• Tidak ada hasil yang ditemukan

Acquaah G. 2007. Principles of Plant Genetics and Breeding. Malden (US): Blackwell Publishing.

Aldrian E. 2014. Pemahaman Dinamika Iklim di Negara Kepulauan Indonesia sebagai Modalitas Ketahanan Bangsa. Naskah Orasi Ilmiah Kepala Pusat Penelitian dan Pengembangan BMKG. Jakarta.

Allard RW. 1960. Principle of Plant Breeding. New York (US): John Wiley & Sons, Inc.

Alnopri. 2004. Variabilitas genetik dan heritabilitas karakter-karakter pertumbuhan bibit tujuh genotipe kopi robusta-arabika. Jurnal ilmu Pertanian Indonesia. 6: 91-96.

Aluko GK, Oard JH. 2004. Evaluation of discriminant analysis as a tool for rapid identification of marker associated with drought resistance in rice. In Polland D, Sawkend CM, Ribaut JS, Hoisirgton D, editor. Resalient Crops for Water Limited Environment: Proceeding at Workshop 24-28 May 2004. Aswidinnoor H, Suwarno WB, Wirnas D, Kusumo YWE. 2012a. Keputusan

Menteri Pertanian Nomor 1113/Kpts/SR.120/3/2012 tentang Pelepasan Galur Padi Sawah IPB97-F-15-1-1 sebagai varietas unggul dengan nama IPB 3S. Jakarta (ID): Kementerian Pertanian.

Aswidinnoor H, Suwarno WB, Wirnas D, Kusumo YWE. 2012b. Keputusan Menteri Pertanian Nomor 1112/Kpts/SR.120/3/2012 tentang Pelepasan Galur Padi Sawah IPB97-F-20-1-1 sebagai varietas unggul dengan nama IPB 4S. Jakarta (ID): Kementerian Pertanian.

[BKKBN] Badan Kependudukan dan Keluarga Berencana Nasional. 2013. Profil Kependudukan dan Pembangunan di Indonesia Tahun 2013. Jakarta (ID): BKKBN.

[Badan Litbang] Badan Penelitian dan Pengembangan Departemen Pertanian. 2009. Morfologi dan Fisiologi Tanaman Padi. [10 Mei 2014]. www.Litbag.deptan.go.id/special/padi/bbpadi_2009_itkp_11.pdf.

[BPS] Badan Pusat Statistik. 2013. Data Strategis. Jakarta (ID): BPS.

Barakat MN, Al-Doss AA, Elshafei AA, Moustafa KA. 2012. Bulked segregant analysis to detect quantitative trait loci (QTL) related to heat tolerance at grain filling rate in wheat using simple sequence repeat (SSR) markers. Afr. J. Biotechnol. 11(61):12436-12442.

Bari A, Musa S, dan Sjamsudin E. 1982. Pengantar Pemuliaan Tanaman. Bogor (ID): Fakultas Pertanian Institut Pertanian Bogor.

Bernando R. 2002. Breeding for Quantitative Traits in Plant. Woodbury, Minnesota (US): Stemma Press.

Bidinger FR, Hammer GL, Muchow RC. 1996. The physiological basis of genotype by environment interaction in crop adaption. Di dalam: Cooper M, Hammer GL, editor. Plant adaptation and crop improvement. Manila (FI): CAB International, International Rice Research Institute, and International Crops Research Institute for Semi-Arid Tropics. Hlm. 329-347.

Boopathi NM, Swapnashri Kavitha P, Sathishi S, Nithya R, Ratnam W, Kumar A. 2012. Introgression, Evaluation and Bulked Segregant Analysis of Major Yield QTL under Water Stress into Indigenous Elite Line for Low Water Availability. Rice Science. Vol. 19, No.4.

62

Buu B C, Ha PTT, Tam BP, Nhien TT, Hieu NV, Phuoc NT, Minh L, Giang L H, Lang NT. 2014. Quantitative Trait Loci Associated with Heat Tolerance in Rice (Oryza sativa L.). Plant Breed. Biotech. 2(1):14-24. http://dx.doi.org/10.9787/PBB.2014.2.1.014.

Chahal GS, Gosal SS. 2003. Principle and Procedures of Plant Breeding. Kolkata (IN): Narosa Publishing House.

Cooper M, Byth DE. 1996. Understanding plant adaptation to achieve systematic applied crop improvement – a fundamental challenge. In: M. Cooper dan G.L Hammer. Plant Adaptation and Crop Improvement. Manila (FI): IRRI dan CAB International. Hlm. 5-23.

Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK. 2005. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica. 142: 169– 196

Collard BCY, Mackill DJ. 2007. Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc.Lond. B Biol. Sci. 17:1–16.

de Datta SK. 1981. Principle and Practice of Rice Production. New York (US): John Willey and Sons.

Dourge RW. 2002. Mapping and analysis of quantitative trait loci in experimental population. Nat. Rev. Genet. 3:43-52.

Falconer DS, Mackay TFC. 1996. Introduction to Quantitative Genetic 4th Edition. London (GB): Longman Group Ltd.

Febrianto EB, Wahyu Y, Wirnas D. 2015. Keragaan dan keragaman genetik karakter agronomi galur mutan putatif gandum generasi M5. J. Agron. Indonesia. 43:52–58.

Fehr WR. 1987. Principles of Cultivar Development: Theory and Technique. Vol.1. New York (US): Macmillan Publishing.

Garg D, Sareen S, Dalal S, Tiwari R, Singh R. 2012. Heat shock protein based SNP marker for terminal heat stress in wheat (Triticum aestivum L.). AJCS. 6(11):1516-1521.

Ginting LEE. 2014. Respon Pertumbuhan Beberapa Genotipe F1 Padi (Oryza sativa L.) Terhadap Cekaman Suhu Tinggi. [Skripsi]. Bogor (ID): Institut Pertanian Bogor.

Griffiths AJF, Wessler SR, Lewontin RC, Gelbart WM, Suzuki DT, Miller JH. 2005. Introduction to Genetic Analysis. New York (US): WH Freeman. Grist DH. 1975. Rice 5th Eds. Longman. University of Minnesota. 601 p.

Gupta PK, Varshney RK, Prasad M. 2002. Molecular markers: Principles and Methodology. In S. Mohan Jain. D.S. Brar. B.S. Ahloowalia, editor. Molecular Techniques in Crop Improvement. Dordrecht (NL): Kluwer Academic Publisher.

Hamada H, Petrini MG, Kakunaga T, 1982. A novel repeated element with ZDNA forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc. Natl. Acad. Sci. USA 79:6465-6469.

Hobbs PR, Sayre KD. 2001. Managing Experimental Breeding Trials. In Reynolds MP, Ortiz-Monasterio JI, McNab A, editor. Application of Physiology in wheat breeding. CIMMYT. Mexico.

63 Iba K. 2002. Aclimative response to temperature stress in higher plants : approaches of gene engineering for temperature tolerance. Annu. Rev. Plant Biol. 53 : 225 – 245.

Idham, Tjahyono B. 1995. Pengendalian Hama Penyakit Padi. Jakarta (ID): Penebar Swadaya.

[IPB] Institut Pertanian Bogor. 2013. Buku Varietas Tanaman Unggul IPB. Bogor (ID): IPB.

[IPCC] Intergovernmental Panel on Climate Change. 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Inter-governmental Panel on Climate Change. p. 29-34. In Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, editor. Cambridge (GB): Cambridge University Press.

[IRRI] International Rice Research Institute. 1997. Progress report for 1996. Manila (FI): IRRI.

[IRRI] International Rice Research Institute. 2004. IRRI’s environmental agenda: A Aprroach Toward Sustainable Development. Los Banos (FI): IRRI, 35 p. Islam MR, Salam MA, Hassan L, Collard BYC, Singh RK, Gregori GB. 2011.

QTL mapping for salinity tolerance at seedling stage in rice. Emir. J. Food Agric. 2011. 23 (2): 137-146.

Jagadish SVK, Muthurajan R, Rang W, Malo R, Heuer S, Bennett J, Craufurd PQ. 2011. Spikelet proteomic response to combined water deficit and heat

stress in rice (Oryza sativa cv. N22). Rice. 4:1–11.

Jagadish S, Cairns J, Lafitte R, Wheeler T, Price A, Craufurd P. 2010. Genetic analysis of heat tolerance at anthesis in rice. Crop Sci. 50:1633–1641. Jagadish SVK, Craufurd PQ, Wheeler TR. 2008. Phenotyping parents of

populations of rice for heat tolerance during anthesis. Crop Sci. 48:1140- 1146.

Jagadish SVK, Craufurd PQ, Wheeler TR. 2007. High Temperature Stress and Spikelet Fertility in Rice ( Oryza sativa L.). Journal of Experimental Botany. 58:1627–1635.

Jaisyurahman U. 2015. Pendugaan parameter genetik dan seleksi pada populasi bersegregasi padi. [skripsi]. Bogor (ID): Institut Pertanian Bogor.

Jambormias E. 2014. Analisis genetik dan segregasi transgresif berbasis informasi kekerabatan untuk potensi hasil dan panen serempak kacang hijau [disertasi]. Bogor (ID): Institut Pertanian Bogor.

Jones PD, New M, Parker DE, Mortin S, Rigor IG. 1999. Surface area temperature and its change over the past 150 years. Rev. Geophys. 37 : 173–199.

Kadam NN, Xiao G, Melgar RJ, Bahuguna RN, Quinones C, Tamilselvan A, Prasad PVV, Jagadish KSV. 2014. Agronomic and physiological responses to high temperature, drought, and elevated CO2 interactions in cereals. Advanced in Agronomy. 127:111-156.

Karp A, and Edwards K. 1998. DNA markers: a global overview. Di dalam Caentano-Anolles and P.M. Gresshoff (Eds.), DNA markers: Protocol, Application and overviews, p 1-14. Wiley-VCH, New York (US).

64

Kasim F, dan Azrai M. 2004. Ulasan pemuliaan tanaman dengan bantuan marka molekular. Lokakarya Teknik Dasar Molekular Untuk Pemuliaan Tanaman. Bogor 19-23 Juli 2004. Maros (ID): Balai Penelitian Serealia. Khamid MBR. 2014. Respon pertumbuhan dan produksi padi (Oryza sativa L.)

terhadap cekaman suhu tinggi. [tesis]. Bogor (ID): Institut Pertanian Bogor. Koesmaryono Y. 2009. Optimalisasi Pengelolaan Potensi Iklim untuk Mendukung

Kemandirian Pangan dalam Menghadapi Variabilitas dan Perubahan Iklim Global. Orasi Ilmiah Guru Besar Tetap IPB. Bogor (ID): Institut Pertanian Bogor.

Komariah, Hermiati N, Baihaki A. 1992. Evaluasi efektivitas metode seleksi pedigri dan metode modifikasi SSD pada kedelai generasi F4. Zuriat. 3 (2). Krishnalatha S, Sharma S. 2012. Identification of maintainers and restorers for

WA and Kalinga sources of CMS lines in rice (Oryza sativa L.). Elec. J. Plant Breeding. 3:949-951.

Kropff Mj, Athew RM, Valaar H, Tenberge H. 1995. The Rice Model Oryza 1 and Its Testing. In Modeling the Impact of Climate Change on Rice Production in Asia. RB Mathews MJ, Kropff D, Bachelet & HH van Laar, editor. pp. 27–50. Wallingford, Oxon, UK & Los Banos, Philippines: CABI & IRRI.

Las I, H. Syahbuddin, Surmaini E, Fagi AM. 2008. Iklim dan Tanaman Padi: Tantangan dan peluang. Di dalam: Padi, inovasi teknologi dan ketahanan pangan. Buku 1. Subang (ID): Balai Besar Penelitian Tanaman Padi (BB Padi). Hal 151-189.

Las I, Manurung SO, Muladi. 1986. Efesiensi penggunaan air dan energi surya untuk pertumbuhan padi gogo. Penelitian Pertanian. 1(6).

Levitt J. 1980. Responses of Plants of Environmental Stress: Water, Radiation and Other Stresses. Vol. 11. New York (US): Academic Press.

Lin K-H, Lo H-F, Lee S-P, Kuo G, Chen J-T, Yeh W-L. 2006. RAPD markers for the identification of yield traits in tomatoes under heat stress via bulked segregant analysis. Hereditas. 143:142-154.

Mackay IJ dan PDS Caligari. 2000. Efficiencies of F2 and backcross generations or bulked segregant analysis using dominant marker. Crop Sci. 40:626-630. Matsui T, Amuco OS, Ziska LH & Horie T. 1997. Effects Of High Temperature

and CO2 Konsentrasi Tration On Spikelet Sterility In Indica Rice. Field

Crops Research. 51:213–219.

Mohammadi V, Bihamta MR, Zali AA. 2007. Evaluation of screening techniques for heat tolerance in wheat. Pakistan J. Biol. Sci. 10:887-892.

Mohan M, Nair S, Bhagwat A, Krishna TG, Masahiro Y. 1997. Genom mapping, molecular markers and marker assisted selection in crop plants. Molecular Breeding. 3:87-103.

Moritz C, Hillis DM. 1996. Molecular systematic: contecx and controversies. p1- 13. Di dalam Hillis DM, Moritz C, Mable BK. (Eds.). Molecular Systematic 2nd edition. Sutherland, Massachusetts. Sinauer. 655p.

Mubarrozah RH. 2013. Keragaan pertumbuhan dan produksi beberapa varietas padi pada dua kondisi suhu yang berbeda [skripsi]. Bogor (ID): Institut Pertanian Bogor.

65 Mu P, Chao H, Jun-Xia L, Li-Feng L, Zi-Chao L. 2008. Yield Trait Variation and QTL Mapping in a DH Population of Rice Under Phosphorus Deficiency. 2008. MU Acta Agronomica Sinica. Volume 34, Issue 7, July 2008.

Nakagawa H, Horie T, & Matsui T. 2003. Effect of Climate Change On Rice Production and Adaptive Technologies. Eds TW Mew, DS Brar, S. Peng, D.Dawe & B. Hard). In Rice Science: Innovations and Impact for Livelihood. Prosiding dari Internasional Rice Research Conference, Beijing, China; 2012 Sept 16 – 19; Manila, The Philippines. Manila (FI): IRRI. pp. 635–658.

Neeraja CN, Maghirang-Rodriguez R, Pamplona A, Heuer S, Collard BYC, Septiningsih EM, Vergara G, Sanchez D, Xu K, Ismail AM, Mackill DJ. A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor Appl Genet. 115:767–776.

Nguyen VT, Nguyen BD, Sarkarung S, Martinez C, Paterson AH, Nguyen HT. 2002. Mapping of genes controlling aluminum tolerance in rice: comparison of different genetic backgrounds. V.T. Mol Genet Genomics. 267: 772 780. Nishiyama, Satake T. 1981. High Temperatures Damage to Rice Plants. Japan

Jour Trop Agri. 25:14-19.

Noviarini M. 2013. Evaluasi plasma nutfah padi untuk toleransi suhu tinggi. [skripsi]. Bogor (ID): Institut Pertanian Bogor.

Pakniyat H,Tavakol E. 2007. RAPD markers associated with drought tolerance inbread wheat (Triticum aestivum L.). Pak Biol Sci. 10:3237-3239.

Poehlman JM, DA Sleeper. 1996. Breeding Field Crops. Iowa (US): Iowa State University Press.

Poespodarsono S. 1988. Dasar-dasar Ilmu Pemuliaan Tanaman. PAU IPB (ID): Bogor. 169 hal.

Poli Y, Basava RK, Panigrahy M, Vinukonda VP, Dokula NR, Voleti SR, Desiraju S, Neelamraju S. 2013. Characterization of a Nagina22 rice mutant for heat tolerance and mapping of yield traits. Rice. 6:36-44.

Porter JR. 2005. Rising temperatures are likely to reduce crop yields. Nature. 436, 174.

Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Raflaski A. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breeding.2: 225-238.

Prasad PVV, Boote KJ, Allen LH Jr, Sheehy JE & Thomas JMG . 2006. Species, Ecotype and Cultivar Differences In Spikelet Fertility and Harvest Index of Rice In Response to High Temperature Stress. Field Crops Research. 95:398–411.

Rafalski JA, Vogel JM, Morgante M, Powell W, Andre C, and Tingey SV. 1996. Generating and using DNA markers in plants, p. 75–134. Di dalam B. Birren and E. Lai (eds.). Nonmammalian Genomic Analysis. A practical guide. San Diego (US): Academic.

Ribaut JM, William HM, Khairallah M, Worland AJ, and Hoisington D. 2001. Genetic Basis of Physiological Traits. In Reynolds MP, Ortiz-Monasterio JI, McNab A (Eds). Application of Physiology in wheat breeding. CIMMYT. Mexico.

Rohrer GA, Alexander LJ, Keele JW, Smith TP, Beatie CW, 1994. A microsatellite linkage map of the procine genome. Genetics. 136: 231- 245.

66

Roldan-Ruiz I. 2014. Marker-trait associations. Hand Out Advanced Course Modern Breeding Techniques Cassava. 8-19 September 2014 - Ghent University, Belgium.

Roy D. 2000. Plant Breeding Analysis and Exploitation of variation. New Delhi (IN): Narosa Publishing House.

Ruchjaniningsih, Imran A, Thamrin M, Kanro ZM. 2000. Penampilan fenotipik dan beberapa parameter genetik delapan kultivar kacang tanah pada lahan sawah. Zuriat. 11(1) : 8-15.

Saghai-Maroof MA, Biyashev RM, Yang GP, Zhang Q, Allard RW. 1994. Extraordinarily polymorphic microsatelitte DNA in barley species diversity, chromosomal location and population dynamics. Proc. Natl. Acd. Sci. 9:5546 – 5470.

Salunkhe AS, Poornima R, Prince KSJ, Kanagaraj P, Sheeba JA, Amudha K, Suji KK, Senthil A, Babu RC. 2011. Fine Mapping QTL for Drought Resistance Traits in Rice. (Oryza sativa L.) Using Bulk Segregant Analysis. Mol Biotechnol. 49:90–95. DOI 10.1007/s12033-011-9382-x.

Sasti RP. 2014. Keragaan pertumbuhan padi genotipe F1 dan galur tetua pada kondisi tercekam suhu tinggi. [skripsi]. Bogor (ID): Institut Pertanian Bogor.

Senior ML, Chin ECL, Lee M, Smith JSC, Stuber CW. 1996. Simple sequence repeated marker developed from maize sequence found in gene bank database: map construction. Crop Science. 36:1676-1683.

Sihaloho AN. 2015. Analisis genetik dan efisiensi seleksi menggunakan single seed descent pada kedelai [Glycine max (l.) Merr.] untuk adaptasi tanah masam. [disertasi]. Bogor (ID): Institut Pertanian Bogor.

Sihaloho, AN, Trikoesoemaningtyas, Sopandie D, Wirnas D. 2015. Identifikasi aksi gen epistasis pada toleransi kedelai terhadap cekaman aluminium. J. Agron. Indonesia. 43:30–35.

Singh RK dan Chaudhary B D. 1979. Biometrical method in Quantitatif Genetical Analysis. New Delhi (IN): Kalyani Publication. Hlm 54-57.

Siregar H. 1987. Budidaya Tanaman Padi di Indonesia. Jakarta (ID): Sastra Hudaya. 319 hal.

Situmorang B. 2015. Keragaan segregan F2 padi (Oryza sativa L.) di lahan kering. [skripsi]. Bogor (ID): Institut Pertanian Bogor.

Sleper DA, Poehlman JM. 2006. Breeding Field Crops. Ed. Ke-5. Iowa (US): Blackwell Publishing.

Sopandie D. 2006. Perspektif Fisiologi Dalam Pengembangan Tanaman Pangan di Lahan Marjinal. Orasi Ilmiah Guru Besar Tetap IPB. Bogor (ID): Institut Pertanian Bogor.

Stansfield WD. 1983. Theory and Problem of Genetic, Second Edition. New York (US): Mc. Graw-Hill. 417 p.

Subashri M, Robin S, Vinod KK, Rajeswari S, Mohanasundaram K, Raveendran TS. 2009. Trait identification and QTL validation for reproductive stage drought resistance in rice using selective genotyping of near flowering RILs. M. Euphytica. 166:291–305.

Susanto U, Sutrisno, Aswidinnoor H. 2008. Pemanfaatan teknik marka molekuler untuk perbaikan varietas padi. Di dalam: Padi, Inovasi Teknologi dan

67 Ketahanan Pangan, Buku 1. Subang (ID): Balai Besar Penelitian Tanaman Padi (BB Padi). Hlm 324-336.

Syukur M, Sujiprihati S, Yunianti R. 2015. Teknik Pemuliaan Tanaman. Edisi Revisi. Jakarta (ID): Penebar Swadaya.

Syukur M, Sujiprihati S, Yunianti R. 2012. Teknik Pemuliaan Tanaman. Jakarta (ID): Penebar Swadaya.

Syukur M dan Sobir. 2015. Genetika Tanaman. Bogor (ID): IPB Press.

Taiz L, Zeiger E. 2002. Plant Physiology. Sunderland (GB): Sinauer Associates, Inc.

Tang RS, Zheng JC, Jin ZQ, Zhang DD, Huang YH & Chen LG . 2008. Possible Correlation Between High Temperature-Induced Floret Sterility and Endogenous Levels of IAA, Gas and ABA In Rice ( Oryza sativa L.). Plant Growth Regulation. 54:37–43.

Tenorio FA, Ye C, Redoña E, Sierra S, Laza M, Argayoso MA. 2013. Screening rice genetic resources for heat tolerance. SABRAO J. Breed. Genet. 45:371- 381.

Thudi M, Upadhyaya HD, Rathore A, Gaur PM, Krisnamurthy L, Roorkiwal M, Nayak SN, Chaturvedi SK, Basu PS, Gangarao NVPR, Fikre A, Kimurto P, Shorma PC, Shesashayee MS, Tobita S, Kashiwagi J, Ito O, Killian A, Varshney RK. 2014. Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-base association mapping approaches. Plos one. 9(5):96758-96770.

Vaughan DA. 1994. The wild relative of rice: A genetic resources handbook. Los Banos (FI): IRRI.

Wahid A, Gelani S, Ashraf M, Foolad MR. 2007. Heat tolerance in plants: an overview. Environ. Exp. Bot. 61: 199 – 223.

Wassmann R, Jagadish SVK, Sumfleth K, Pathak H, Howell G, Ismail A, Serraj R, Redoña E, Singh RK, Heuer S. 2009. Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. Adv. Agron. 102:93-105.

Wassmann R, Dobermann A. 2007. Climate change adaptation through rice production in regions with high poverty levels. An Open Access Journal published by ICRISAT. E-journal of SAT Agricultural Research 4.

[Internet]. [10 Mei 2014]. Tersedia pada:

http://www.icrisat.org/journal/SpecialProject/sp8.pdf

Wirnas D. 2007. Pembentukan kriteria seleksi berdasarkan analisis kuantitatif dan molekuler bagi kedelai toleran intensitas cahaya rendah [disertasi]. Bogor (ID): Institut Pertanian Bogor.

Wirnas D, Mubarrozah RH, Noviarini M, Marwiyah S, Trikoesoemaningtyas, Aswidinnoor H, Sutjahjo SH. 2015a. Contibution of genetic x temperature interaction to performance and variance of rice yield in Indonesia. Int. Jour. Agro. and Agri. Res. Vol. 6 (4), p. 112-119.

Wirnas D, Marwiyah S, Trikoesoemaningtyas, Aswidinnoor H, Sutjahjo SH. 2015b. Perakitan varietas padi toleran cekaman suhu tinggi melalui pendekatan fisiologi, pemuliaan dan molekuler. Laporan Akhir Penelitian Hibah Desentralisasi IPB. LPPM IPB.

Xiao Y, Pan Y, Luo L, Zhang G, Deng H, Dai L, Liu X, Tang W, Chen L, Wang GL. 2011. Quantitative trait loci associated with seed set under high

68

temperature stress at the flowering stage in rice (Oryza sativa L.). Euphytica. 178:331–338.

Xie XW, Xu MR, Zang JP, Sun Y, Zhu LH, Xu JL, Zhou YL, Li ZK. 2008. Genetic background and environmental effects on QTLs for sheath blight resistance revealed by reciprocal introgression lines in rice. Acta Agronomica Sinica. 34:1885-1893.

Yamin M. 2014. Pendugaan komponen ragam karakter agronomi gandum (Triticum aestivum L.) dan identifikasi marka simple sequence repeat (SSR) terpaut suhu tinggi menggunakan bulk segregant analysis (BSA). [tesis]. Bogor (ID): Institut Pertanian Bogor.

Ye C, Tenorio FA, Argayoso MA, Laza MA, Koh H-J, Redona ED, Jagadish KSV, Gregorio GB. 2015. Identifiying and confirming quantitative trait loci associated with heat tolerance at flowering stage in different rice populations. BMC Genetics. 16:41-51.

Yin X, Kroff M & Goudriann J. 1996. Diferensial Effects of Day and Night Temperature on Development to Flowering In Rice. Annals of Botany. 77:203–213.

Yoshida S. 1978. Tropical Climate and Its Influence on Rice . IRRI Research Paper Series 20. Los Baños (FI): IRRI.

Yoshida S. 1981. Fundamentals of Rice Crop Science. Los Banos (FI): IRRI. 269p.

Zhang G, Chen L, Xiao G, Xiao Y, Chen X and Zhang S. 2009. Bulked Segregant Analysis to Detect QTL Related to Heat Tolerance in Rice (Oryza sativa L.) Using SSR Markers. Agricultural Sciences in China. 8(4): 482-487. Zhang T, Yang L, Jiang K, Huang M, Sun Q, Chen W, Zheng J. 2008. QTL

mapping for heat tolerance of the tassel period of rice. Mol. Plant Breed. 6:867-873.

Zhang Y, Mian MAR, Chekhovskiy K, So S, Kupfer D, Lai H, Roe BA. 2005. Differential gene expression in Festuca under heat stress conditions. J Exp Bot. 56 (413): 897 – 907.

Zhu C, Xiao Y, W C, Jiang L, Zhai H, Wan J. 2005. Mapping QTL for Heat- Tolerance at Grain Filling Stage in Rice. Rice Science. 12(1): 3338.

69

71 Lampiran 1 Deskripsi padi varietas IPB 4S

Nomor seleksi : IPB97-F-20-1-1

Asal seleksi : IPB 6-d-10s-1-1-1/Fatmawati

Golongan : Cere

Umur tanaman : + 112 hari setelah tanam Bentuk tanaman : Tegak

Tinggi tanaman : + 114 cm Anakan produktif : 8-12 batang

Bentuk gabah : Medium

Warna gabah : Kuning jerami

Kerontokan : Sedang

Kerebahan : Tahan

Jumlah gabah per malai : 218 butir

Tekstur nasi : Pulen

Kadar amilosa : + 22.30%

Berat 1000 butir : 27.6 g (KA 14%) Rata-rata hasil : 7.0 ton ha-1 GKG Potensi hasil : 10.5 ton ha-1 GKG

Ketahanan terhadap penyakit

: Tahan terhadap Tungro, agak tahan terhadap penyakit Blast ras 033 dan ras 073, agak tahan terhadap hawar daun bakteri patotipe III

Anjuran tanam : Baik ditanam di lahan irigasi dan tadah hujan 0 – 600 m dpl

Pemulia : Hajrial Aswidinnoor, Willy B. Suwarno, Desta Wirnas, Yudiwanti Wahyu EK.

Tahun dilepas : 2012

72

Lampiran 2 Deskripsi padi varietas Situ Patenggang Nomor seleksi : BP1153-C-9-12

Asal seleksi : Kartuna/TB47H-MR10

Golongan : Cere

Umur tanaman : 110-120 hari setelah tanam Bentuk tanaman : Tegak

Tinggi tanaman : 100-110 cm Anakan produktif : 10-11 batang

Daun bendera : Menyudut 35-50° terhadap batang Bentuk gabah : Agak gemuk

Warna kaki : Ungu tua

Warna batang : Hijau tua Warna telinga daun : Kuning kotor Warna lidah daun : Ungu

Warna daun : Hijau, tepi daun tua berkilau ungu

Warna gabah : Krem tua

Kerontokan : Sedang

Kerebahan : Tahan

Tekstur nasi : Sedang

Kadar amilosa : 23,93% Indeks glikemik : 53,7

Berat 1000 butir : 26.5 - 27.5 g (KA 14%) Rata-rata hasil : 3.6 – 5.6 ton ha-1 GKG Ketahanan terhadap

penyakit

: Tahan terhadap Blast diferensial

Sifat khusus : Aromatik, respon terhadap pemupukan sehingga mampu dikembangkan di sawah

Anjuran tanam : lahan kering musim hujan, tumpangsari, lahan tipe tanah Aluvial dan Podsolik ketinggian tidak lebih dari 300 m dpl

Pemulia : Ismail BP, Atito D.S, Yamin S., Z.A. Simanullang dan Aan A. Daradjat

Tahun dilepas : 2003

73 Lampiran 3 Suhu dan kelembapan selama penelitian

HST Suhu Minimum (°C) Suhu Maksimum (°C) Suhu Optimum (°C)* Fase Suhu rata-rata (°C) Kelemba- pan udara (%) 0 24 49 28 Pengakaran 39.5 61.25 6 24.5 47.5 28 Pengakaran 38.3 61.45 12 24 47.17 28 Pengakaran 36.91 59.7 18 23.67 44.33 31 Pemanjangan daun 35.70 62.91 24 24.5 41.83 31 Pemanjangan daun 34.42 64.67 30 24.67 43.17 31 Penganakan 35.29 61.25 36 24.33 41.33 31 Penganakan 34 66.63 42 26.17 41.83 31 Penganakan 32.7 69.29 48 25 42.67 31 Penganakan 34.58 65.92 54 25.33 33.83 33 Vegetatif akhir 30.75 71.45 61 24.33 34.33 33 Vegetatif akhir 30.75 73.54 68 24.17 34.83 33 Vegetatif akhir 30.29 70.00 74 24.67 34.5 33 Generatif awal 30.42 65.46 81 27.5 37 33 Generatif awal 32.42 60.25 87 28 38.83 33 Antesis 34.42 68.29 94 28.5 40.67 33 Antesis 35.33 64.50 100 29.83 41.5 33 Antesis 36.08 61.25 106 28 39.67 33 Pematangan 34.87 62.50 112 27.33 37.5 29 Pematangan 32.92 69.58 118 25.33 36.5 29 Pematangan 30.9 73.70 124 27.11 39.33 29 Pematangan 34.22 62.22

* = Kriteria suhu optimum yang dipakai adalah menurut Yoshida (1978) dan Wassmann et al. (2009).

74

Lampiran 4 Algoritma eksplorasi kecenderungan sebaran sifat-sifat kuantitatif kaitannya dengan aksi gen aditif, dominan serta epistasis komplementer dan duplikat (Jambormias 2014)

Ya Tidak Tidak Kurtosis positif Platykurtik: Banyak gen terlibat Leptokurtik: sedikit gen terlibat Analisis Skewness Skewness nyata Epistatis aditif Data Populasi Analisis Kurtosis Kurtosis nyata Tidak Tidak Mesokurtik Interaksi Interalelik Interaksi Intergenik aditif Analisis Skewness

Ada pengaruh gen dominan Skewness nyata Hanya ada pengaruh gen aditif Skewness positif Menjulur ke kanan dominansi ke kiri Menjulur ke kiri dominansi ke kanan Positif Epistatis duplikat Epistatis komplementer Tidak Ya Tidak Ya Ya Ya Ya

75

Lampiran 5 Keragaan Segregan Padi IPB 4S x Situ Patenggang Hasil Seleksi Berbasis 1 karakter dengan Intensitas Seleksi 25%

Nomor Genotipe KHD TTP JAT JAP PM JGB JGH %JGH JGT LPB B100 BGB

1 114 45.1 169.00 28 17 29.8 305 194 38.88 499 34 2.12 80.6 2 28 43.3 150.00 23 21 31.16 193 96 33.22 289 38 2.26 77.67 3 48 43.2 150.00 31 25 28.8 264 94 26.26 358 34 2.23 75.96 4 141 44 122.00 27 22 28.04 193 102 34.58 295 35 1.98 70.75 5 51 46.1 138.50 40 35 29.18 188 70 27.13 258 28 2.32 68.85 6 109 43.8 164.00 24 22 28.04 238 181 43.20 419 28 1.98 67.51 7 193 45.6 143.00 29 24 32.26 193 94 32.75 287 37 2.3 66.35 8 187 50 164.00 15 12 32.5 285 136 32.30 421 39 2.27 65.52 9 93 46.1 177.00 18 15 31.28 245 206 45.68 451 28 3 64.75 10 190 44.9 141.00 34 27 32.3 196 152 43.68 348 34 2.34 64.66 11 189 43.8 153.00 30 25 30.9 166 174 51.18 340 39 2.55 64.62 12 159 41.5 153.00 24 19 29.6 210 55 20.75 265 37 2.16 64.42 13 179 47.6 145.00 19 15 27.1 204 134 39.64 338 37 2.02 64.14 14 111 42.4 159.00 20 14 26.02 201 94 31.86 295 29 2.16 62.58 15 80 41.8 154.00 27 23 28.82 184 89 32.60 273 34 1.99 60.38 16 164 44.3 151.00 25 19 28.8 216 34 13.60 250 38 2.15 60.35 17 165 43 141.00 26 19 24 168 51 23.29 219 30 2.21 59.41 18 124 43.4 159.00 21 16 30 206 60 22.56 266 35 2.26 58.64 19 49 45.1 158.00 20 16 27.3 204 62 23.31 266 36 1.8 58.62 20 47 44.3 150.00 21 17 31.78 210 75 26.32 285 38 2.22 58.33 21 3 45 154.20 32 30 28.46 158 119 42.96 277 38 2.21 57.28 22 92 39.9 144.50 28 24 26.38 127 105 45.26 232 27 1.97 56.5 23 103 43.6 132.00 25 22 25.34 170 123 41.98 293 26 2.04 56.37 24 139 44.9 135.00 27 23 30.84 224 135 37.60 359 37 2.06 56.24 25 174 49.5 139.00 29 25 34.6 196 133 40.43 329 33 2.42 56.2

KHD: kehijauan daun; TTP: tinggi tanaman saat panen; JAT: jumlah anakan total; JAP: jumlah anakan produktif; jumlah gabah bernas; JGH: jumlah

Dokumen terkait