• Tidak ada hasil yang ditemukan

(7.4) Operational Properties II

N/A
N/A
Protected

Academic year: 2025

Membagikan "(7.4) Operational Properties II"

Copied!
5
0
0

Teks penuh

(1)

129 DERIVATIVES OF A TRANSFORM:

THEOREM 7.4.1 (Derivatives of Translations) If 𝐹(𝑠) = β„’{𝑓(𝑑)} and 𝑛 = 1, 2, 3, … , then

β„’{𝑑𝑛𝑓(𝑑)} = (βˆ’1)𝑛 𝑑𝑛

𝑑𝑠𝑛𝐹(𝑠).

EXAMPLE 1 Evaluate

(π‘Ž) β„’{𝑑𝑓(𝑑)} (𝑏) β„’{𝑑2𝑓(𝑑)} (𝑐) β„’{𝑑𝑒3𝑑} Solution:

(π‘Ž) β„’{𝑑𝑓(𝑑)} = (βˆ’1)1 𝑑

𝑑𝑠𝐹(𝑠) = βˆ’ 𝑑

𝑑𝑠𝐹(𝑠) (𝑏) β„’{𝑑2𝑓(𝑑)} = (βˆ’1)2 𝑑2

𝑑𝑠2𝐹(𝑠) = 𝑑2 𝑑𝑠2𝐹(𝑠) (𝑐) β„’{𝑑𝑒3𝑑}

By Section 7.3,

β„’{𝑑𝑒3𝑑} = β„’{𝑑}|π‘ β†’π‘ βˆ’3 = 1 𝑠2|

π‘ β†’π‘ βˆ’3= 1 (𝑠 βˆ’ 3)2 By Section 7.4,

β„’{𝑑𝑒3𝑑} = (βˆ’1)1 𝑑

𝑑𝑠ℒ{𝑒3𝑑} = βˆ’ 𝑑 𝑑𝑠( 1

𝑠 βˆ’ 3) = βˆ’(0) βˆ’ (1)

(𝑠 βˆ’ 3)2 = 1 (𝑠 βˆ’ 3)2.

EXAMPLE 2 (Using Theorem 7.4.1) Evaluate

β„’{𝑑 sin π‘˜π‘‘}.

Solution:

With 𝑓(𝑑) = sin π‘˜π‘‘, 𝐹(𝑠) = β„’{𝑓(𝑑)} = β„’{sin π‘˜π‘‘} = π‘˜

𝑠2+π‘˜2, and 𝑛 = 1, Theorem 7.4.1 gives β„’{𝑑 sin π‘˜π‘‘} = βˆ’ 𝑑

𝑑𝑠ℒ{sin π‘˜π‘‘} = βˆ’ 𝑑

𝑑𝑠( π‘˜

𝑠2+ π‘˜2) = 2π‘˜π‘  (𝑠2+ π‘˜2)2.

TRANSFORMS OF INTEGRALS:

CONVOLUTION:

If functions 𝑓 and 𝑔 are piecewise continuous on the interval [0, ∞), then a special product, denoted by 𝑓 βˆ— 𝑔, is defined by the integral

𝑓 βˆ— 𝑔 = ∫ 𝑓(𝜏)𝑔(𝑑 βˆ’ 𝜏)π‘‘πœπ‘‘

0

… … … (1) = ∫ 𝑔(𝜏)𝑓(𝑑 βˆ’ 𝜏)π‘‘πœπ‘‘

0

= 𝑔 βˆ— 𝑓

and is called the convolution of 𝑓 and 𝑔. The convolution 𝑓 βˆ— 𝑔 is a function of 𝑑. For example,

(2)

130

𝑒𝑑 βˆ— sin 𝑑 = ∫ 𝑒𝑑 𝜏sin(𝑑 βˆ’ 𝜏) π‘‘πœ

0

=1

2(βˆ’ sin 𝑑 βˆ’ cos 𝑑 + 𝑒𝑑).

THEOREM 7.4.2 (Convolution Theorem)

If 𝑓(𝑑) and 𝑔(𝑑) are piecewise continuous on [0, ∞) and of exponential order, then β„’{𝑓 βˆ— 𝑔} = β„’{𝑓(𝑑)}. β„’{𝑔(𝑑)} = 𝐹(𝑠)𝐺(𝑠).

Remark 1:

β„’{𝑓(𝑑) βˆ— 𝑔(𝑑)} = β„’{𝑓(𝑑)}. β„’{𝑔(𝑑)} = β„’ {∫ 𝑔(𝜏)𝑓(𝑑 βˆ’ 𝜏)π‘‘πœπ‘‘

0

} = β„’ {∫ 𝑓(𝜏)𝑔(𝑑 βˆ’ 𝜏)π‘‘πœπ‘‘

0

} = β„’{𝑔(𝑑) βˆ— 𝑓(𝑑)}

EXAMPLE 3 (Transform of Convolution) Evaluate

β„’ {∫ 𝑒𝑑 𝜏sin(𝑑 βˆ’ 𝜏) π‘‘πœ

0

}.

Solution:

With 𝑓(𝑑) = 𝑒𝑑 and 𝑔(𝑑) = sin 𝑑, the convolution theorem states that the Laplace transform of the convolution of 𝑓 and 𝑔 is the product of their Laplace transforms:

β„’ {∫ π‘’πœsin(𝑑 βˆ’ 𝜏) π‘‘πœ

𝑑 0

} = β„’{𝑒𝑑}. β„’{sin 𝑑} = 1

𝑠 βˆ’ 1. 1

𝑠2+ 1= 1

(𝑠 βˆ’ 1)(𝑠2+ 1).

Remark 2: (Inverse Form of Theorem 7.4.2)

β„’

βˆ’1

{

𝐹

(

𝑠

)

. 𝐺

(

𝑠

)} =

𝑓 βˆ— 𝑔. … … … (2)

TRANSFORM OF AN INTEGRAL:

When 𝑔(𝑑) = 1 and β„’{𝑔(𝑑)} = 𝐺(𝑠) =1𝑠, the convolution theorem implies that the Laplace transform of the integral of 𝑓 is

β„’ {∫ 𝑓(𝜏)π‘‘πœ

𝑑 0

} = β„’{𝑓(𝑑) βˆ— 1} = β„’{𝑓(𝑑)}. β„’{1} = 𝐹(𝑠).1

𝑠 =𝐹(𝑠)

𝑠 . … … … (3) The inverse form of (3),

∫ 𝑓(𝜏)π‘‘πœπ‘‘

0

=

β„’

βˆ’1{𝐹(𝑠)

𝑠 }

.

… … … (4) VOLTERRA INTEGRAL EQUATION:

The convolution theorem and the result in (3) are useful in solving other types of equations in which an unknown function appears under an integral sign. In the next example we solve a Volterra integral equation for 𝑓(𝑑),

(3)

131

𝑓(𝑑) = 𝑔(𝑑) + ∫ 𝑓(𝜏)β„Ž(𝑑 βˆ’ 𝜏)π‘‘πœπ‘‘

0

. … … … (5)

The functions 𝑔(𝑑) and β„Ž(𝑑) are known. Notice that the integral in (5) has the convolution form (1) with the symbol β„Ž playing the part of 𝑔.

EXAMPLE 4 (An Integral Equation ) Solve:

𝑓(𝑑) = 3𝑑2βˆ’ π‘’βˆ’π‘‘βˆ’ ∫ 𝑓(𝜏)𝑒𝑑 π‘‘βˆ’πœπ‘‘πœ

0

for 𝑓(𝑑).

Solution:

In the integral we identify β„Ž(𝑑 βˆ’ 𝜏) = π‘’π‘‘βˆ’πœ so that β„Ž(𝑑) = 𝑒𝑑. We take the Laplace transform of each term; in particular, by Theorem 7.4.2 the transform of the integral is the product of β„’{𝑓(𝑑)} = 𝐹(𝑠) and β„’{𝑒𝑑} = 1

π‘ βˆ’1:

𝐹(𝑠) = 3. 2

𝑠3βˆ’ 1

𝑠 + 1βˆ’ 𝐹(𝑠). 1 𝑠 βˆ’ 1.

After solving the last equation for 𝐹(𝑠) and carrying out the partial fraction decomposition, we find 𝐹(𝑠) = 6

𝑠3βˆ’ 6 𝑠4+1

𝑠 βˆ’ 2 𝑠 + 1. The inverse transform then gives

𝑓(𝑑) = 3

β„’

βˆ’1{2!

𝑠3}

βˆ’ β„’

βˆ’1{3!

𝑠4}

+ β„’

βˆ’1{1

𝑠}

βˆ’ 2β„’

βˆ’1{ 1

𝑠 + 1}

= 3𝑑

2

βˆ’ 𝑑

3

+ 1 βˆ’ 2𝑒

βˆ’π‘‘

.

TRANSFORM OF A PERIODIC FUNCTION:

PERIODIC FUNCTION:

If a periodic function has period 𝑇, 𝑇 > 0, then 𝑓(𝑑 + 𝑇) = 𝑓(𝑑). The next theorem shows that the Laplace transform of a periodic function can be obtained by integration over one period.

THEOREM 7.4.3 (Transform of a Periodic Function)

If 𝑓(𝑑) is piecewise continuous on [0, ∞), of exponential order, and periodic with period 𝑇, then β„’{𝑓(𝑑)} = 1

1 βˆ’ π‘’βˆ’π‘ π‘‡βˆ« π‘’βˆ’π‘ π‘‡π‘“(𝑑)𝑑𝑑

𝑇 0

.

Exercises 7.4: Pages 289-290

(𝟐) Use Theorem 7.4.1 to evaluate the given Laplace transform.

β„’{𝑑3𝑒𝑑}

.

Solution:

With 𝑓(𝑑) = 𝑒𝑑, 𝐹(𝑠) = β„’{𝑓(𝑑)} = β„’{𝑒𝑑} = 1

π‘ βˆ’1, and 𝑛 = 3, Theorem 7.4.1 gives

(4)

132

β„’{𝑑3𝑒𝑑} = (βˆ’1)3 𝑑3

𝑑𝑠3β„’{𝑒𝑑} = βˆ’ 𝑑3 𝑑𝑠3( 1

𝑠 βˆ’ 1) = βˆ’ (βˆ’ 6

(𝑠 βˆ’ 1)4) = 6 (𝑠 βˆ’ 1)4.

---

(𝟐𝟐) Use Theorem 7.4.2 to evaluate the given Laplace transform. Do not evaluate the integral before transforming.

β„’

{

𝑒2π‘‘βˆ— sin 𝑑

}.

Solution:

With 𝑓(𝑑) = 𝑒2𝑑 and 𝑔(𝑑) = sin 𝑑, the convolution theorem states that the Laplace transform of the convolution of 𝑓 and 𝑔 is the product of their Laplace transforms:

β„’{𝑒2π‘‘βˆ— sin 𝑑} = β„’{𝑒2𝑑}. β„’{sin 𝑑} = 1

𝑠 βˆ’ 2. 1

𝑠2+ 1= 1

(𝑠 βˆ’ 2)(𝑠2+ 1).

---

(πŸ’πŸ) Use the Laplace transform to solve the given integral equation or integrodifferential equation.

𝑓

(

𝑑

)

+

∫

𝑓

(

𝜏

)

π‘‘πœ

𝑑 0

= 1

.

Solution:

β„’{𝑓(𝑑)} + β„’ {∫ 𝑓(𝜏) π‘‘πœ

𝑑 0

} = β„’{1}, 𝐹(𝑠) +𝐹(𝑠)

𝑠 =1 𝑠, 𝐹(𝑠) [1 +1

𝑠] =1 𝑠, (𝑠 + 1

𝑠 ) 𝐹(𝑠) = 1 𝑠, 𝐹(𝑠) = 1

𝑠 + 1. The inverse transform then gives

𝑓(𝑑) =

β„’

βˆ’1{ 1

𝑠 + 1}

= 𝑒

βˆ’π‘‘

.

(5)

133 Exercises 7.4: Pages 289-290

(πŸ‘) Use Theorem 7.4.1 to evaluate the given Laplace transform.

β„’{𝑑 cos 2𝑑}

.

---

(𝟐𝟏) Use Theorem 7.4.2 to evaluate the given Laplace transform. Do not evaluate the integral before transforming.

β„’

{

π‘’βˆ’π‘‘ βˆ— 𝑒𝑑cos 𝑑

}.

---

In the following problems, use the Laplace transform to solve the given integral equation or integrodifferential equation.

(

πŸ‘πŸ—

)

𝑓

(

𝑑

)

= 𝑑𝑒𝑑+

∫

πœπ‘“

(

𝑑 βˆ’ 𝜏

)

π‘‘πœ

𝑑 0

.

(

πŸ’πŸ‘

)

𝑓

(

𝑑

)

= 1 + 𝑑 βˆ’8

3

∫ (

𝜏 βˆ’ 𝑑

)

3𝑓

(

𝜏

)

π‘‘πœ

𝑑 0

.

Referensi

Dokumen terkait

Electric conductivity analysis was performed using standard solution of KCl, MgCl 2 βˆ™6H 2 O, and FeCl 3 .6H 2 O with concentration of 0.01 M.. The standard solutions were prepared

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-4/W1, 2013 ISPRS Acquisition and Modelling of Indoor and Enclosed Environments 2013, 11

To perform parallel STKDE, we decomposed the Dengue fever dataset for subsequent distribution of the resulting subdomains to processor queues for concurrent processing.

While computing the average cost of capital of the firm, the cost of which of the following sources of funds is considered almost equal to the cost of equity.. Loan from financial

In this session participants were learned the need of digital image, image acquisition, different techniques of image enhancement, image restoration, image compression, wavelet

The calculated electronic band structure and densities of states suggested that this single crystal possesses the energy band gap of about 1.575 eV using the local density