• Tidak ada hasil yang ditemukan

Abbas, K. A., S. K. Khalil, dan A. S. M. Hussin. 2010. Modified starches and their usages in selected food products: a review study. Journal of Agricultural Science. 2(2): 90-100.

Afifah, N. dan L. Ratnawati. 2017. Quality assessment of dry noodles made from blend of mocaf flour, rice flour and corn flour. IOP Conf. Series: Earth and Environmental Science. 101(2017): 012-021.

Alam, F., A. Siddiqui, Z. Lutfi, dan A. Hasnain. 2009. Effect of different hydrocolloids on gelatinization behaviour of hard wheat flour. Trakia Journal of Sciences. 7(1): 1-6.

Anderson, R. A. 1982. Water absorption and solubility and amylograph characteristics on roll-cooked small grain products. Cereal Chemistry. 59:

265-269.

AOAC. 1995. Official Methods of Analysis of The Association of Official Analytical Chemists. Washington: AOAC.

Apriyantono, A., D. Fardiaz, N. L. Puspitasari, Sedarnawati, dan S. Budiyanto.

1989. Analisis Pangan. Bogor: PAU Pangan dan Gizi.

Bakerpedia. 2018. https://www.bakerpedia.com/ingredients/acacia-gum/. Diakses 15 Agustus 2018.

Beyond Celiac. 2017. https://www.beyondceliac.org/celiac-disease/. Diakses 15 Juli 2017.

Cellulose ether. 2018. https://www.celluloseether.com/properties-of-cmc-carboxymethlcellulose/. Diakses 15 Agustus 2018.

Eneh, O. C. 2013. Towards food security and improved nutrition in Nigeria: Taro (Colocacia antiquorum) grit as carbohydrate supplement in energy food drink. African Journal of Food Science. 7(10): 355-360.

Erika, C. 2010. Produksi pati termodifikasi dari berbagai jenis pati. Jurnal Rekayasa Kimia dan Lingkungan. 7(3): 130-137.

Fauzi, D., L. M. Baga, dan N. Tinaprilla. 2016. Strategi pengembangan agribisnis kentang merah di Kabupaten Solok. Jurnal Agraris. 2(1): 87-96.

García-Ochoa, F., V. E. Santos, J. A. Casas, dan E. Gómez. 2000. Xanthan gum:

production, recovery, and properties. Biotechonology Advances. 18(2000):

549-579.

Gomez, M. dan L. S. Sciarini. 2015. Gluten-Free Bakery Products and Pasta.

Advances in the Understanding of Gluten Related Pathology and the Evolution of Gluten-Free Foods. OmniaScience, Barcelona.

González-Soto, R. A., L. Sánchez-Hernandez, J. Solorza-Feria, C. Núñez-Santiago, E. Flores-Huicocheal, dan L. A. Bello-Pérez. 2006. Resistant starch production from non-conventional starch sources by extrusion. J.

Food Sci. Tech. 12(1): 5-11.

Hager, A.-S., E. Zannini, dan E. K. Arendt. 2012. Gluten-free pasta-advances in research and commercialization. Cereal Foods World. 57(5): 225-229.

Hakim, A. R. dan A. Chamidah. 2013. Aplikasi gum arab dan dekstrin sebagai bahan pengikat protein ekstrak kepala udang. JPB Kelautan dan Perikanan.

8(1): 45-54.

Hakiim, A. dan F. Sistihapsari. 2011. Modifikasi fisik-kimia tepung sorgum berdasarkan karakteristik sifat fisikokimia sebagai substituen tepung gandum. Artikel Penelitian Sorgum, Semarang.

Herawati, E. R. N., D. Ariani, Miftakhussolikhah, E. Yosieto, M. Angwar, dan Y.

Pranoto. 2017. Sensory and textural characteristics of noodle made of ganyong flour (Canna edulis Kerr.) and arenga starch (Arenga pinnata Merr.). IOP Conf. Series: Earth and Environmental Science. 101(2017): 1-7.

Herawati, H. 2011. Potensi pengembangan produk pati tahan cerna sebagai pangan fungsional. Jurnal Litbang Pertanian. 30(1): 31-39.

Holtmeier, W. dan W. F. Caspary. 2006. Celiac disease. Orphanet Journal of Rare Diseases. 1: 3.

Husna, A. U., L. A. M. Siregar, dan Y. Husni. 2014. Pertumbuhan dan perkembangan nodus kentang (Solanum tuberosum L.) akibat modifikasi konsentrasi sukrosa dan penambahan 2-isopenteniladenina secara in vitro.

Jurnal Online Agroekoteknologi. 2(3): 997-1003.

Hutapea, C. A., H. Rusmarilin, dan M. Nurminah. 2016. Pengaruh perbandingan zat penstabil dan konsentrasi kuning telur terhadap mutu reduced fat mayonnaise. J. Rekayasa Pangan dan Pert. 4(3): 304-311.

Hutching, J. B. 1999. Food and Appearance Second Edition. Aspen Publ. Inc. microstructure and textural characteristics of instant noodles. Asian Journal of Food and Agro-Industry. 5(6): 485-492.

Kamal, N., 2010. Pengaruh bahan aditif CMC (Carboxymethyl Cellulose) terhadap beberapa parameter pada larutan sukrosa. Jurnal Teknologi.

1(17): 78-84.

Kaur, M. dan N. Singh. 2005. Studies on functional, thermal and pasting properties of flours from different chickpea (Cicer arietinum L.) cultivars.

Food Chemistry. 91(2005): 403-411.

Kaur, M., K. Shevkani, N. Singh, P. Sharma, dan S. Kaur. 2015. Effect of guar gum and xanthan gum on pasting and noodle-making properties of potato, corn and mung bean starches. J Food Sci Technol. 52(12): 8113-8121.

Kaur, M., P. Kaushal, dan K. S. Sandhu. 2013. Studies on physicochemical and pasting properties of Taro (Colocasia esculenta L.) flour in comparison with a cereal, tuber and legume flour. J. Food Sci Technol. 50(1): 94-100.

Koswara, S. 2013. Teknologi Pengolahan Umbi-umbian. Tropical Plant Curriculum (TPC) Project. Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center. Bogor Agricultural University.

Laleg, K., D. Cassan, C. Barron, P. Prabhasankar, dan V. Micard. 2016.

Structural, Culinary, Nutritional and Anti-Nutritional Properties of High Protein, Gluten Free, 100% Legume Pasta. PLoS ONE. 11(9): 1-19.

Leite, T. D., J. F. Nicoletti, A. L. B. Penna, dan C. M. L. Franco. 2012. Effect of addition of different hydrocolloids on pasting, thermal, and rheological properties of cassava starch. Ciencia e Tecnologia de Alimentos. 32(3):

579-587.

Leach, H. W., McCowan, L. D. dan Schoch, T. J. 1959. Structure of the starch granules. In: Swelling power and solubility patterns of different starches.

Cereal chemistry. 36: 534-544.

Lizarazo, S. P., G. G. Hurtado, dan L. F. Rodriguez. 2015. Physicochemical and morphological characterization of potato starch (Solanum tuberosum L.) as raw material for the purpose of obtaining bioethanol. Agronomia Colombiana. 33(2): 244-252.

Martunis. 2012. Pengaruh suhu dan lama pengeringan terhadap kuantitas dan kualitas pati kentang varietas granola. Jurnal Teknologi dan Industri Pertanian Indonesia. 4(3): 26-30.

Muchtadi, T. R. dan Sugiyono. 1992. Ilmu Pengetahuan Bahan Pangan. Pusat Antar Universitas Pangan dan Gizi, Bogor.

Ogundare-Akanmu O. A., Akande S. A., Inana M. E., Israel D., dan Adindu M. N.

2015. Quality attributes of heat treated cocoyam (Colocasia esculenta) flour. Food Science and Quality Management. 37: 79-81.

Oh, N. H., P.A., Seib, C. W. Deyoe, dan A. B. Ward. 1983. Noodles: measuring the textural characteristics of cooked noodles. Cereal Chemistry. 60(6):

433-438.

Olatunde, G. O., L. K. Arogundade, dan O. I. Orija. 2017. Chemical, functional and pasting properties of banana and plantain starches modified by pre-gelatinization, oxidation and acetylation. Cogent Food & Agriculture.

3(2017): 1-12.

Onwueme, I. 1999. Taro Cultivation in Asia and The Pacific. Food and Agriculture Organization of The United Nations, Bangkok.

Otegbayo, B., O. Lana, dan W. Ibitoye. 2010. Isolation and physicochemical characterization of starches isolated from plantain (Musa paradisiaca) and coking banana (Musa sapientum). Journal of Food Biochemistry.

34(2010): 1303-1318.

Padalino, L., M. Mastromatteo, G. Sepielli, dan M. A. D. Nobile. 2011.

Formulation optimization of gluten-free functional spaghetti based on maize flour and oat bran enriched in β-glucans. Materials. 4: 2119-2135.

Pereira, P. R., J. T. Silva, M. A. Vericimo, V. M. F. Paschoalin, dan G. A. P. B.

Teixeira. 2015. Crude extract from taro (Colocasia esculenta) as a natural source of bioactive proteins able to stimulate haematopoietic cells in two murine models. Journal of Functional Foods. 18(2015): 333-343.

Pranoto, Y., Rahmayuni, Haryadi, dan S. K. Rakshit. 2014. Physicochemical properties of heat moisture treated sweet potato starches of selected Indonesian varieties. International Food Research Journal. 21(5): 2031-2038.

Rahmawati, W., Y. A. Kusumastuti, dan N. Aryanti. 2012. Karakterisasi pati talas (Colocasia esculenta (L.) Schott) sebagai alternatif sumber pati industri di Indonesia. Jurnal Teknologi Kimia dan Industri. 1(1): 347-351.

Ratnayake, W. S., R. Hoover, dan T. Warkentin. 2002. Pea starch: composition, structure, and properties - a review. Starch/Stärke. 54(2002): 217-234.

Saha, D. dan S. Bhattacharya. 2010. Hydrocolloids as thickening and gelling agents in food: a critical review. J Food Sci Technol. 47(6): 587-597.

Sathe, S. K. dan Salunkhe, D. K. 1981. Isolation, partial characterization and modification of the great nothern bean (Phaseolus vulgaricus L.). Journal Food Sci. 46: 617-621.

Singh, N., J. Singh, dan N. S. Sodhi. 2002. Morphological, thermal, rheological and noodle-making properties of potato and corn starch. J Sci Food Agric.

82: 1376-1383.

Singh, R., S. Ranvir, dan S. Madan. 2017. Comparative study of the properties of ripe banana flour, unripe banana flour and cooked banana flour aiming towards effective utilization of these flours. Int. J. Curr. Microbiol. App.

Sci. 6(8): 2003-2015.

Stuknyte, M., S. Cattaneo, M. A. Pagani, A. Marti, V. Micard, J. Hogenboom, dan I. D. Noni. 2013. Spaghetti from durum wheat: Effect of drying conditions on heat damage, ultrastructure and in vitro digestibility. Food Chemistry.

149(2014): 40-46.

Sudarmadji, S. B. Haryono, dan Suhardi. 1989. Prosedur Analisa Untuk Makanan dan Pertanian. Liberty, Yogyakarta.

Szymońska, J., M. Targosz-Korecka, dan F. Krok. 2009. Characterization of starch nanoparticles. Journal of Physics: Conference Series 146(2009): 1-6.

Temesgen, M. dan N. Retta. 2015. Nutritional potential, health and food security benefits of taro Colocasia esculenta (L.): a review. Food Science and Quality Management. 36: 23-30.

Tong, P. S. 2016. Colocasia esculenta (taro, yam, keladi) as a small farm crop in the Kinta Valley of Malaysia. Utar Agriculture Science Journal. 2(1): 49-56.

Ukpabi, U. J. dan Ejidoh, J. I. 1989. Effect of deep oil frying on the oxalate content and the degree of itching of cocoyams (Xanthosoma and Colocasia spp). Technical Paper presented at the 5th Annual Conference of the Agricultural Society of Nigeria, Federal University of Technology, Owerri, Nigeria.

Waliszewski, K. N., M. A. Aparicio, L. A. Bello, dan J. A. Monroy. 2003.

Changes of banana starch by chemical and physical modification.

Carbohydrate Polymers. 52(2003): 237-242.

Waruwu, F., E. Julianti, dan S. Ginting. 2015. Evaluasi karakteristik fisik, kimia dan sensori roti dari tepung komposit beras, ubi kayu, kentang dan kedelai dengan penambahan xanthan gum. Jurnal Rekayasa Pangan dan Pertanian.

3(4): 448-457.

Widyaningtyas, M. dan W. H. Susanto. 2015. Pengaruh jenis dan konsentrasi hidrokoloid (carboxy methyl cellulose, xanthan gum, dan karagenan) terhadap karakteristik mie kering berbasis pasta ubi jalar varietas ase kuning. Jurnal Pangan dan Agroindustri. 3(2): 417-423.

Wikipedia. 2018. Gum arabic. https://en.m.wikipedia.org. Diakses 13 Agustus 2018.

Wikipedia. 2017. Spaghetti. https://en.m.wikipedia.org. Diakses 15 Juli 2017.

Wikipedia. 2017. Talas. https://id.m.wikipedia.org. Diakses 15 Juli 2017.

Wüstenberg, T. 2015. General Overview of Food Hydrocolloids. Cellulose and Cellulose Derivatives in the Food Industry: Fundamentals and Applications First Edition. Wiley-VCH Verlag GmbH & Co. KGaA.

Yadav, R. B., N. Kumar, dan B. S. Yadav. 2016. Characterization of banana, potato, and rice starch blends for their physicochemical and pasting properties. Cogent Food & Agriculture. 2: 1-12.

Lampiran 1. Data analisa ragam warna spaghetti

SK db JK KT F hit F 0,05 F 0,01

Perlakuan 14 15,0164 1,0726 0,8719 tn 2,04 2,74

T 4 2,0892 0,5223 0,4246 tn 2,69 4,02

H 2 1,1585 0,5792 0,4709 tn 3,32 5,39

T x H 8 11,7686 1,4710 1,1959 tn 2,27 3,17

Galat 30 36,9017 1,2300 Total 58 51,9181

Keterangan:

FK = 349236,42 KK = 1,76%

tn = tidak nyata

Lampiran 2. Data analisa ragam cooking time spaghetti, uji DMRT pengaruh perbandingan pati pisang HMT, pati kentang HMT dan tepung talas, dan uji DMRT pengaruh jenis hidrokoloid terhadap cooking time

Perlakuan Rataan Notasi

0,05 0,01 0,05 0,01

Perlakuan Rataan Notasi

0,05 0,01 0,05 0,01

- - - H1 = XG 617 a A

2 22,0238 29,6574 H2 = CMC 615 ab A

3 23,1448 30,9309 H3 = GA 587 a A

Lampiran 3. Uji DMRT interaksi perbandingan pati pisang HMT, pati kentang HMT dan tepung talas dengan jenis hidrokoloid terhadap cooking time spaghetti

Jarak (p) Rp

Perlakuan Rataan Notasi

0,05 0,01 0,05 0,01

- - - T1H1 524 gh EF

2 22,0238 29,6574 T1H2 527 gh EF

3 23,1448 30,9309 T1H3 523 h EF

4 23,8769 31,7850 T2H1 548 g E

5 24,3955 32,4104 T2H2 644 cd BCD

6 24,7844 32,8984 T2H3 619 de CD

7 25,0894 33,2950 T3H1 687 a A

8 25,3335 33,6229 T3H2 642 cd BCD

9 25,5394 33,8974 T3H3 618 ef CD

10 25,7071 34,1415 T4H1 656 ab AB

11 25,8444 34,3474 T4H2 612 f D

12 25,9664 34,5304 T4H3 512 h F

13 26,0655 34,6982 T5H1 656 bc AB

14 26,1571 34,8430 T5H2 652 bc BC

15 26,2257 34,9727 T5H3 665 bc AB

Lampiran 4. Data analisa ragam cooking loss spaghetti dan uji DMRT pengaruh jenis hidrokoloid terhadap cooking loss spaghetti

SK db JK KT F hit F 0,05 F 0,01

Perlakuan 14 621,4751 44,3910 2,9684 ** 2,04 2,74

T 4 156,0297 39,0074 2,6084 tn 2,69 4,02

H 2 265,4711 132,735 8,8760 ** 3,32 5,39

T x H 8 199,9742 24,9967 1,6715 tn 2,27 3,17

Galat 30 448,6327 14,9544 Total 58 1070,1079

Keterangan:

FK = 50117,91 KK = 9,97%

** = sangat nyata tn = tidak nyata

Jarak (p) DMRT

Perlakuan Rataan Notasi

0,05 0,01 0,05 0,01

- - - H1 = XG 30,65 b B

2 3,7227 5,0130 H2 = CMC 32,91 ab AB

3 3,9122 5,2283 H3 = GA 36,55 a A

Lampiran 5. Data analisa ragam tekstur (Fmax) spaghetti

SK db JK KT F hit F 0,05 F 0,01

Perlakuan 14 -0,0194 -0,0013 -0,2045 tn 2,42 3,56

T 4 -0,0817 -0,0204 -3,0042 tn 3,06 4,89

H 2 -0,0592 -0,0296 -4,3506 tn 3,68 6,36

T x H 8 0,1214 0,0151 2,2317 tn 2,64 4

Galat 15 0,1020 0,0068 Total 43 0,0825

Keterangan:

FK = 0,88 KK = 3,63%

tn = tidak nyata

Lampiran 6. Data pengamatan dan analisa ragam elongasi spaghetti, uji DMRT pengaruh perbandingan pati pisang HMT, pati kentang HMT dan tepung talas, dan uji DMRT pengaruh jenis hidrokoloid terhadap elongasi spaghetti

SK db JK KT F hit F 0,05 F 0,01

Perlakuan 14 493,5325 35,2523 57,9841 ** 2,42 3,56

T 4 314,1171 78,5292 129,1674 ** 3,06 4,89

H 2 146,3016 73,1508 120,3207 ** 3,68 6,36

T x H 8 33,1138 4,13923 6,8083 ** 2,64 4

Galat 15 9,1194 0,60796 Total 43 502,6520

Keterangan:

FK = 10261,12 KK = 3,31%

** = sangat nyata Jarak

(p)

Rp Perlakuan Rataan Notasi

0,05 0,01 0,05 0,01

- - - T1 = 0% : 30% : 70% 22,13 a A

2 0,9594 1,3267 T2 = 7,5% : 22,5% : 70% 19,89 b B 3 1,0058 1,3837 T3 = 15% : 15%: 70% 19,28 b B 4 1,0345 1,4206 T4 = 22,5% : 7,5% : 70% 14,09 c C 5 1,0542 1,4474 T5 = 30% : 0% : 70% 17,06 c D

Jarak (p) Rp

Perlakuan Rataan Notasi

0,05 0,01 0,05 0,01

- - - H1 = XG 20,19 a A

2 0,9594 1,3267 H2 = CMC 16,69 c C

3 1,0058 1,3837 H3 = GA 18,59 b B

Lampiran 7. Uji DMRT interaksi perbandingan pati pisang HMT, pati kentang HMT dan tepung talas dengan jenis hidrokoloid terhadap elongasi spaghetti

Jarak (p) Rp

Perlakuan Rataan Notasi

0,05 0,01 0,05 0,01

- - - T1H1 20,45 cd BC

2 0,9594 1,3267 T1H2 20,57 bc BC

3 1,0058 1,3837 T1H3 25,38 a A

4 1,0345 1,4206 T2H1 20,04 cd BC

5 1,0542 1,4474 T2H2 18,13 e D

6 1,0682 1,4674 T2H3 21,52 b B

7 1,0787 1,4833 T3H1 25,78 a A

8 1,0864 1,4961 T3H2 15,61 f E

9 1,0924 1,5066 T3H3 16,43 f E

10 1,0969 1,5152 T4H1 15,28 g E

11 1,1004 1,5225 T4H2 13,34 h F

12 1,1029 1,5288 T4H3 13,64 h F

13 1,1048 1,5343 T5H1 19,41 d CD

14 1,1064 1,5387 T5H2 15,81 f E

15 1,1071 1,5425 T5H3 15,95 f E

Lampiran 8. Data analisa ragam kadar air spaghetti

SK db JK KT F hit F 0,05 F 0,01

Perlakuan 14 15,0013 1,0715 0,7219 tn 2,04 2,74

T 4 5,6955 1,4238 0,9593 tn 2,69 4,02

H 2 0,5216 0,2608 0,1757 tn 3,32 5,39

T x H 8 8,7840 1,0980 0,7397 tn 2,27 3,17

Galat 30 44,5280 1,4842 Total 58 59,5293

Keterangan:

FK = 2737,07 KK = 6,50%

tn = tidak nyata

Lampiran 9. Data analisa ragam kadar abu spaghetti

SK db JK KT F hit F 0,05 F 0,01

Perlakuan 14 2,8478 0,2034 0,0774 tn 2,04 2,74

T 4 1,7665 0,4416 0,1680 tn 2,69 4,02

H 2 0,0139 0,0069 0,0026 tn 3,32 5,39

T x H 8 1,0672 0,1334 0,0507 tn 2,27 3,17

Galat 30 78,8211 2,6273 Total 58 81,6690

Keterangan:

FK = 4212,74 KK = 7,76%

tn = tidak nyata

Lampiran 10. Data analisa ragam kadar lemak spaghetti

SK db JK KT F hit F 0,05 F 0,01

Perlakuan 14 26,6261 1,9018 1,2412 tn 2,04 2,74

T 4 5,7813 1,4453 0,9432 tn 2,69 4,02

H 2 1,8661 0,9330 0,6089 tn 3,32 5,39

T x H 8 18,9786 2,3723 1,5482 tn 2,27 3,17

Galat 30 45,9675 1,5322 Total 58 72,5937

Keterangan:

FK = 3743,21 KK = 6,11%

tn = tidak nyata

Lampiran 11. Data analisa ragam kadar protein spaghetti dan uji DMRT pengaruh perbandingan pati pisang HMT, pati kentang HMT dan tepung talas terhadap kadar protein spaghetti

SK db JK KT F hit F 0,05 F 0,01

Perlakuan 14 0,0438 0,0031 2,7158 * 2,04 2,74

T 4 0,0230 0,0057 5,0084 ** 2,69 4,02

H 2 0,0048 0,0024 2,1026 tn 3,32 5,39

T x H 8 0,0158 0,0019 1,7228 tn 2,27 3,17

Galat 30 0,0345 0,0011 Total 58 0,0783

Keterangan:

FK = 2,06 KK = 1,09%

** = sangat nyata

* = nyata tn = tidak nyata

Jarak (p) DMRT

Perlakuan Rataan Notasi

0,05 0,01 0,05 0,01

- - - T1 = 0% : 30% : 70% 0,19 bc AB

2 0,0326 0,0440 T2 = 7,5% : 22,5% : 70% 0,18 c B 3 0,0343 0,0458 T3 = 15% : 15%: 70% 0,22 ab AB 4 0,0354 0,0471 T4 = 22,5% : 7,5% : 70% 0,24 a A 5 0,0361 0,0480 T5 = 30% : 0% : 70% 0,23 ab A

Lampiran 12. Data analisa ragam kadar karbohidrat spaghetti

SK db JK KT F hit F 0,05 F 0,01

Perlakuan 14 77,2432 5,5173 0,8847 tn 2,04 2,74

T 4 21,3136 5,3284 0,8544 tn 2,69 4,02

H 2 3,5484 1,7742 0,2845 tn 3,32 5,39

T x H 8 52,3811 6,5476 1,0499 tn 2,27 3,17

Galat 30 187,0858 6,2361 Total 58 264,3291

Keterangan:

FK = 241066,82 KK = 4,35%

tn = tidak nyata

Lampiran 13. Data analisa ragam kadar serat kasar spaghetti dan uji DMRT pengaruh perbandingan pati pisang HMT, pati kentang HMT dan tepung talas

SK db JK KT F hit F 0,05 F 0,01

Perlakuan 14 9,0675 0,6476 3,3608 ** 2,04 2,74

T 4 2,8267 0,7066 3,6669 * 2,69 4,02

H 2 1,1702 0,5851 3,0361 tn 3,32 5,39

T x H 8 5,0705 0,6338 3,2889 ** 2,27 3,17

Galat 30 5,7814 0,1927 Total 58 14,8490

Keterangan:

FK = 215,58 KK = 4,42%

** = sangat nyata

* = nyata tn = tidak nyata

Jarak (p) DMRT

Perlakuan Rataan Notasi

0,05 0,05

- - T1 = 0% : 30% : 70% 2,62 a

2 0,4226 T2 = 7,5% : 22,5% : 70% 1,97 b

3 0,4441 T3 = 15% : 15%: 70% 2,31 ab

4 0,4581 T4 = 22,5% : 7,5% : 70% 2,02 b

5 0,4681 T5 = 30% : 0% : 70% 1,99 b

Lampiran 14. Uji DMRT interaksi perbandingan pati pisang HMT, pati kentang HMT dan tepung talas dengan jenis hidrokoloid terhadap kadar serat kasar spaghetti

Uji DMRT interaksi perbandingan pati pisang HMT, pati kentang HMT dan tepung talas dengan jenis hidrokoloid terhadap kadar serat kasar spaghetti

Jarak (p) DMRT

Perlakuan Rataan Notasi

0,05 0,01 0,05 0,01

- - - T1H1 3,63 a A

2 0,4226 0,5690 T1H2 2,39 bc BC

3 0,4441 0,5935 T1H3 1,84 de CD

4 0,4581 0,6099 T2H1 2,21 bcd BCD

5 0,4681 0,6219 T2H2 2,10 cd BCD

6 0,4755 0,6312 T2H3 1,60 e D

7 0,4814 0,6388 T3H1 2,12 bcd BCD

8 0,4861 0,6451 T3H2 2,20 bcd BCD

9 0,4900 0,6504 T3H3 2,61 b B

10 0,4932 0,6551 T4H1 2,14 bcd BCD

11 0,4900 0,6504 T4H2 1,98 cde CD

12 0,4982 0,6625 T4H3 1,95 cde CD

13 0,5001 0,6658 T5H1 1,93 cde CD

14 0,4932 0,6551 T5H2 1,93 cde CD

15 0,5032 0,6710 T5H3 2,13 bcd BCD

Lampiran 15. Data analisa ragam nilai organoleptik warna spaghetti kering

SK db JK KT F hit F 0,05 F 0,01

Perlakuan 14 0,6249 0,0446 1,7422 tn 2,04 2,74

T 4 0,2668 0,0667 2,6037 tn 2,69 4,02

H 2 0,0331 0,0165 0,6469 tn 3,32 5,39

T x H 8 0,3249 0,0406 1,5853 tn 2,27 3,17

Galat 30 0,7686 0,0256 Total 58 1,3935

Keterangan:

FK = 633,78 KK = 1,23%

tn = tidak nyata

Lampiran 16. Data analisa ragam nilai organoleptik tekstur spaghetti kering

SK db JK KT F hit F 0,05 F 0,01

Perlakuan 14 0,4364 0,0311 0,4257 tn 2,04 2,74

T 4 0,3358 0,0839 1,14681 tn 2,69 4,02

H 2 0,0314 0,0157 0,2147 tn 3,32 5,39

T x H 8 0,0691 0,0086 0,1179 tn 2,27 3,17

Galat 30 2,1966 0,0732 Total 58 2,6331

Keterangan:

FK = 571,73 KK = 2,13%

tn = tidak nyata

Lampiran 17. Data analisa ragam nilai organoleptik warna spaghetti matang

SK db JK KT F hit F 0,05 F 0,01

Perlakuan 14 1,4863 0,1061 1,0505 tn 2,04 2,74

T 4 0,7107 0,1776 1,7582 tn 2,69 4,02

H 2 0,111 0,0555 0,5492 tn 3,32 5,39

T x H 8 0,6645 0,0830 0,8219 tn 2,27 3,17

Galat 30 3,0316 0,1010

Total 58 4,518

Keterangan:

FK = 528,39 KK = 2,55%

tn = tidak nyata

Lampiran 18. Data analisa ragam nilai organoleptik tekstur spaghetti matang

SK db JK KT F hit F 0,05 F 0,01

Perlakuan 14 0,8747 0,0624 0,4037 tn 2,04 2,74

T 4 0,4614 0,1153 0,7453 tn 2,69 4,02

H 2 0,0241 0,0120 0,0778 tn 3,32 5,39

T x H 8 0,3892 0,0486 0,3143 tn 2,27 3,17

Galat 30 4,6433 0,1547 Total 58 5,5181

Keterangan:

FK = 467,86 KK = 3,26%

tn = tidak nyata

Lampiran 19. Data analisa ragam nilai organoleptik rasa spaghetti

SK db JK KT F hit F 0,05 F 0,01

Perlakuan 14 0,6541 0,0467 0,5408 tn 2,04 2,74

T 4 0,2363 0,0590 0,6839 tn 2,69 4,02

H 2 0,0381 0,0190 0,2205 tn 3,32 5,39

T x H 8 0,3796 0,0474 0,5493 tn 2,27 3,17

Galat 30 2,5916 0,0863 Total 58 3,2457

Keterangan:

FK = 541,14 KK = 2,35%

tn = tidak nyata

Lampiran 20. Data analisa ragam nilai organoleptik aroma spaghetti

SK db JK KT F hit F 0,05 F 0,01

Perlakuan 14 0,3831 0,0273 0,5174 tn 2,04 2,74

T 4 0,0675 0,0168 0,3193 tn 2,69 4,02

H 2 0,1084 0,0542 1,0252 tn 3,32 5,39

T x H 8 0,2071 0,0258 0,4894 tn 2,27 3,17

Galat 30 1,5866 0,0528 Total 58 1,9697

Keterangan:

FK = 580,68 KK = 1,80%

tn = tidak nyata

Lampiran 21. Data analisa ragam nilai organoleptik penerimaan umum spaghetti

SK db JK KT F hit F 0,05 F 0,01

Perlakuan 14 0,5574 0,0398 0,4724 tn 2,04 2,74

T 4 0,2618 0,0654 0,7768 tn 2,69 4,02

H 2 0,0001 0,00005 0,0006 tn 3,32 5,39

T x H 8 0,2954 0,0369 0,4382 tn 2,27 3,17

Galat 30 2,5283 0,0842 Total 58 3,0857

Keterangan:

FK = 514,77 KK = 2,35%

tn = tidak nyata

Jenis Hidrokoloid Perbandingan pati pisang HMT:

pati kentang HMT: tepung talas

H1 = XG H2 = CMC H3 = GA T1 = 0% : 30% : 70%

T2 = 7,5% : 22,5% : 70%

T3 = 15% : 15% : 70%

T4 = 22,5% : 7,5% : 70%

T5 = 30% : 0% : 70%

Jenis Hidrokoloid Perbandingan pati pisang

HMT: pati kentang HMT: tepung talas

H1 = XG H2 = CMC H3 = GA

T1 = 0% : 30% : 70%

T2 = 7,5% : 22,5% : 70%

T3 = 15% : 15% : 70%

T4 = 22,5% : 7,5% : 70%

T5 = 30% : 0% : 70%

Dokumen terkait