BAB 2. TINJAUAN PUSTAKA
2.4 Alat Ukur Stabilitas Warna
Perubahan warna dapat diukur melalui beberapa metode antara lain metode visual dan metode instrumental. Pada pengukuran melalui metode visual, umumnya peneliti mengamati perubahan warna dari bahan dengan meletakkan bahan pada tempat berlatar belakang putih, kemudian perubahan warna diamati dan digolongkan menjadi: ringan, sedang dan parah. Pengukuran perubahan warna secara visual juga dapat dilakukan dengan mengambil foto atau gambar sebelum dan sesudah perlakuan kemudian perubahan warna diamati.5
Perubahan warna dengan panjang gelombang di luar 350-750 nm tidak dapat terlihat secara visual oleh mata karena keterbatasan mata dalam menangkap panjang gelombang yang terlalu kecil atau terlalu besar dan kemampuan mata menilai warna berkaitan dengan persepsi adalah sangat bervariasi. Pada pengukuran perubahan warna secara instrumental, ada berbagai alat yang dapat digunakan untuk mengukur warna. Alat yang umum digunakan untuk mengukur stabilitas warna adalah calorimeter,spektroskopi inframerah dan spektrofotometer UV-Vis.5,38
2.4.1 Kalorimeter
Kalorimeter merupakan alat sensitif yang digunakan untuk mengukur intensitas warna dari suatu benda dalam kaitannya dengan komponen warna merah, biru dan hijau dari cahaya yang dipantulkan dari suatu sampel dan umumnya hanya mengukur pada panjang gelombang yang dapat ditangkap oleh mata.38
Gambar 1. Kalorimeter
2.4.2 Spektroskopi Inframerah
Inframerah merupakan salah satu dari spektrum gelombang elektromagnetik yang memiliki jumlah gelombang antara 10 sampai 14000 per cm (panjang gelombang 0.8 – 1000 µm). Area spektrum ini berada di antara spektrum microwave dan spektrum cahaya tampak. Spektrum cahaya tampak adalah panjang gelombang yang dapat diterima oleh retina mata manusia dan dapat diterjemahkan menjadi spektrum warna, seperti warna pada pelangi . Lampu memancarkan spektrum cahaya tampak sehingga mata kita dapat menangkap cahaya yang dipancarkannya. Meskipun demikian, lampu memancarkan gelombang dalam spektrum cahaya tampak hanya sekitar 10% dari total gelombang elektromagnetik yang dipancarkan, sedangkan sisanya merupakan adalah gelombang inframerah yang tidak dapat kita lihat. Untuk spektroskopi inframerah mengaplikasikan sistem FTIR (Fourier Transform Infrared), di mana dengan interferometer, mekanisme pancaran spektrum elektromagnetiknya pada range tertentu (biasanya pada kisaran wavenumber 400-4000 cm-1) terjadi secara simultan, sehingga prosesnya lebih cepat. Berbeda dengan spektroskopi ultraviolet yang menggunakan monokromator dimana spektrum gelombang ultraviolet (biasanya pada kisaran 200-800 nm) dipancarkan secara berurutan.39
Fourier Transform Infrared Spectroscopy (FTIR) adalah sebuah teknik yang digunakan untuk mendapatkan spektrum inframerah dari penyerapan, emisi, fotokonduktivitas dari zat padat, cair atau gas. Spektrometer FTIR secara bersamaan
mengumpulkan data spektral dalam berbagai spektrum yang luas. Spektrometer FTIR memiliki keuntungan yaitu non-destruktif, dapat menganalisis multikomponen secara cepat, dan dapat meminimumkan gangguan selama pengoperasian. Spektrometer FTIR tidak mengukur panjang gelombang satu demi satu, melainkan dapat mengukur intensitas transmitans pada berbagai panjang gelombang secara serempak. Pada FTIR, monokromator digantikan dengan interferometer. Interferometer ini mengatur intensitas sumber sinar inframerah dengan mengubah dari posisi cermin pemantul yang memantulkan sinar dari sumber sinar ke sampel. Jadi, keberadaan interferometer membuat spektrometer mampu mengukur semua frekuensi optik secara serempak dengan mengatur intensitas dari semua frekuensi tunggal sebelum sinyal mencapai detektor. Hasil scanning interferometer yang berupa interferogram tidak dapat diinterpretasikan dalam bentuk aslinya. Proses matematika transformasi fourier akan mengubah interferogram menjadi spektrum antara intensitas dan frekuensi. Sampel yang akan dianalisis menggunakan spektroskopi inframerah dicampur dengan senyawa garam yang tidak mengintervensi absorbansi gelombang inframerah oleh senyawa yang diidentifikasi. Jenis garam yang biasa digunakan adalah potasium bromida (KBr), yang kemudian setelah dicampur dengan sampel, dicetak dalam bentuk sebuah piringan (disk). Disk inilah yang kemudian dimasukkan dalam spektroskopi. Untuk alat FTIR modern, dengan penambahan instrumen tertentu telah mampu menganalisa sampel dalam bentuk larutan, sehingga lebih praktis.40
Gambar 2. Instrumen Fourier Transform Infrared Spectroscopy 40
2.4.3 Spektrofotometer UV – Vis
Spektrofotometer Sinar Tampak (UV-Vis) adalah pengukuran energi cahaya oleh suatu sistem kimia pada panjang gelombang tertentu (Day, 2002). Sinar ultraviolet (UV) mempunyai panjang gelombang antara 200-400 nm, dan sinar tampak (visible) mempunyai panjang gelombang 400-750 nm. Pengukuran panjang gelombang menggunakan alat spektrofotometer melibatkan energi elektronik yang cukup besar pada molekul yang dianalisis, sehingga spektrofotometer UV-Vis lebih banyak dipakai untuk analisis kuantitatif dibandingkan kualitatif.41
Pemakaian spekrofotometer UV-Vis dalam analisis kuantitatif mempunyai beberapa keuntungan:
a. Dapat digunakan untuk banyak zat organik dan anorganik. Ada kalanya beberapa zat harus diubah dahulu menjadi senyawa berwarna sebelum dianalisa.
b. Selektif. Pada pemilihan kondisi yang tepat dapat dicari panjang gelombang untuk zat yang dicari.
c. Mempunyai ketelitian yang tinggi, dengan kesalahan relatif sebesar 1%- 3%.
d. Dapat dilakukan dengan cepat dan tepat.
e. Penggunaan spektrofotometri dapat dilakukan untuk benda cair dan padat seperti air laut, lumpur, dan batuan.42
Cahaya yang berasal dari lampu deuterium maupun wolfram yang bersifat polikromatis di teruskan melalui lensa menuju ke monokromator pada spektrofotometer dan filter cahaya pada fotometer. Monokromator kemudian akan mengubah cahaya polikromatis menjadi cahaya monokromatis (tunggal). Berkas- berkas cahaya dengan panjang tertentu kemudian akan dilewatkan pada sampel yang mengandung suatu zat dalam konsentrasi tertentu. Oleh karena itu, terdapat cahaya yang diserap (diabsorbsi) dan ada pula yang dilewatkan. Cahaya yang dilewatkan ini kemudian di terima oleh detektor. Detektor kemudian akan menghitung cahaya yang diterima dan mengetahui cahaya yang diserap oleh sampel. Cahaya yang diserap sebanding dengan konsentrasi zat yang terkandung dalam sampel sehingga akan diketahui konsentrasi zat dalam sampel secara kuantitatif.
Hal – hal yang perlu diperhatikan:41
a. Larutan yang dianalisis merupakan larutan berwarna
Apabila larutan yang akan dianalisis merupakan larutan yang tidak berwarna, maka larutan tersebut harus diubah terlebih dahulu menjadi larutan yang berwarna.
b. Panjang gelombang maksimum
Panjang gelombang yang digunakan adalah panjang gelombang yang mempunyai absorbansi maksimal. Hal ini dikarenakan pada panjang gelombang maksimal, kepekaannya juga maksimal karena pada panjang gelombang tersebut, perubahan absorbansi untuk tiap satuan konsentrasi adalah yang paling besar. Selain itu disekitar panjang gelombang maksimal, akan terbentuk kurva absorbansi yang datar sehingga hukum Lambert-Beer dapat terpenuhi. Dan apabila dilakukan pengukuran ulang, tingkat kesalahannya akan kecil sekali.
Rumus hukum Lambert-Beer:7 A= Ɛ.b.C
Dimana A = absorbansi spesimen C = konsentrasi material Ɛ = koefisien absorbansi b = ketebalan spesimen
c. Kalibrasi panjang gelombang dan absorban
Spektrofotometer digunakan untuk mengukur intensitas cahaya yang dipancarkan dan cahaya yang diabsorbsi. Hal ini bergantung pada spektrum elektromagnetik yang diabsorbsi oleh benda. Tiap media akan menyerap cahaya pada panjang gelombang tertentu tergantung pada senyawa yang terbentuk. Oleh karena itu perlu dilakukan kalibrasi panjang gelombang dan absorban pada spektrofotometer agar pengukuran yang didapatkan lebih teliti.41