Calculus (I)
WEN-CHING LIEN
Department of Mathematics National Cheng Kung University
2008
10.4
Theorem (1) If p >0, then lim
n→∞
√np=1
10.4
Theorem (1) If p >0, then lim
n→∞
√np=1
pf:
(i) If p =1, trivial
(ii) If p >1, set xn =√np−1 (>0),
then (1+xn)n=p ≥1+n·xn (the binomial theorem)
⇒ 0<xn ≤ p−1 n
⇒ lim
n→∞
xn=0
⇒ lim
n→∞
√np=1
(iii) If p <1, then√np = 1
n
q1 p
→1. 2
pf:
(i)If p =1, trivial
(ii)If p >1, set xn =√np−1 (>0),
then (1+xn)n=p ≥1+n·xn (the binomial theorem)
⇒ 0<xn ≤ p−1 n
⇒ lim
n→∞
xn=0
⇒ lim
n→∞
√np=1
(iii) If p <1, then√np = 1
q1 →1. 2
pf:
(i) If p =1, trivial
(ii) If p >1, set xn =√np−1 (>0),
then (1+xn)n=p ≥1+n·xn (the binomial theorem)
⇒ 0<xn ≤ p−1 n
⇒ lim
n→∞
xn=0
⇒ lim
n→∞
√np=1
(iii) If p <1, then√np = 1
n
q1 p
→1. 2
pf:
(i) If p =1, trivial
(ii)If p >1, set xn =√np−1 (>0),
then (1+xn)n=p ≥1+n·xn (the binomial theorem)
⇒ 0<xn ≤ p−1 n
⇒ lim
n→∞
xn=0
⇒ lim
n→∞
√np=1
(iii) If p <1, then√np = 1
q1 →1. 2
pf:
(i) If p =1, trivial
(ii) If p >1, set xn =√np−1 (>0),
then (1+xn)n=p ≥1+n·xn (the binomial theorem)
⇒ 0<xn ≤ p−1 n
⇒ lim
n→∞
xn=0
⇒ lim
n→∞
√np=1
(iii) If p <1, then√np = 1
n
q1 p
→1. 2
pf:
(i) If p =1, trivial
(ii) If p >1, set xn =√np−1 (>0),
then (1+xn)n=p ≥1+n·xn (the binomial theorem)
⇒ 0<xn ≤ p−1 n
⇒ lim
n→∞
xn=0
⇒ lim
n→∞
√np=1
(iii) If p <1, then√np = 1
q1 →1. 2
pf:
(i) If p =1, trivial
(ii) If p >1, set xn =√np−1 (>0),
then (1+xn)n=p ≥1+n·xn (the binomial theorem)
⇒ 0<xn ≤ p−1 n
⇒ lim
n→∞
xn=0
⇒ lim
n→∞
√np=1
(iii) If p <1, then√np = 1
n
q1 p
→1. 2
pf:
(i) If p =1, trivial
(ii) If p >1, set xn =√np−1 (>0),
then (1+xn)n=p ≥1+n·xn (the binomial theorem)
⇒ 0<xn ≤ p−1 n
⇒ lim
n→∞
xn=0
⇒ lim
n→∞
√np=1
(iii)If p <1, then√np = 1
q1 →1. 2
pf:
(i) If p =1, trivial
(ii) If p >1, set xn =√np−1 (>0),
then (1+xn)n=p ≥1+n·xn (the binomial theorem)
⇒ 0<xn ≤ p−1 n
⇒ lim
n→∞
xn=0
⇒ lim
n→∞
√np=1
(iii) If p <1,then√np = 1
n
q1 p
→1. 2
pf:
(i) If p =1, trivial
(ii) If p >1, set xn =√np−1 (>0),
then (1+xn)n=p ≥1+n·xn (the binomial theorem)
⇒ 0<xn ≤ p−1 n
⇒ lim
n→∞
xn=0
⇒ lim
n→∞
√np=1
(iii)If p <1, then√np = 1
q1 →1. 2
pf:
(i) If p =1, trivial
(ii) If p >1, set xn =√np−1 (>0),
then (1+xn)n=p ≥1+n·xn (the binomial theorem)
⇒ 0<xn ≤ p−1 n
⇒ lim
n→∞
xn=0
⇒ lim
n→∞
√np=1
(iii) If p <1,then√np = 1
n
q1 p
→1. 2
pf:
(i) If p =1, trivial
(ii) If p >1, set xn =√np−1 (>0),
then (1+xn)n=p ≥1+n·xn (the binomial theorem)
⇒ 0<xn ≤ p−1 n
⇒ lim
n→∞
xn=0
⇒ lim
n→∞
√np=1
(iii) If p <1, then√np = 1
q1 →1. 2
Theorem (2)
nlim→∞
√n
n=1
Theorem (2)
nlim→∞
√n
n=1
pf:
Let xn =√n
n−1≥0
⇒ n= (1+xn)n ≥ n(n−1) 2 xn2
⇒ 0≤xn ≤
r 2 n−1
⇒ lim
n→∞
xn=0
⇒ lim
n→∞
√n
n=1 2
pf:
Let xn =√n
n−1≥0
⇒ n= (1+xn)n ≥ n(n−1) 2 xn2
⇒ 0≤xn ≤
r 2 n−1
⇒ lim
n→∞
xn=0
⇒ lim
n→∞
√n
n=1 2
pf:
Let xn =√n
n−1≥0
⇒ n= (1+xn)n ≥ n(n−1) 2 xn2
⇒ 0≤xn ≤
r 2 n−1
⇒ lim
n→∞
xn=0
⇒ lim
n→∞
√n
n=1 2
pf:
Let xn =√n
n−1≥0
⇒ n= (1+xn)n ≥ n(n−1) 2 xn2
⇒ 0≤xn ≤
r 2 n−1
⇒ lim
n→∞
xn=0
⇒ lim
n→∞
√n
n=1 2
pf:
Let xn =√n
n−1≥0
⇒ n= (1+xn)n ≥ n(n−1) 2 xn2
⇒ 0≤xn ≤
r 2 n−1
⇒ lim
n→∞
xn=0
⇒ lim
n→∞
√n
n=1 2
pf:
Let xn =√n
n−1≥0
⇒ n= (1+xn)n ≥ n(n−1) 2 xn2
⇒ 0≤xn ≤
r 2 n−1
⇒ lim
n→∞
xn=0
⇒ lim
n→∞
√n
n=1 2
Theorem (3)
nlim→∞(1+xn)n=ex
Theorem (3)
nlim→∞(1+xn)n=ex
pf:
(i) For x =0, trivial.
(ii) For x 6=0, ln(1+ x
n)n =n ln(1+ x
n) =x· ln(1+xn)−ln 1
x n
nlim→∞
ln(1+ x
n)−ln 1
x n
= d
dt(ln t)|t=1=1
∴ lim
n→∞
ln(1+ xn)n=x
∴ lim
n→∞
(1+ xn)n=ex 2
pf:
(i)For x =0, trivial.
(ii)For x 6=0, ln(1+ x
n)n =n ln(1+ x
n) =x· ln(1+xn)−ln 1
x n
nlim→∞
ln(1+ x
n)−ln 1
x n
= d
dt(ln t)|t=1=1
∴ lim
n→∞
ln(1+ xn)n=x
∴ lim
n→∞
(1+ xn)n=ex 2
pf:
(i) For x =0, trivial.
(ii) For x 6=0, ln(1+ x
n)n =n ln(1+ x
n) =x· ln(1+xn)−ln 1
x n
nlim→∞
ln(1+ x
n)−ln 1
x n
= d
dt(ln t)|t=1=1
∴ lim
n→∞
ln(1+ xn)n=x
∴ lim
n→∞
(1+ xn)n=ex 2
pf:
(i) For x =0, trivial.
(ii)For x 6=0, ln(1+ x
n)n =n ln(1+ x
n) =x· ln(1+xn)−ln 1
x n
nlim→∞
ln(1+ x
n)−ln 1
x n
= d
dt(ln t)|t=1=1
∴ lim
n→∞
ln(1+ xn)n=x
∴ lim
n→∞
(1+ xn)n=ex 2
pf:
(i) For x =0, trivial.
(ii) For x 6=0, ln(1+ x
n)n =n ln(1+ x
n) =x· ln(1+xn)−ln 1
x n
nlim→∞
ln(1+ x
n)−ln 1
x n
= d
dt(ln t)|t=1=1
∴ lim
n→∞
ln(1+ xn)n=x
∴ lim
n→∞
(1+ xn)n=ex 2
pf:
(i) For x =0, trivial.
(ii) For x 6=0, ln(1+ x
n)n =n ln(1+ x
n) =x· ln(1+xn)−ln 1
x n
nlim→∞
ln(1+ x
n)−ln 1
x n
= d
dt(ln t)|t=1=1
∴ lim
n→∞
ln(1+ xn)n=x
∴ lim
n→∞
(1+ xn)n=ex 2
pf:
(i) For x =0, trivial.
(ii) For x 6=0, ln(1+ x
n)n =n ln(1+ x
n) =x· ln(1+xn)−ln 1
x n
nlim→∞
ln(1+ x
n)−ln 1
x n
= d
dt(ln t)|t=1=1
∴ lim
n→∞
ln(1+ xn)n=x
∴ lim
n→∞
(1+ xn)n=ex 2
pf:
(i) For x =0, trivial.
(ii) For x 6=0, ln(1+ x
n)n =n ln(1+ x
n) =x· ln(1+xn)−ln 1
x n
nlim→∞
ln(1+ x
n)−ln 1
x n
= d
dt(ln t)|t=1=1
∴ lim
n→∞
ln(1+ xn)n=x
∴ lim
n→∞
(1+ xn)n=ex 2
pf:
(i) For x =0, trivial.
(ii) For x 6=0, ln(1+ x
n)n =n ln(1+ x
n) =x· ln(1+xn)−ln 1
x n
nlim→∞
ln(1+ x
n)−ln 1
x n
= d
dt(ln t)|t=1=1
∴ lim
n→∞
ln(1+ xn)n=x
∴ lim
n→∞
(1+ xn)n=ex 2
Remark:(Cauchy sequence)
Theorem
(1)Every convergent sequence is a Cauchy sequence (2)Every Cauchy sequence is convergent
Remark:(Cauchy sequence)
Theorem
(1)Every convergent sequence is a Cauchy sequence (2)Every Cauchy sequence is convergent
Remark:(Cauchy sequence)
Theorem
(1)Every convergent sequence is a Cauchy sequence (2)Every Cauchy sequence is convergent
Remark:(Cauchy sequence)
Theorem
(1)Every convergent sequence is a Cauchy sequence (2)Every Cauchy sequence is convergent
pf :
(1)
Let an →L
We want to show that ∀ǫ >0, ∃an index K s.t.
|an−am|< ǫ for all m,n≥K
For givenǫ >0,
∃ K s.t. |an−L|< ǫ
2 for n ≥K Thus, if m,n≥K ,
|an−am| ≤ |an−L|+|L−am|< ǫ 2 + ǫ
2 =ǫ 2
pf :
(1)
Let an →L
We want to show that ∀ǫ >0, ∃an index K s.t.
|an−am|< ǫ for all m,n≥K
For givenǫ >0,
∃ K s.t. |an−L|< ǫ
2 for n ≥K Thus, if m,n≥K ,
|an−am| ≤ |an−L|+|L−am|< ǫ 2 + ǫ
2 =ǫ 2
pf :
(1)
Let an →L
We want to show that ∀ǫ >0, ∃an index K s.t.
|an−am|< ǫ for all m,n≥K
For givenǫ >0,
∃ K s.t. |an−L|< ǫ
2 for n ≥K Thus, if m,n≥K ,
|an−am| ≤ |an−L|+|L−am|< ǫ 2 + ǫ
2 =ǫ 2
pf :
(1)
Let an →L
We want to show that ∀ǫ >0, ∃an index K s.t.
|an−am|< ǫ for all m,n≥K
For givenǫ >0,
∃ K s.t. |an−L|< ǫ
2 for n ≥K Thus, if m,n≥K ,
|an−am| ≤ |an−L|+|L−am|< ǫ 2 + ǫ
2 =ǫ 2
pf :
(1)
Let an →L
We want to show that ∀ǫ >0, ∃an index K s.t.
|an−am|< ǫ for all m,n≥K
For givenǫ >0,
∃ K s.t. |an−L|< ǫ
2 for n ≥K Thus, if m,n≥K ,
|an−am| ≤ |an−L|+|L−am|< ǫ 2 + ǫ
2 =ǫ 2
pf :
(1)
Let an →L
We want to show that ∀ǫ >0, ∃an index K s.t.
|an−am|< ǫ for all m,n≥K
For givenǫ >0,
∃ K s.t. |an−L|< ǫ
2 for n ≥K Thus, if m,n≥K ,
|an−am| ≤ |an−L|+|L−am|< ǫ 2 + ǫ
2 =ǫ 2
pf :
(1)
Let an →L
We want to show that ∀ǫ >0, ∃an index K s.t.
|an−am|< ǫ for all m,n≥K
For givenǫ >0,
∃ K s.t. |an−L|< ǫ
2 for n ≥K Thus, if m,n≥K ,
|an−am| ≤ |an−L|+|L−am|< ǫ 2 + ǫ
2 =ǫ 2
(2)
Let{an}be a Cauchy sequence Want to prove that {an}is convergent
(2)
Let{an}be a Cauchy sequence Want to prove that {an}is convergent
(2)
Let{an}be a Cauchy sequence Want to prove that {an}is convergent
Lemma:
For any n ∈N, an<bn, In ≡[an,bn] (a)∀n ∈N, In⊇In+1, then
∞
T
n=1
In6=φ (b)If lim
n→∞
(bn−an) =0, then
∞
T
n=1
Inis a set containing exactly one point
Lemma:
For any n ∈N, an<bn, In ≡[an,bn] (a)∀n ∈N, In⊇In+1, then
∞
T
n=1
In6=φ (b)If lim
n→∞
(bn−an) =0, then
∞
T
n=1
Inis a set containing exactly one point
Lemma:
For any n ∈N, an<bn, In ≡[an,bn] (a)∀n ∈N, In⊇In+1, then
∞
T
n=1
In6=φ (b)If lim
n→∞
(bn−an) =0, then
∞
T
n=1
Inis a set containing exactly one point
Lemma:
For any n ∈N, an<bn, In ≡[an,bn] (a)∀n ∈N, In⊇In+1, then
∞
T
n=1
In6=φ (b)If lim
n→∞
(bn−an) =0, then
∞
T
n=1
Inis a set containing exactly one point
Lemma:
For any n ∈N, an<bn, In ≡[an,bn] (a)∀n ∈N, In⊇In+1, then
∞
T
n=1
In6=φ (b)If lim
n→∞
(bn−an) =0, then
∞
T
n=1
Inis a set containing exactly one point
pf:
(a)
a1 ≤a2≤. . .an≤ · · · ≤bn ≤. . .b2≤b1
Set a=sup{ak :k ∈N},
∵completeness ⇒a∈R
And an ≤a≤bn, ∀n ⇒a∈
∞
T
n=1
In
(b) If a,b ∈
∞
T
n=1
In,
then 0≤ |a−b| ≤bn−an, ∀n But lim (b −a ) =0, ⇒a=b 2
pf:
(a)
a1 ≤a2≤. . .an≤ · · · ≤bn ≤. . .b2≤b1
Set a=sup{ak :k ∈N},
∵completeness ⇒a∈R
And an ≤a≤bn, ∀n ⇒a∈
∞
T
n=1
In
(b) If a,b ∈
∞
T
n=1
In,
then 0≤ |a−b| ≤bn−an, ∀n
pf:
(a)
a1 ≤a2≤. . .an≤ · · · ≤bn ≤. . .b2≤b1
Set a=sup{ak :k ∈N},
∵completeness ⇒a∈R
And an ≤a≤bn, ∀n ⇒a∈
∞
T
n=1
In
(b) If a,b ∈
∞
T
n=1
In,
then 0≤ |a−b| ≤bn−an, ∀n But lim (b −a ) =0, ⇒a=b 2
pf:
(a)
a1 ≤a2≤. . .an≤ · · · ≤bn ≤. . .b2≤b1
Set a=sup{ak :k ∈N},
∵completeness ⇒a∈R
And an ≤a≤bn, ∀n ⇒a∈
∞
T
n=1
In
(b) If a,b ∈
∞
T
n=1
In,
then 0≤ |a−b| ≤bn−an, ∀n
pf:
(a)
a1 ≤a2≤. . .an≤ · · · ≤bn ≤. . .b2≤b1
Set a=sup{ak :k ∈N},
∵completeness ⇒a∈R
And an ≤a≤bn, ∀n ⇒a∈
∞
T
n=1
In
(b) If a,b ∈
∞
T
n=1
In,
then 0≤ |a−b| ≤bn−an, ∀n But lim (b −a ) =0, ⇒a=b 2
pf:
(a)
a1 ≤a2≤. . .an≤ · · · ≤bn ≤. . .b2≤b1
Set a=sup{ak :k ∈N},
∵completeness ⇒a∈R
And an ≤a≤bn, ∀n ⇒a∈
∞
T
n=1
In
(b) If a,b ∈
∞
T
n=1
In,
then 0≤ |a−b| ≤bn−an, ∀n
pf:
(a)
a1 ≤a2≤. . .an≤ · · · ≤bn ≤. . .b2≤b1
Set a=sup{ak :k ∈N},
∵completeness ⇒a∈R
And an ≤a≤bn, ∀n ⇒a∈
∞
T
n=1
In
(b) If a,b ∈
∞
T
n=1
In,
then 0≤ |a−b| ≤bn−an, ∀n But lim (b −a ) =0, ⇒a=b 2
pf:
(a)
a1 ≤a2≤. . .an≤ · · · ≤bn ≤. . .b2≤b1
Set a=sup{ak :k ∈N},
∵completeness ⇒a∈R
And an ≤a≤bn, ∀n ⇒a∈
∞
T
n=1
In
(b) If a,b ∈
∞
T
n=1
In,
then 0≤ |a−b| ≤bn−an, ∀n
pf:
(a)
a1 ≤a2≤. . .an≤ · · · ≤bn ≤. . .b2≤b1
Set a=sup{ak :k ∈N},
∵completeness ⇒a∈R
And an ≤a≤bn, ∀n ⇒a∈
∞
T
n=1
In
(b) If a,b ∈
∞
T
n=1
In,
then 0≤ |a−b| ≤bn−an, ∀n But lim (b −a ) =0, ⇒a=b 2
proof of (2):
∃n1 ∈N s.t. |ak −aj|< 1
22, ∀k,j ≥n1
∃n2 ∈N s.t. |ak −aj|< 1
22+1, ∀k,j ≥n2 (∴n2≥n1) We can construct a sequence nl ≤nl+1, ∀l ∈N
and|ak −aj|< 1
2l+1, ∀k,j ≥nl
proof of (2):
∃n1 ∈N s.t. |ak −aj|< 1
22, ∀k,j ≥n1
∃n2 ∈N s.t. |ak −aj|< 1
22+1, ∀k,j ≥n2 (∴n2≥n1) We can construct a sequence nl ≤nl+1, ∀l ∈N
and|ak −aj|< 1
2l+1, ∀k,j ≥nl
proof of (2):
∃n1 ∈N s.t. |ak −aj|< 1
22, ∀k,j ≥n1
∃n2 ∈N s.t. |ak −aj|< 1
22+1, ∀k,j ≥n2 (∴n2≥n1) We can construct a sequence nl ≤nl+1, ∀l ∈N
and|ak −aj|< 1
2l+1, ∀k,j ≥nl
proof of (2):
∃n1 ∈N s.t. |ak −aj|< 1
22, ∀k,j ≥n1
∃n2 ∈N s.t. |ak −aj|< 1
22+1, ∀k,j ≥n2 (∴n2≥n1) We can construct a sequence nl ≤nl+1, ∀l ∈N
and|ak −aj|< 1
2l+1, ∀k,j ≥nl
proof of (2):
∃n1 ∈N s.t. |ak −aj|< 1
22, ∀k,j ≥n1
∃n2 ∈N s.t. |ak −aj|< 1
22+1, ∀k,j ≥n2 (∴n2≥n1) We can construct a sequence nl ≤nl+1, ∀l ∈N
and|ak −aj|< 1
2l+1, ∀k,j ≥nl
Set Il ≡
anl − 1
2l,anl + 1 2l
(i)
Il+1⊆Il, ∀l ∈N If b ∈Il+1,
b−anl+1
< 1
2l+1 Since
anl+1 −anl
< 1
2l+1, thus|b−anl|< 1
2l ⇒b∈Il
Set Il ≡
anl − 1
2l,anl + 1 2l
(i)
Il+1⊆Il, ∀l ∈N If b ∈Il+1,
b−anl+1
< 1
2l+1 Since
anl+1 −anl
< 1
2l+1, thus|b−anl|< 1
2l ⇒b∈Il
Set Il ≡
anl − 1
2l,anl + 1 2l
(i)
Il+1⊆Il, ∀l ∈N If b ∈Il+1,
b−anl+1
< 1
2l+1 Since
anl+1 −anl
< 1
2l+1, thus|b−anl|< 1
2l ⇒b∈Il
Set Il ≡
anl − 1
2l,anl + 1 2l
(i)
Il+1⊆Il, ∀l ∈N If b ∈Il+1,
b−anl+1
< 1
2l+1 Since
anl+1 −anl
< 1
2l+1, thus|b−anl|< 1
2l ⇒b∈Il
Set Il ≡
anl − 1
2l,anl + 1 2l
(i)
Il+1⊆Il, ∀l ∈N If b ∈Il+1,
b−anl+1
< 1
2l+1 Since
anl+1 −anl
< 1
2l+1, thus|b−anl|< 1
2l ⇒b∈Il
Set Il ≡
anl − 1
2l,anl + 1 2l
(i)
Il+1⊆Il, ∀l ∈N If b ∈Il+1,
b−anl+1
< 1
2l+1 Since
anl+1 −anl
< 1
2l+1, thus|b−anl|< 1
2l ⇒b∈Il
(ii)
nlim→∞|Il|=0, so by lemma
∃a point p in R s.t.
∞
T
l=1
Il ={p} Want to prove that lim
n→∞
an=p Givenǫ >0,∃l ∈N s.t. 1
2l < ǫ We have
an−anl+1
< 1
2l+2 if n>nl+1
p ∈Il+1 ⇒
p−anl+1
< 1
2l+1
(ii)
nlim→∞|Il|=0, so by lemma
∃a point p in R s.t.
∞
T
l=1
Il ={p} Want to prove that lim
n→∞
an=p Givenǫ >0,∃l ∈N s.t. 1
2l < ǫ We have
an−anl+1
< 1
2l+2 if n>nl+1
p ∈Il+1 ⇒ p−an
< 1
(ii)
nlim→∞|Il|=0, so by lemma
∃a point p in R s.t.
∞
T
l=1
Il ={p} Want to prove that lim
n→∞
an=p Givenǫ >0,∃l ∈N s.t. 1
2l < ǫ We have
an−anl+1
< 1
2l+2 if n>nl+1
p ∈Il+1 ⇒
p−anl+1
< 1
2l+1
(ii)
nlim→∞|Il|=0, so by lemma
∃a point p in R s.t.
∞
T
l=1
Il ={p} Want to prove that lim
n→∞
an=p
Givenǫ >0,∃l ∈N s.t. 1 2l < ǫ We have
an−anl+1
< 1
2l+2 if n>nl+1
p ∈Il+1 ⇒ p−an
< 1
(ii)
nlim→∞|Il|=0, so by lemma
∃a point p in R s.t.
∞
T
l=1
Il ={p} Want to prove that lim
n→∞
an=p
Givenǫ >0,∃l ∈N s.t. 1 2l < ǫ We have
an−anl+1
< 1
2l+2 if n>nl+1
p ∈Il+1 ⇒
p−anl+1
< 1
2l+1
(ii)
nlim→∞|Il|=0, so by lemma
∃a point p in R s.t.
∞
T
l=1
Il ={p} Want to prove that lim
n→∞
an=p
Givenǫ >0,∃l ∈N s.t. 1 2l < ǫ We have
an−anl+1
< 1
2l+2 if n>nl+1
p ∈Il+1 ⇒ p−an
< 1
(ii)
nlim→∞|Il|=0, so by lemma
∃a point p in R s.t.
∞
T
l=1
Il ={p} Want to prove that lim
n→∞
an=p
Givenǫ >0,∃l ∈N s.t. 1 2l < ǫ We have
an−anl+1
< 1
2l+2 if n>nl+1
p ∈Il+1 ⇒
p−anl+1
< 1
2l+1
Thus, |p−an| ≤
an−anl+1
+
anl+1 −p
≤ 1
2l+2 + 1 2l+1
< 1 2l
< ǫ, for n≥nl+1
∴ lim
n→∞
an=p 2
Thus, |p−an| ≤
an−anl+1
+
anl+1 −p
≤ 1
2l+2 + 1 2l+1
< 1 2l
< ǫ, for n≥nl+1
∴ lim
n→∞
an=p 2
Thus, |p−an| ≤
an−anl+1
+
anl+1 −p
≤ 1
2l+2 + 1 2l+1
< 1 2l
< ǫ, for n≥nl+1
∴ lim
n→∞
an=p 2
Thus, |p−an| ≤
an−anl+1
+
anl+1 −p
≤ 1
2l+2 + 1 2l+1
< 1 2l
< ǫ, for n≥nl+1
∴ lim
n→∞
an=p 2
Thus, |p−an| ≤
an−anl+1
+
anl+1 −p
≤ 1
2l+2 + 1 2l+1
< 1 2l
< ǫ, for n≥nl+1
∴ lim
n→∞
an=p 2
Example:
∀n ∈N, Sn=
n
P
k=1
1
k, is{Sn}convergent ?
Thank you.