ >0,∃lN s.t. 1

2l < ǫ We have

ananl+1

< 1

2l+2 if n>nl+1

pIl+1

panl+1

< 1

2l+1

(77)

(ii)

nlim→∞|Il|=0, so by lemma

∃a point p in R s.t.

T

l=1

Il ={p} Want to prove that lim

n→∞

an=p

Givenǫ >0,∃lN s.t. 1 2l < ǫ We have

ananl+1

< 1

2l+2 if n>nl+1

pIl+1pan

< 1

(78)

(ii)

nlim→∞|Il|=0, so by lemma

∃a point p in R s.t.

T

l=1

Il ={p} Want to prove that lim

n→∞

an=p

Givenǫ >0,∃lN s.t. 1 2l < ǫ We have

ananl+1

< 1

2l+2 if n>nl+1

pIl+1

panl+1

< 1

2l+1

(79)

(ii)

nlim→∞|Il|=0, so by lemma

∃a point p in R s.t.

T

l=1

Il ={p} Want to prove that lim

n→∞

an=p

Givenǫ >0,∃lN s.t. 1 2l < ǫ We have

ananl+1

< 1

2l+2 if n>nl+1

pIl+1pan

< 1

(80)

(ii)

nlim→∞|Il|=0, so by lemma

∃a point p in R s.t.

T

l=1

Il ={p} Want to prove that lim

n→∞

an=p

Givenǫ >0,∃lN s.t. 1 2l < ǫ We have

ananl+1

< 1

2l+2 if n>nl+1

pIl+1

panl+1

< 1

2l+1

(81)

Thus, |pan| ≤

ananl+1

+

anl+1p

≤ 1

2l+2 + 1 2l+1

< 1 2l

< ǫ, for nnl+1

∴ lim

n→∞

an=p 2

(82)

Thus, |pan| ≤

ananl+1

+

anl+1p

≤ 1

2l+2 + 1 2l+1

< 1 2l

< ǫ, for nnl+1

∴ lim

n→∞

an=p 2

(83)

Thus, |pan| ≤

ananl+1

+

anl+1p

≤ 1

2l+2 + 1 2l+1

< 1 2l

< ǫ, for nnl+1

∴ lim

n→∞

an=p 2

(84)

Thus, |pan| ≤

ananl+1

+

anl+1p

≤ 1

2l+2 + 1 2l+1

< 1 2l

< ǫ, for nnl+1

∴ lim

n→∞

an=p 2

(85)

Thus, |pan| ≤

ananl+1

+

anl+1p

≤ 1

2l+2 + 1 2l+1

< 1 2l

< ǫ, for nnl+1

∴ lim

n→∞

an=p 2

(86)

Example:

nN, Sn=

n

P

k=1

1

k, is{Sn}convergent ?

(87)

Thank you.

Referensi

Dokumen terkait