• Tidak ada hasil yang ditemukan

[Badan Litbang Pertanian] Badan Penelitian dan Pengembangan Pertanian. 2008. Pedoman Umum Pengelolaan Tanaman Terpadu Padi Sawah Irigasi. [Badan Litbang Pertanian] Badan Penelitian dan Pengembangan Pertanian. 2010.

Pedoman Umum PTT Padi Sawah.

[BB Padi] Balai Besar Penelitian Tanaman Padi. 2009. Pengairan Berselang. Badan Penelitian dan Pengembangan Pertanian. Departemen Pertanian. Barker R, Dawe D, Tuong TP, Bhuiyan SI, Guerra LC. 1998. The outlook for

water resources in the year 2020: Challenges for research on water management in rice production. In ‘‘Assessment and Orientation Towards

the 21st Century’’, pp. 96–109. Proceedings of 19th Session of the International Rice Commission, Cairo, Egypt, 7–9 September 1998. FAO. Borrel A, Alan G, Shu F. 1997. Improving efficiency of water use for irrigated

rice in a semi-arid tropical environment. Field Crops Res. 52:231-248.

Bouman BAM. 2006. A system’s approach to the analysis of crop water productivity. Agric. Syst. 87:249-273.

Bouman BAM, Tuong TP. 2001. Field water management to save water and increase its productivity in irrigated lowland rice. Agric. Water Manage. 49:11-30.

Bouman BAM, Humphreys E, Tuong TP, Barker R. 2007. Rice and water. Advances in Agronomy. 92:187 -237.

Boyer JS. 1970. Photosynthesis at low water potentials. Phil. Trans. R. Soc. Lond B. 273:51-12.

Brown KW, Turner FT, Thomas JC, Deuel LE, Keener ME. 1978. Water balance of flooded rice paddies. Agric. Water Manage. 1:277-291.

Cho YY, Oh S, Oh MM, Son JE. 2006. Estimation of individual leaf area, fresh weight, and dry weight of hydroponically grown cucumbers (Cucumis sativus L.) using leaf length, width, and SPAD value. Scientia Horticulturae. 111:330-334.

Dawe D. 2005. Increasing water productivity in rice-based sistems in Asia-past trends, current problems, and future prospect. Plat Prod. Sci. 8:221-230. Darmadi D. 2011. Keragaan Agronomi Padi Tipe Baru pada Sistem Budidaya

Konvensional, SRI (System of Rice Intensification), dan Pengelolaan Tanaman Terpadu [Tesis]. Bogor : Institut Pertanian Bogor.

De Datta SK. 1975. Upland rice around the world. In: Major research in upland rice. IRRI. Los Banos, Laguna, Philippines.

De Datta SK. 1981. Principle and Practice of Rice Production. New York. John Willey and Son.

Djaenudin D, Marwan H, Subagyo H, Mulyani A, Suharta N. 2003. Kriteria Kesesuaian Lahan untuk Komoditas Pertanian. Balai Penelitian Tanah. Badan Litbang Pertanian.

Djunainah, Suwanto TW, Husni K. 1993. Deskripsi Varietas Unggul Padi. Pusat Penelitian dan Pengembangan Tanaman Pangan. Badan Penelitian dan Pengembangan Pertanian. Departemen Pertanian.

Doorenbos J, Pruitt WO. 1977. Guideliness for predicting crop water requirement. FAO irrigation and drainage paper No 224.

[FAO] Food Agriculture Organization. 2004. Rice and water : a long and diversified story. International Year of Rice. Available at : www.rice2004.org. [15/4/2010]

Farooq M, Kobayashi N, Wahid A, Ito O, Basra SMA. 2009. Strategies for producing more rice with less water. Advanances in Agronomy. 101:351- 388.

Farooq M, Kobayashi N, Ito O, Wahid A, Serraj R. 2010. Broader leaves result in better performance of indica rice under drought stress. J. Plant Physiol. 167:1066 – 1075.

Fen FL, Le FQ, Jing SD, Yuan YS, Li SC, Ke W. 2010. Investigation of SPAD meter-based indices for estimating rice nitrogen status. Computers and Electronics in Agriculture. 71S:S60-S65.

Fitter AH, Hay RKM. 1991. Fisiologi Lingkungan Tanaman (Penerjemah:Sri Andani dan ED Purbayanti dari Environmental Physiology of Plant). Gajah Mada Uniersity Press. Yogyakarta.

Fukai S, Cooper M. 1995. Development of drought resistant cultivars using physi- morfological traits in rice. Field Crops Res. 40:67-86.

Gani A. 2001. Improving water-use efficiency for sustainable rice production systems. In H. Hengsdijk and Bidraban (Eds.). Water-saving Rice Production Systems. Proceeding of An International Workshop on Water- Saving Rice Production System at Nanjing University, China, April, 2001. 47-59.

Gardner FP, Pearce BR, Mitchell RL. 1985. Physiology of Crop Plants. Iowa State University Press : Ames.

Gerik TJ, Faver KL, Thaxton PM, Elzik KM. 1996. Late season water stress in cotton: L. Plant growth, water use and yield. Crop Sci. 36:914-921.

Guerra LC, Buiyan SI, Tuong TP, Barker R. 1998. Producing More Rice With Less Water From Irrigated System. System-Wide Initiative on Water Management. International Water Management Institute. Colombo.

Gupta US. 1979. Physiological Aspects of Dryland Farming. Oxford ang I.B.H. Publishing Co. New Delhi, Bombay – Calcuta.

Harjadi SS, Yahya S. 1988. Fisiologi Stres Lingkungan. P.A.U. Bioteknologi Instititut Pertanian Bogor. Bogor.

Hardjowigeno S. 2007. Ilmu Tanah. Akademika Pressindo. Jakarta.

Haryanti S. 2010. Jumlah dan distribusi stomata pada daun beberapa spesies tanaman dikotil dan monokotil. Bul. Anatomi dan Fisiologi. 18:21-28. Kato Y, Henry A, Fujita D, Katsura K, Kobayashi N, Serraj R. 2011.

Physiological characterization of introgression lines derived from an indica rice cultivar, IR-64, adapted to drought and water-saving irrigation. Field Crop Res. 123:13-138.

Kato Y, Katsura K. 2010. Panicle architecture and grain number in irrigated rice grown under different water management regimes. Field Crops Res. 117:237–244.

Katsura K, Nakaide Y. 2011. Factors that determine grain weight in rice under high-yielding aerobic culture: The importance of husk size. Field Crop Res. 123:266-272.

Kramer PJ. 1969. Plant and Soil Water Relationships. A modern Synthesis. New Delhi: McGraw-Hill.

Kumagai E, Araki T, Kubota F. 2009. Correlation of chlorophyll meter readings with gas exchange and chlorophyll fluorescence in flag leaves of rice (Oryza sativa L.) plants. Plant Prod. Sci. 12:50-53.

Lafitte HR, Bennett J. 2002. Requirements for aerobic rice: physiological and molecular considerations. In: Bouman BAM, Hengsdijk H, Hardy B, Bindraban PS, Tuong TP, Ladha JK (editors). Water-wise rice production. Los Baños (Philippines): International Rice Research Institute. p 259-274. Levitt J. 1980. Respon of Plants to Environmental Stress Water, Radiation, Salt

and Other Stresses. Vol II. Academic Press. New York- London-Toronto- Sydney-San Francisco.

Li J et al. 2009. Responses of rice leaf thickness, SPAD readings and chlorophyll a/b ratios to different nitrogen supply rates in paddy field. Field Crop Res. 114:426-432.

Maclean JL, Dawe D, Hardy B, Hettel GP. 2002. “Rice Almanac”. P.253. International Rice Research Institute, Los Banos, Philippines.

Makarim AK, Suhartatik E. 2009. Morfologi dan Fisiologi Tanaman Padi. Balai Besar Penelitian Tanaman Padi. Hal 295-330.

Manurung H. 2002. Respon Fisiologis Beberapa Varietas Padi (Oryza sativa L.) pada Lahan Tergenang (Anaerob) dan Lahan Tidak Tergenang (Aerob) [Tesis]. Sekolah Pascasarjana, Institut Pertanian Bogor. Bogor.

Monteith JL. 1975. Vegetation and the Atmosphere. Academic Press. London. Morgan JM. 1984. Osmoregulation and Water Stress in Higher Plants. Ann. Rev.

Plant Physiol. 35:299-319.

Naiola BP. 1996. Regulasi osmosis pada tumbuhan tinggi. Hayati:Jurnal Biosains. 3:1-6.

Nguyen HT, Babu RC, Blum A. 1997. Breeding for drought resistance in rice physiology and molecular genetic considerative. Crop Sci. 37:1426-1434. Ritung S, Suharta N. 2007. Sebaran dan potensi pengembangan lahan sawah

bukaan baru. Dalam Lahan Sawah Bukaan Baru. Balai Penelitian Tanah. Badan Litbang Pertanian.

Santosa E. 2002. Produktivitas genotipa padi gogo adaptif naungan pada kondisi digenangi dan kering. Bul. Agron. 30:58-68.

Sasaki H, Aoki N, Sakai H, Hara T, Uehara N, Ishimaru K, Kobayashi K. 2005. Effect of CO2 enrichment on the translocation and partitioning of

carbon at the early grain-filling stage in rice (Oryza sativa L.). Plant Prod. Sci. 8:8-15.

Sasmita P, Purwoko BS, Sujiprihati S, Hanarida I, Dewi IS, Chozin MA. 2006. Evaluasi pertumbuhan dan produksi padi gogo haploid ganda toleran naungan dalam sistem tumpang sari. Bul. Agron. 34:79-86.

Setiobudi D. 2008. Teknik pengelolaan air pada padi hibrida. Dalam Apresiasi Hasil Penelitian Padi. Balai Besar Penelitian Padi. Hal 209-217.

Setiobudi D, Fagi AM. 2009. Pengelolaan Air Padi Sawah Irigasi: Antisipasi Kelangkaan Air. Balai Litbang, Kementerian Pertanian RI.

Siregar H. 1987. Budidaya Tanaman Padi di Indonesia. Jakarta. Sastra Hudaya Sukirman. 2005. Teknik pengujian sifat agronomis dan nilai heterosis beberapa

kombinasi hibrida padi sawah. Buletin Teknik Pertanian. 10:29-32.

Supijatno, MA Chozin, Sopandie D, Lubis I, Junaedi A, Trikoesoemaningtyas. 2012. Evaluasi konsumsi air genotipe padi untuk potensi efisiensi penggunaan air. J. Agron. Indo. (in press). 41.

Suprihatno B, Daradjat AA, Satoto, Baehaki SE, Widiarta IN, Setyono A, Indrasari SD, Lesmana OS, Sembiring H. 2009. Deskripsi Varietas Padi. Balai Besar Penelitian Tanaman Padi. Badan Litbang Pertanian. Departemen Pertanian.

Suprihatno B, Daradjat AA. 2009. Kemajuan dan Ketersediaan Varietas Unggul Padi. Balai Besar Penelitian Tanaman Padi. Badan Litbang Pertanian. Depatemen Pertanian.

Suriadikarta DA, Hartatik W. 2004. Teknologi pengelolaan hara lahan sawah bukaan baru. Dalam Lahan Sawah dan Teknik Pengelolaanya. Balai Penelitian Tanah. Badan Litbang Pertanian. Departemen Pertanian. Hal 115-136.

Toha HM, Daradjat AA. 2008. Keragaan varietas unggul dan galur harapan padi pada budidaya padi gogo dan padi sawah. Dalam Seminar Nasional Padi (Prosiding). Hal 645-665.

Tisdale SL, Nelson WL. 1975. Soil Fertility and Fertilizers. Mac Milland Publishing Co. Inc. New York.

Tuong TP, Bouman BAM, Mortimer M. 2005. More rice, less water: integrated approaches for increasing water productivity in irrigated rice-based systems in Asia. Plant Prod. Sci. 8:231-241.

Turner NC et al. 1986. Responses of seven diverse rice cultivars to water deficits. I. Stress development, canopy temperature, leaf rolling and growth. Field Crop Res. 13: 257–271.

William C, Joseph KT. 1973. Climate Soil and Crop Production In The Humid Tropic. Oxford University Press, Kualalumpur.

Yoshida S. 1981. Fundamentals of Rice Crop Science. International Rice Research Institute. Los Banos, Philippines.

Yusnaeni. 2002. Morfofisiologi Beberapa Spesies Hoya pada Kondisi Cekaman Naungan dan Kekeringan Tinjauan terhadap Fisiologi CAM [Tesis]. Bogor: Sekolah Pascasarjana, Institut Pertanian Bogor.

Lampiran 1. Deskripsi varietas padi IR-64

Nomor seleksi : IR18348-36-3-3 Asal persilangan : IR5657/IR2061

Golongan : Cere

Umur tanaman : 110 – 120 hari Bentuk tanaman : Tegak

Tinggi tanaman : 115 – 126 cm Anakan produktif : 20 – 35 batang

Warna kaki : Hijau

Warna batang : Hijau

Warna telinga daun : Tidak berwarna Warna lidah daun : Tidak berwarna

Warna daun : Hijau

Muka daun : Kasar

Posisi daun : Tegak

Daun bendera : Tegak

Bentuk gabah : Ramping, panjang Warna gabah : Kuning bersih

Kerontokan : Tahan

Kerebahan : Tahan

Tekstur nasi : Pulen Kadar amilosa : 23% Bobot 1000 butir : 24,1 g Rata-rata hasil : 5.0 t/ha Potensi hasil : 6.0 t/ha Ketahanan terhadap

Hama : Tahan wereng coklat biotipe 1, 2 dan agak tahan wereng coklat biotipe 3 Penyakit : Agak tahan hawar daun bakteri strain

IV Tahan virus kerdil rumput Anjuran tanam : Baik ditanam di lahan sawah irigasi

dataran rendah sampai sedang Pemulia : Introduksi dari IRRI

Dilepas tahun : 1986

Lampiran 2. Deskripsi varietas padi Jatiluhur

Nomor seleksi : B6400F-TB-1

Asal persilangan : Persilangan Tox1011/Ranau

Golongan : Cere

Umur tanaman : 110 – 115 hari Bentuk tanaman : Tegak

Tinggi tanaman : 95 – 100 cm Anakan produktif : Sedang

Warna kaki : Hijau

Warna batang : Hijau muda Warna telinga daun : Tidak berwarna Warna lidah daun : Tidak berwarna

Warna daun : Hijau

Muka daun : Kasar

Posisi daun : Tegak-miring Daun bendera : Miring

Bentuk gabah : Ramping Bulat besar Warna gabah : Kuning kotor

Kerontokan : Agak tahan Tekstur nasi : Pera

Kadar amilosa : 27.6% Bobot 1000 butir : 27 g Rata-rata hasil : 2.5 t/ha Potensi hasil : 3.5 t/ha Ketahanan terhadap

Hama : Tahan blas

Anjuran tanam : Baik ditanam sebagai padi lahan kering (gogo) sampai ketinggian lokasi 500m

Keterangan : Toleran naungan

Pemulia/Peneliti/Teknisi : Z. Harahap, Erwina Lubis, Murdani Diredja, Suwarno, dan Hadis Siregar Dilepas tahun : 1994

Lampiran 3. Lay out penelitian

T3V1U3 T3V2U2 T3V1U1

T3U2V3 T3V1U2 T3V2U1

T0V2U3 T0V1U2 T0V2U1

T0V1U3 T0V2U2 T0V1U1

T2V1U3 T2V2U2 T2V1U1

T2V2U3 T2V1U2 T2V2U1

T1V1U3 T1V1U2 T1V2U1

T1V2U3 T1V2U2 T1V1U1

U

Keterangan: T0 = Pengairan Konvensional T1 = Pengairan saluran/jenuh air T2 = Pengairan berselang (Intermittent) T3 = Metode gogo V1 = Varietas IR-64 V2 = Varietas Jatiluhur U = Ulangan

Lampiran 4. Hasil analisis sifat fisik dan kimia tanah yang digunakan untuk penelitian

No Parameter Hasil Analisis Status dalam tanah*) 1 Tekstur tanah  Pasir (%)  Debu (%)  Liat (%) 20 24 56 Berliat (halus) 2 pH  H2O  KCL 4.7 4.0 Masam 3 Bahan organik  C-organik (%)  N-total (%)  C/N (%) 1.6 0.15 11 Rendah Rendah Tinggi 4 P2O5  HCL 25% (mg/100g)  Bray 1 (ppm) 154 37.6 Sangat Tinggi Sangat Tinggi 5 K2O  HCL 25%  Morgan (ppm) 17 117 Rendah 6 Kation-kation  Ca (me/100g)  Mg (me/100g)  K (me/100g)  Na (me/100g) 7.52 2.11 0.23 0.12 Sedang Tinggi Rendah Rendah

7 Kapasitas Tukar Kation (me/100g)

15.54 Rendah

8 Kejenuhan Basa (%) 64 Tinggi

*)

Lampiran 5. Keragaan suhu dan kelembaban di dalam rumah plastik selama penelitian

Hari ke- (HST)

Suhu (0C) Kelembaban Relatif (%)

Pagi (07.00- 09.00) Siang (11.00- 13.00) Sore (15.00- 17.00) Pagi (07.00- 09.00) Siang (11.00- 13.00) Sore (15.00- 17.00) 1-10 30 39 31 57 49 60 11-20 29 38 30 63 46 55 21-30 31 39 32 55 46 60 31-40 31 38 32 54 48 61 41-50 30 38 30 61 48 56 51-60 30 38 31 60 48 58 61-72 31 41 33 51 44 59

Lampiran 6. Data iklim bulanan

Lokasi : Stasiun Klimatologi Darmaga Bogor

Lintang : 06031’ LS Bujur : 106044’ BT Bulan Suhu (0C) Curah Hujan (mm) Kelembaban udara (%) Rata-

rata Maksimal Minimal

Rata-

rata Maksimal Minimal Agustus 2011 25.6 32.7 21.2 142.0 75 82 64 September 2011 25.1 33.1 21.8 105.9 73 87 69 Oktober 2011 26.3 32.8 22.6 257.0 75 82 64

Lampiran 7. Rekapitulasi sidik ragam pertumbuhan vegetatif

Peubah F-Hitung

Sistem Budidaya Varietas Interaksi KK (%) Tinggi Tanaman 2 MST 77.6** 64.2** 1.3tn 4.5 3 MST 35.5** 83.6** 1.4tn 5.8 4 MST 9.9** 41.5** 1.2tn 8.0 5 MST 3.7* 22.3** 1.7tn 9.6 6 MST 5.5* 107.4** 0.3tn 5.9 7 MST 8.5** 200.6** 0.4tn 5.4 8 MST 13.6** 200.6** 1.1tn 5.6 9 MST 3.8* 52.0** 0.8tn 10.9 10 MST 7.5** 150.3** 0.8tn 6.5 Jumlah Anakan 2 MST 410.8** 5.8* 0.1tn 18.7 3 MST 42.8** 10.7** 0.6tn 12.4 4 MST 41.3** 31.3** 1.1tn 13.4 5 MST 32.5** 16.3** 4.0* 16.4 6 MST 27.0** 44.0** 0.5tn 14.7 7 MST 21.9** 35.0** 0.8tn 15.7 8 MST 19.2** 41.4** 0.8tn 16.1 9 MST 10.1** 44.9** 0.7tn 16.0 10 MST 10.5** 45.0** 2.1tn 13.1 Jumlah Daun 2 MST 106** 12.2** 2.8tn 12.2 3 MST 71.8** 12.4** 0.9tn 11.3 4 MST 48.9** 21.8** 1.1tn 13.8 5 MST 36.0** 10.5** 1.8tn 16.1 6 MST 22.5** 20.7** 0.8tn 18.5 7 MST 21.2** 51.9** 0.8tn 12.1 8 MST 18.8** 42.4** 1.0tn 15.0 9 MST 7.6** 27.5** 0.9tn 17.3 10 MST 7.5** 24.0** 1.5tn 15.9

Keterangan : ** = Berpengaruh sangat nyata pada pengujian sidik ragam pada selang kepercayaan 99%; * = berpengaruh nyata pada pengujian sidik ragam pada selang kepercayaan 95%; tn = tidak nyata; KK = koefisien keragaman

Lampiran 8. Rekapitulasi sidik ragam kerapatan stomata, kerapatan trikoma, warna daun, komponen hasil dan hasil

No Peubah

F-Hitung Sistem

Pengairan Varietas Interaksi

KK (%) 1 Kerapatan Stomata 18.8** 14.2** 0.4tn 10.8 2 Kerapatan Trikoma 2.8tn 19.1** 1.3tn 15.7 3 Warna Daun (SPAD) 1.0tn 19.1** 0.8tn 4.3 4 Umur Berbunga 18.1** 2.0tn 0.7tn 1.7 5 Jumlah Anakan Produktif 8.4** 52.3** 7.4** 11.4

6 Panjang Malai 1.2tn 1.0tn 1.2tn 19.4

7 Jumlah Gabah Isi Rumpun-1 24.6** 9.4** 0.9 24.9 8 Persentase Gabah Isi Rumpun-1 1.4* 0.0tn 5.07tn 10.8 9 Jumlah Gabah Malai-1 1.8tn 110.2** 0.3tn 13.2 10 Kepadatan Malai 2.5tn 138.6** 0.4tn 12.8

11 Bobot Kering Tajuk 9.1* 2.5tn 2.4tn 16.4

12 Bobot Kering Akar 1.7tn 0.5tn 1.8tn 33.0

13 Nisbah Tajuk/Akar 1.8tn 6.4* 0.5tn 30.7

14 Produksi Gabah Rumpun-1 2.2tn 89.7** 8.9** 9.8

15 Bobot 1000 Butir 24.6** 11.2** 1.2tn 2.3

16 Produksi Gabah Petak-1 23.8** 41.8** 3.0tn 12.1

17 Indeks Panen 2.9* 13.6** 0.6tn 14.0

Keterangan : ** = Berpengaruh sangat nyata pada pengujian sidik ragam pada selang kepercayaan 99%; * = berpengaruh nyata pada pengujian sidik ragam pada selang kepercayaan 95%; tn = tidak nyata; KK = koefisien keragaman.

ABSTRACT

AHMAD RIFQI FAUZI. Study of Water Consumption, Growth Responses and Production of Two Rice Varieties in Different Irrigation Systems. Supervised by : AHMAD JUNAEDI, ISKANDAR LUBIS, and HIROSHI EHARA.

Water is one of the important inputs to support the growth and development of plants. Currently, water availability tend to be more limited due to environmental quality degradation and global warming. This study was conducted to determine the amount of water consumption of two rice varieties (IR-64 and Jatiluhur) in four irrigation systems (conventional, water-saturated, intermittent, and upland). The study was performed using a split block design with three replications. Upland system planted with direct seeding, while for others system transplanted at 12 days old seedling. Rice plants were grown under plastic house with 3 m x 3 m area per experimental unit, and water volume recorded by flowmeter in inlet systems. Observed variable consist of growth component, stomatal charactheristics, productivity and production component. The results showed that the conventional system consumed the highest volume of water (426,768 l) in one seasson. The least consumption of water reached by upland system (3,883 l), while the water saturated system consumed 74.3% and intermittent consumed 37.9% of conventional system water consumption. In the other hand, the intermittent and conventional systems had higher productivity than water saturated and upland sytems. There were no significantly different between varieties in water consumption. However, the yields of Jatiluhur variety produced higher grain per plot than IR-64 variety. The highest efficiency of water consumption reached by upland system (0.531 g/l), the second was intermittent system (0.020 g/l), and the lowest were conventional and water saturated systems (0.008 g/l).

RINGKASAN

AHMAD RIFQI FAUZI. Studi Konsumsi Air, Respon Pertumbuhan dan Produksi Dua Varietas Padi pada Beberapa Sistem Pengairan. Dibimbing oleh AHMAD JUNAEDI, ISKANDAR LUBIS, dan HIROSHI EHARA.

Air merupakan salah satu unsur penting dalam mendukung pertumbuhan dan perkembangan tanaman. Peningkatan keterbatasan sumberdaya air saat ini diperkirakan sebagai salah satu penyebab krisis pangan. Kelangkaan air yang melanda saat ini dikarenakan meningkatnya kebutuhan air semua sektor kehidupan juga adanya anomali iklim yang menyebabkan sumber air primer (hujan) terbatas. Studi mengenai konsumsi air pada sistem budidaya dan pengelolaan air tanaman pangan dibutuhkan untuk mengetahui efisiensi penggunaan air dari tanaman tersebut. Hal ini untuk mendukung para pemulia tanaman untuk mendapatkan informasi mengenai karakter tanaman yang mampu beradaptasi pada kondisi ketersediaan air terbatas serta mempunyai efisiensi penggunaan air yang tinggi.

Penelitian ini ditujukan untuk mengetahui konsumsi air, respon pertumbuhan dan produksi dua varietas padi (IR-64 dan Jatiluhur) pada empat sistem pengairan (konvensional, jenuh air, pengairan intermittent, dan sistem gogo). Penelitian ini disusun dengan menggunakan rancangan petak terbagi dengan tiga ulangan. Penelitian ini dilaksanakan pada petakan yang berada di dalam rumah plastik Kebun Percobaan Sawah Baru IPB. Perhitungan konsumsi air dilakukan dengan memasang flowmeter pada pipa saluran yang menuju petakan percobaan. Jumlah air yang masuk tertera pada angka yang ada di flowmeter dan diukur setiap minggu. Penanaman untuk sistem gogo (upland system) dilakukan dengan tanam benih langsung sedangkan sistem pengairan lainnya dengan pindah tanam menggunakan bibit berumur 12 hari. Petak tanam berukuran 3 m x 3 m per unit percobaan. Parameter pengamatan pada penelitian ini terdiri dari komponen pertumbuhan, karakteristik stomata, produktivitas dan komponen hasil.

Hasil penelitian menunjukkan bahwa konsumsi air sistem pengairan konvensional paling tinggi (426 768 l) dalam satu musim. Konsumsi air terendah diperoleh dari sistem gogo (upland system) dengan 3 883 l, sedangkan sistem pengairan jenuh air mengkonsumsi 74.3% dan intermittent mengkonsumsi 37.9% dari konsumsi air sistem pengairan konvensional. Selain itu, sistem konvensional dan intermittent menghasilkan produktivitas lebih tinggi dibandingkan sistem jenuh air dan sistem gogo. Tidak ada perbedaan konsumsi air antara varietas Jatiluhur dan IR-64. Namun demikian, varietas Jatiluhur memberikan hasil per petak lebih besar dibandingkan IR-64. Efisiensi konsumsi air terbesar diperoleh dari sistem gogo (0.531 g/l), diikuti oleh sistem intermttent (0.020 g/l), dan yang terendah adalah sistem konvensional dan jenuh air (0.008 g/l).

PENDAHULUAN

Latar Belakang

Ketersediaan air untuk tanaman pertanian khususnya tanaman pangan akan semakin langka pada masa mendatang. Hal ini disebabkan meningkatnya kebutuhan air semua sektor kehidupan, sementara sumber-sumber air terutama air tanah semakin berkurang seiring meningkatnya alih fungsi lahan. Hal ini juga diperparah oleh adanya anomali iklim yang menyebabkan kekeringan sehingga sumber air primer (hujan) menjadi terbatas (Setiobudi 2008). Untuk tanaman padi sawah, kelangkaan air dapat berpengaruh negatif terhadap produksi padi. Sekitar 70% produksi padi nasional berasal dari padi sawah irigasi (Setiobudi & Fagi 2009).

Konsekuensi dari kelangkaan air diperkirakan dapat menurunkan produksi padi karena luas areal tanam berkurang dan kebutuhan tanaman tidak terpenuhi. Menurut Setiobudi dan Fagi (2009), kebutuhan air untuk satu musim tanam padi berkisar antara 590 – 760 mm (5.9 x 106 – 7.6 x 106 l/ha/musim). Sedangkan kebutuhan air harian untuk padi yang berumur genjah dan berumur panjang mencapai maksimum pada fase reproduktif, yaitu antara fase berbunga sampai 50% pengisian gabah mencapai 8.0 – 8.8 mm/hari, kemudian menurun pada fase pematangan menjadi 7.3 – 7.6 mm/hari. Semakin panjangnya periode kekeringan dan semakin tidak pastinya musim mengisyaratkan pentingnya upaya melakukan efisiensi penggunaan air, sebagai salah satu sumberdaya utama proses fisiologis kehidupan tanaman.

Laporan FAO (2004) menunjukkan bahwa rata-rata pemakaian air untuk satu kali musim tanam padi berkisar antara 900 - 2 250 mm (9 x 106 – 2.25 x 107 l/ha/musim), sementara menurut Bouman et al. (2007) rata-rata pemakaian air untuk padi sawah mencapai 1 300 – 1 500 mm dimana 25 - 50% dari jumlah tersebut hilang akibat perkolasi dan perembesan. Tingginya kebutuhan air untuk budidaya padi sawah tersebut dihadapkan pada persolaan keterbatasan sumberdaya air dan adanya anomali iklim yang menyebabkan terbatasnya sumber air primer. Kelangkaan air dan kekeringan saat ini diidentifikasi telah mencapai 50% luas lahan padi dunia dan diperkirakan hingga tahun 2025 akan melanda 15 - 25 juta ha lahan padi pada beberapa sentra produksi padi di wilayah Asia

(Bouman et al. 2007). Sistem budidaya padi pada lahan sawah membutuhkan ketersediaan air yang tidak sedikit. Kondisi penggenangan terus menerus selama siklus pertumbuhan padi membutuhkan pasokan air dalam jumlah cukup secara terus menerus dan membatasi tumbuhnya gulma non akuatik.

Besarnya kebutuhan air untuk satu kali produksi padi ditentukan oleh teknik pengelolaan air yang efektif dan efisien. Pengelolaan air untuk produksi tanaman harus memperhatikan sifat fisik dan kimia tanah, kondisi cuaca, jenis tanaman (varietas), ketersediaan air dan sistem pengairan. Pengelolaan air untuk mengantisipasi kelangkaan air dapat dilakukan melalui pengaturan sistem pengairan dan varietas karena berhubungan dengan kebutuhan air untuk produksi tanaman (Setiobudi & Fagi 2009).

Penelitian mengenai konsumsi air pada padi dan efisiensi penggunaannya penting dilakukan karena semakin terbatasnya ketersediaan air sebagai faktor penting bagi produksi padi. Informasi kebutuhan air tanaman padi diperlukan untuk para peneliti maupun petani dalam menyeleksi varietas padi yang dapat beradaptasi baik pada kondisi kekurangan air. Supijatno et al. (2012) telah melakukan evaluasi volume konsumsi air pada beberapa genotipe padi. Konsumsi air bervariasi dengan kisaran 15.93 - 24.13 l/tanaman. Perbedaan ini disebabkan karena adanya perbedaan morfologi maupun karakter fisiologi antar genotipe. Teknik penggenangan pada budidaya konvensional membutuhkan air dalam jumlah sangat besar. Brown et al. (1978) melaporkan bahwa hanya 48% (566.4 mm) dari kebutuhan irigasi sebesar 1 180 mm yang digunakan untuk proses evapotranspirasi. Kehilangan lain terjadi melalui run off dan infiltrasi.

Penugalan benih dan sistem budidaya aerobik pada sistem gogo merupakan alternatif untuk penghematan air. De Datta (1975) melaporkan bahwa sistem budidaya padi gogo sangat bergantung pada curah hujan. Produktivitas padi gogo dilaporkan juga dapat mencapai lebih dari 7 t/ha. Hal ini menunjukkan bahwa padi tidak memerlukan kondisi tergenang untuk mencapai produktivitas tinggi. Peningkatan efisiensi penggunaan air juga dapat dilakukan dengan metode

Dokumen terkait