129 DERIVATIVES OF A TRANSFORM:
THEOREM 7.4.1 (Derivatives of Translations) If πΉ(π ) = β{π(π‘)} and π = 1, 2, 3, β¦ , then
β{π‘ππ(π‘)} = (β1)π ππ
ππ ππΉ(π ).
EXAMPLE 1 Evaluate
(π) β{π‘π(π‘)} (π) β{π‘2π(π‘)} (π) β{π‘π3π‘} Solution:
(π) β{π‘π(π‘)} = (β1)1 π
ππ πΉ(π ) = β π
ππ πΉ(π ) (π) β{π‘2π(π‘)} = (β1)2 π2
ππ 2πΉ(π ) = π2 ππ 2πΉ(π ) (π) β{π‘π3π‘}
By Section 7.3,
β{π‘π3π‘} = β{π‘}|π βπ β3 = 1 π 2|
π βπ β3= 1 (π β 3)2 By Section 7.4,
β{π‘π3π‘} = (β1)1 π
ππ β{π3π‘} = β π ππ ( 1
π β 3) = β(0) β (1)
(π β 3)2 = 1 (π β 3)2.
EXAMPLE 2 (Using Theorem 7.4.1) Evaluate
β{π‘ sin ππ‘}.
Solution:
With π(π‘) = sin ππ‘, πΉ(π ) = β{π(π‘)} = β{sin ππ‘} = π
π 2+π2, and π = 1, Theorem 7.4.1 gives β{π‘ sin ππ‘} = β π
ππ β{sin ππ‘} = β π
ππ ( π
π 2+ π2) = 2ππ (π 2+ π2)2.
TRANSFORMS OF INTEGRALS:
CONVOLUTION:
If functions π and π are piecewise continuous on the interval [0, β), then a special product, denoted by π β π, is defined by the integral
π β π = β« π(π)π(π‘ β π)πππ‘
0
β¦ β¦ β¦ (1) = β« π(π)π(π‘ β π)πππ‘
0
= π β π
and is called the convolution of π and π. The convolution π β π is a function of π‘. For example,
130
ππ‘ β sin π‘ = β« ππ‘ πsin(π‘ β π) ππ
0
=1
2(β sin π‘ β cos π‘ + ππ‘).
THEOREM 7.4.2 (Convolution Theorem)
If π(π‘) and π(π‘) are piecewise continuous on [0, β) and of exponential order, then β{π β π} = β{π(π‘)}. β{π(π‘)} = πΉ(π )πΊ(π ).
Remark 1:
β{π(π‘) β π(π‘)} = β{π(π‘)}. β{π(π‘)} = β {β« π(π)π(π‘ β π)πππ‘
0
} = β {β« π(π)π(π‘ β π)πππ‘
0
} = β{π(π‘) β π(π‘)}
EXAMPLE 3 (Transform of Convolution) Evaluate
β {β« ππ‘ πsin(π‘ β π) ππ
0
}.
Solution:
With π(π‘) = ππ‘ and π(π‘) = sin π‘, the convolution theorem states that the Laplace transform of the convolution of π and π is the product of their Laplace transforms:
β {β« ππsin(π‘ β π) ππ
π‘ 0
} = β{ππ‘}. β{sin π‘} = 1
π β 1. 1
π 2+ 1= 1
(π β 1)(π 2+ 1).
Remark 2: (Inverse Form of Theorem 7.4.2)
β
β1{
πΉ(
π)
. πΊ(
π)} =
π β π. β¦ β¦ β¦ (2)TRANSFORM OF AN INTEGRAL:
When π(π‘) = 1 and β{π(π‘)} = πΊ(π ) =1π , the convolution theorem implies that the Laplace transform of the integral of π is
β {β« π(π)ππ
π‘ 0
} = β{π(π‘) β 1} = β{π(π‘)}. β{1} = πΉ(π ).1
π =πΉ(π )
π . β¦ β¦ β¦ (3) The inverse form of (3),
β« π(π)πππ‘
0
=
β
β1{πΉ(π )π }
.
β¦ β¦ β¦ (4) VOLTERRA INTEGRAL EQUATION:The convolution theorem and the result in (3) are useful in solving other types of equations in which an unknown function appears under an integral sign. In the next example we solve a Volterra integral equation for π(π‘),
131
π(π‘) = π(π‘) + β« π(π)β(π‘ β π)πππ‘
0
. β¦ β¦ β¦ (5)
The functions π(π‘) and β(π‘) are known. Notice that the integral in (5) has the convolution form (1) with the symbol β playing the part of π.
EXAMPLE 4 (An Integral Equation ) Solve:
π(π‘) = 3π‘2β πβπ‘β β« π(π)ππ‘ π‘βπππ
0
for π(π‘).
Solution:
In the integral we identify β(π‘ β π) = ππ‘βπ so that β(π‘) = ππ‘. We take the Laplace transform of each term; in particular, by Theorem 7.4.2 the transform of the integral is the product of β{π(π‘)} = πΉ(π ) and β{ππ‘} = 1
π β1:
πΉ(π ) = 3. 2
π 3β 1
π + 1β πΉ(π ). 1 π β 1.
After solving the last equation for πΉ(π ) and carrying out the partial fraction decomposition, we find πΉ(π ) = 6
π 3β 6 π 4+1
π β 2 π + 1. The inverse transform then gives
π(π‘) = 3
β
β1{2!π 3}
β β
β1{3!π 4}
+ β
β1{1π }
β 2β
β1{ 1π + 1}
= 3π‘
2β π‘
3+ 1 β 2π
βπ‘.
TRANSFORM OF A PERIODIC FUNCTION:
PERIODIC FUNCTION:
If a periodic function has period π, π > 0, then π(π‘ + π) = π(π‘). The next theorem shows that the Laplace transform of a periodic function can be obtained by integration over one period.
THEOREM 7.4.3 (Transform of a Periodic Function)
If π(π‘) is piecewise continuous on [0, β), of exponential order, and periodic with period π, then β{π(π‘)} = 1
1 β πβπ πβ« πβπ ππ(π‘)ππ‘
π 0
.
Exercises 7.4: Pages 289-290
(π) Use Theorem 7.4.1 to evaluate the given Laplace transform.
β{π‘3ππ‘}
.
Solution:With π(π‘) = ππ‘, πΉ(π ) = β{π(π‘)} = β{ππ‘} = 1
π β1, and π = 3, Theorem 7.4.1 gives
132
β{π‘3ππ‘} = (β1)3 π3
ππ 3β{ππ‘} = β π3 ππ 3( 1
π β 1) = β (β 6
(π β 1)4) = 6 (π β 1)4.
---
(ππ) Use Theorem 7.4.2 to evaluate the given Laplace transform. Do not evaluate the integral before transforming.
β
{
π2π‘β sin π‘}.
Solution:
With π(π‘) = π2π‘ and π(π‘) = sin π‘, the convolution theorem states that the Laplace transform of the convolution of π and π is the product of their Laplace transforms:
β{π2π‘β sin π‘} = β{π2π‘}. β{sin π‘} = 1
π β 2. 1
π 2+ 1= 1
(π β 2)(π 2+ 1).
---
(ππ) Use the Laplace transform to solve the given integral equation or integrodifferential equation.
π
(
π‘)
+β«
π(
π)
πππ‘ 0
= 1
.
Solution:β{π(π‘)} + β {β« π(π) ππ
π‘ 0
} = β{1}, πΉ(π ) +πΉ(π )
π =1 π , πΉ(π ) [1 +1
π ] =1 π , (π + 1
π ) πΉ(π ) = 1 π , πΉ(π ) = 1
π + 1. The inverse transform then gives
π(π‘) =
β
β1{ 1π + 1}
= π
βπ‘.
133 Exercises 7.4: Pages 289-290
(π) Use Theorem 7.4.1 to evaluate the given Laplace transform.
β{π‘ cos 2π‘}
.
---
(ππ) Use Theorem 7.4.2 to evaluate the given Laplace transform. Do not evaluate the integral before transforming.
β
{
πβπ‘ β ππ‘cos π‘}.
---
In the following problems, use the Laplace transform to solve the given integral equation or integrodifferential equation.
(
ππ)
π(
π‘)
= π‘ππ‘+β«
ππ(
π‘ β π)
πππ‘ 0
.
(
ππ)
π(
π‘)
= 1 + π‘ β83
β« (
π β π‘)
3π(
π)
πππ‘ 0
.