• Tidak ada hasil yang ditemukan

EE 261 The Fourier Transform and its Applications

N/A
N/A
Protected

Academic year: 2023

Membagikan "EE 261 The Fourier Transform and its Applications"

Copied!
5
0
0

Teks penuh

(1)

EE 261 The Fourier Transform and its Applications

This Being an Ancient Formula Sheet Handed Down

To All EE 261 Students Integration by parts:

Z b a

u(t)v0(t)dt=

u(t)v(t) t=b

t=a

− Z b

a

u0(t)v(t)dt Even and odd parts of a function:Any functionf(x) can be written as

f(x) =f(x) +f(−x)

2 + f(x)−f(−x) 2 (even part) (odd part) Geometric series:

XN

n=0

rn=1−rN+1 1−r XN

n=M

rn=rM(1−rN−M+1) (1−r)

Complex numbers:z=x+iy, ¯z=xiy,|z|2=zz¯= x2+y2

1 i =−i x= Rez=z+ ¯z

2 , y= Imz= zz¯ 2i Complex exponentials:

e2πit= cos 2πt+isin 2πt cos 2πt=e2πit+e−2πit

2 , sin 2πt=e2πite−2πit 2i Polar form:

z=x+iy z=re, r=p

x2+y2, θ= tan−1(y/x) Symmetric sum of complex exponentials (special case of geometric series):

XN

n=−N

e2πint= sin(2N+ 1)πt sinπt

Fourier series If f(t) is periodic with period T its Fourier series is

f(t) = X

n=−∞

cne2πint/T

cn= 1 T

Z T 0

e−2πint/Tf(t)dt= 1 T

Z T /2

−T /2

e−2πint/Tf(t)dt Orthogonality of the complex exponentials:

Z T 0

e2πint/Te−2πimt/Tdt=

(0, n6=m T , n=m The normalized exponentials (1/

T)e2πint/T, n = 0,±1,±2, . . . form an orthonormal basis forL2([0, T]) Rayleigh (Parseval): If f(t) is periodic of period T then

1 T

Z T 0

|f(t)|2dt= X

k=−∞

|ck|2

The Fourier Transform:

Ff(s) = Z

−∞

f(x)e−2πisxdx

The Inverse Fourier Transform:

F−1f(x) = Z

−∞

f(s)e2πisxds

Symmetry & Duality Properties:

Letf(x) =f(−x).

F Ff =f

F−1f =Ff

Ff= (Ff)

Iff is even (odd) thenFf is even (odd) Iff is real valued, thenFf = (Ff) Convolution:

(fg)(x) = Z

−∞

f(xy)g(y)dy

fg=gf

– (fg)∗h= (fg)∗h

f ∗(g+h) =fg+fh

Smoothing: Iff (org) is p-times continuously dif- ferentiable,p≥0, then so isfg and

dk

dxk(fg) = ( dk dxkf)∗g

Convolution Theorem:

F(fg) = (Ff)(Fg) F(f g) =Ff∗ Fg

(2)

Autocorrelation: Let g(x) be a function satisfying R

−∞|g(x)|2dx <∞(finite energy) then (g ? g)(x) =

Z

−∞

g(y)g(yx)dy

= g(x)∗g(−x)

Cross correlation: Letg(x) andh(x) be functions with finite energy. Then

(g ? h)(x) = Z

−∞

g(y)h(y+x)dy

= Z

−∞

g(yx)h(y)dy

= (h ? g)(−x) Rectangle and triangle functions

Π(x) =

(1, |x|< 12

0, |x| ≥ 12 Λ(x) =

(1− |x|, |x| ≤1 0, |x| ≥1 FΠ(s) = sincs=sinπs

πs , FΛ(s) = sinc2s Scaled rectangle function

Πp(x) = Π(x/p) =

(1, |x|<p2 0, |x| ≥ p2 ,p(s) =psincps

Scaled triangle function

Λp(x) = Λ(x/p) =

(1− |x/p|, |x| ≤p 0, |x| ≥p ,p(s) =psinc2ps

Gaussian

F(e−πt2) =e−πs2 Gaussian with variance σ2

g(t) = 1 σ

2πe−x2/2σ2 Fg(s) =e−2π2σ2s2 One-sided exponential decay

f(t) =

(0, t <0,

e−at, t≥0. Ff(s) = 1 a+ 2πis Two-sided exponential decay

F(e−a|t|) = 2a a2+ 4π2s2 Fourier Transform Theorems

Linearity: F {αf(x) +βg(x)}=αF(s) +βG(s) Stretch: F {g(ax)}=|a|1 G(sa) Shift: F {g(xa)}=e−i2πasG(s) Shift & stretch: F {g(axb)}= |a|1 e−i2πsb/aG(sa) Rayleigh (Parseval):

Z

−∞

|g(x)|2dx = Z

−∞

|G(s)|2ds Z

−∞

f(x)g(x)dx = Z

−∞

F(s)G(s)ds Modulation:

F {g(x) cos(2πs0x)}= 12[G(ss0) +G(s+s0)]

Autocorrelation: F {g ? g}=|G(s)|2 Cross Correlation: F {g ? f}=G(s)F(s) Derivative:

F {g0(x)}= 2πisG(s)

F {g(n)(x)}= (2πis)nG(s)

F {xng(x)}= (i )nG(n)(s)

Moments: Z

−∞

f(x)dx=F(0) Z

−∞

xf(x)dx= i 2πF0(0) Z

−∞

xnf(x)dx= ( i

2π)nF(n)(0) Miscellaneous:

F Z x

−∞

g(ξ)

=12G(0)δ(s) +G(s) i2πs

The Delta Function: δ(x)

Scaling: δ(ax) = |a|1 δ(x)

Sifting: R

−∞δ(xa)f(x)dx=f(a) R

−∞δ(x)f(x+a)dx=f(a) Convolution: δ(x)∗f(x) =f(x) δ(xa)∗f(x) =f(xa) δ(xa)∗δ(xb) =δ(x−(a+b))

Product: h(x)δ(x) =h(0)δ(x)

(3)

Fourier Transform: Fδ= 1 F(δ(xa)) =e−2πisa Derivatives:

R

−∞δ(n)(x)f(x)dx= (−1)nf(n)(0)

δ0(x)∗f(x) =f0(x)

(x) = 0

0(x) =−δ(x)

Fourier transform of cosine and sine Fcos 2πat= 1

2(δ(sa) +δ(s+a)) Fsin 2πat= 1

2i(δ(sa)−δ(s+a)) Unit step and sgn

H(t) =

(0, t≤0

1, t >0 FH(s) = 1 2

δ(s) + 1 πis

sgnt=

(−1, t <0

1, t >0 Fsgn (s) = 1 πis

The Shah Function: III(x)

III(x) = X

n=−∞

δ(xn), IIIp(x) = X

n=−∞

δ(xnp)

Sampling: III(x)g(x) =P

n=−∞g(n)δ(xn) Periodization: III(x)∗g(x) =P

n=−∞g(xn) Scaling: III(ax) = a1III1/a(x), a >0 Fourier Transform: FIII=III, FIIIp = 1pIII1/p Sampling TheoryFor a bandlimited functiong(x) with Fg(s) = 0 for|s| ≥p/2

Fg= Πp(FgIIIp)

g(t) = X

k=−∞

g(tk) sinc(p(xtk)) tk =k/p Fourier Transforms for Periodic Functions

For a functionp(x) with periodL, letf(x) =p(x)Π(xL).

Then

p(x) = f(x)∗ X

n=−∞

δ(xnL)

P(s) = 1 L

X

n=−∞

F(n

L)δ(sn L)

The complex Fourier series representation:

p(x) = X

n=−∞

αne2πinLx

where

αn = 1 LF(n

L)

= 1

L Z L/2

−L/2

p(x)e−2πiLnxdx

Linear SystemsLetLbe a linear system,w(t) =Lv(t), with impulse responseh(t, τ) =(tτ).

Superposition integral:

w(t) = Z

−∞

v(τ)h(t, τ) A system is time-invariant if:

w(tτ) =L[v(tτ)]

In this case L(δ(tτ) = h(tτ) and L acts by convolution:

w(t) = Lv(t) = Z

−∞

v(τ)h(tτ)

= (vh)(t)

The transfer function is the Fourier transform of the impulse response,H=FhThe eigenfunctions of any linear time-invariant system are e2πiνt, with eigen- valueH(ν):

Le2πiνt=H(ν)e2πiνt The Discrete Fourier Transform

Nth root of unity:

Let ω = e2πi/N. Then ωN = 1 and the N powers 1 = ω0, ω, ω2, . . .ωN−1 are distinct and evenly spaced along the unit circle.

Vector complex exponentials:

1 = (1,1, . . . ,1) ω= (1, ω, ω2, . . . , ωN−1) ωk= (1, ωk, ω2k, . . . , ω(N−1)k) Cyclic property

ωN = 1 and 1, ω, ω2, . . . ωN−1 are distinct

(4)

The vector complex exponentials are orthogonal:

ωk·ω`=

(0, k6≡` modN N, k` modN

The DFT of order N accepts an N-tuple as input and returns anN-tuple as output. Write anN-tuple as f = (f[0],f[1], . . . ,f[N−1]).

Ff =

N−1X

k=0

f[k]ω−k Inverse DFT:

F−1f = 1 N

NX−1

k=0

f[k]ωk

Periodicity of inputs and outputs: If F = Ff then both f and F are periodic of period N.

Convolution

(f∗g)[n] =

NX−1

k=0

f[k] g[nk]

Discreteδ:

δk[m] =

(1, mk modN 0, m6≡k modN

DFT of the discrete δ Fδk=ω−k DFT of vector complex exponential Fωk =N δk Reversed signal: f[m] = f[−m] Ff= (Ff) DFT Theorems

Linearity: F {αf +βg) =αFf +βFg

Parseval: Ff· Fg =N(f·g)

Shift: Letτpf[m] = f[mp]. ThenF(τpf) =ω−pFf Modulation: F(ωpf) =τp(Ff) Convolution: F(f∗g) = (Ff)(Fg) F(f g) = N1(Ff∗ Fg) The Hilbert Transform The Hilbert Transform of f(x):

Hf(x) =− 1

πxf(x) = 1 π

Z

−∞

f(ξ) ξxdξ

(Cauchy principal value)

Inverse Hilbert Transform H−1f =−Hf

Impulse response: −πx1

Transfer function: isgn (s)

Causal functions: g(x) is causal ifg(x) = 0 forx <0.

A casual signal Fourier Transform G(s) = R(s) + iI(s), whereI(s) =H{R(s)}.

Analytic signals: The analytic signal representation of a real-valued functionv(t) is given by:

Z(t) = F−1{2H(s)V(s)}

= v(t)−iHv(t)

Narrow Band Signals: g(t) =A(t) cos[2πf0t+φ(t)]

Analytic approx: z(t)≈A(t)ei[2πf0t+φ(t)]

Envelope: |A(t)|=|z(t)|

Phase: arg[z(t)] = 2πf0t+φ(t) Instantaneous freq: fi=f0+1 dtdφ(t) Higher Dimensional Fourier Transform In n- dimensions:

Ff(ξ) = Z

Rne−2πix·ξf(x)dx Inverse Fourier Transform:

F−1f(x) = Z

Rn

e2πix·ξf(ξ) In 2-dimensions (in coordinates):

Ff(ξ1, ξ2) = Z

−∞

Z

−∞

e−2πi(x1ξ1+x2ξ2)f(x1, x2)dx1dx2

The Hankel Transform (zero order):

F(ρ) = 2π Z

0

f(r)J0(2πrρ)rdr The Inverse Hankel Transform (zero order):

f(r) = 2π Z

0

F(ρ)J0(2πrρ)ρdρ Separable functions: Iff(x1, x2) =f(x1)f(x2) then

Ff(ξ1, ξ2) =Ff(ξ1)Ff(ξ2) Two-dimensional rect:

Π(x1, x2) = Π(x1)Π(x2), FΠ(ξ1, ξ2) = sincξ1sincξ2

Two dimensional Gaussian:

g(x1, x2) =e−π(x21+x22), Fg=g Fourier transform theorems

(5)

Shift: Let (τbf)(x) =f(x−b). Then F(τbf)(ξ) =e−2πiξ·bFf(ξ) Stretch theorem (special):

F(f(a1x1, a2, x2)) = 1

|a1||a2|Ff(ξ1

a1

2

a2

) Stretch theorem (general): IfAis ann×ninvertible matrix then

F(f(Ax)) = 1

|detA|Ff(A−Tξ) Stretch and shift:

F(f(Ax + b)) = exp(2πiA−Tξ) 1

|detA|Ff(A−Tξ) III’s and latticesIII for integer lattice

IIIZ2(x) = X

n∈Z2

δ(x−n)

=

X

n1,n2=−∞

δ(x1n1, x2n2) FIIIZ2 = IIIZ2

A general latticeL can be obtained from the integer lat- tice byL=A(Z2) whereA is an invertible matrix.

IIIL(x) =X

p∈L

δ(x−p) = 1

|detA|IIIZ2(A−1x) IfL=A(Z2) then the reciprocal lattice isL=A−TZ2 Fourier transform ofIIIL:

FIIIL = 1

|detA|IIIL

Radon transform and Projection-Slice Theorem:

Letµ(x1, x2) be the density of a two-dimensional region.

A line through the region is specified by the angleφ of its normal vector to thex1-axis, and its directed distance ρfrom the origin. The integral along a line through the region is given by the Radon transform ofµ:

Rµ(ρ, φ) = Z

−∞

Z

−∞

µ(x1, x2)δ(ρx1cosφx2sinφ)dx1dx2

The one-dimensional Fourier transform of Rµ with re- spect toρis the two-dimensional Fourier transform ofµ:

FρR(µ)(r, φ) =Fµ(ξ1, ξ2), ξ1 =rcosφ, ξ2=rsinφ

The list being compiled originally by John Jackson

a person not known to me, and then revised here by your humble instructor

Referensi

Dokumen terkait

The result shows the testing time at 0.5 h and 4 h give along the result, sample e which In/Ga is 0 : 1.36 wt% and sample b which In/Ga is 1.90 : 0 wt% was greatly highest on tarnish