DAFTAR LAMPIRAN
JENJANG PENDIDIKAN
2.4 Definisi Operasional
Adapun variabel-variabel yang digunakan antara lain: 1. Penyerapan tenaga kerja
Penyerapan tenaga kerja merupakan jumlah tenaga kerja yang dapat terserap dalam kegiatan ekonomi (produksi). Variabel ini didekati dengan jumlah penduduk yang bekerja.
Bekerja adalah kegiatan melakukan pekerjaan dengan maksud memperoleh penghasilan atau keuntungan paling sedikit selama satu jam dalam seminggu yang lalu. Bekerja selama satu jam tersebut harus dilakukan berturut-turut dan tidak terputus. Kegiatan bekerja ini mencakup orang yang sedang bekerja dan juga punya pekerjaan tetapi sementara tidak bekerja seperti: cuti, sakit, menunggu panen dan sejenisnya. 2. Pengeluaran Pemerintah
Pengeluaran konsumsi pemerintah merupakan jumlah seluruh pengeluaran pemerintah yang dikeluarkan untuk membiayai kegiatannya, yang terdiri dari pembelian barang dan jasa (belanja barang), pembayaran balas jasa pegawai (belanja pegawai), dan penyusutan barang modal, tidak termasuk atau dikurangi dengan hasil penjualan (penerimaan) dari produksi barang dan jasa (output pasar) yang dihasilkan sendiri oleh pemerintah (yang tidak dapat dipisahkan dari kegiatan pemerintah) tetapi dikonsumsi oleh masyarakat (bukan oleh pemerintah). Pengeluaran konsumsi pemerintah didasarkan pada realisasi pengeluaran baik yang berupa pengeluaran rutin maupun pembangunan.
3. PDRB
PDRB atas dasar harga konstan (PDRB riil) menggambarkan nilai tambah barang dan jasa yang dihitung menggunakan harga yang berlaku pada satu waktu tertentu sebagai tahun dasar.
4. Upah riil
Upah riil adalah upah yang diterima pekerja yang telah diperhitungkan dengan daya beli dari upah nominal yang diterima. Upah Riil dihitung dengan membagi nilai dari upah nominal dengan Indeks Harga Konsumen (IHK) dikali 100. Upah nominal adalah upah yang diterima pekerja secara nominal. Sedangkan Indeks Harga Konsumen (IHK) merupakan salah satu indikator ekonomi untuk megukur tingkat perubahan harga barang-barang secara umum.
2.5 Hipotesis Statistik
Sesuai dengan tujuan penelitian yang telah dikemukakan, maka hipotesis yang diajukan dalam penelitian ini adalah:
1. Terdapat pengaruh yang positif antara pengeluaran pemerintah terhadap penyerapan tenaga kerja di Provinsi Sumatera Barat.
2. Terdapat pengaruh yang positif antara PDRB terhadap penyerapan tenaga kerja di Provinsi Sumatera Barat.
3. Terdapat pengaruh yang negatif antara upah riil terhadap penyerapan tenaga kerja di Provinsi Sumatera Barat.
3.1 Jenis dan Sumber Data
Data yang digunakan dalam penelitian ini bersumber dari data sekunder mulai dari tahun 2005 sampai dengan tahun 2010. Data tersebut didapat dari beberapa sumber sebagai berikut:
1. Data Penyerapan Tenaga Kerja yang didekati dengan Penduduk usia 15 tahun ke atas yang bekerja diperoleh dari publikasi Sumatera Barat Dalam Angka Tahun 2005 s/d 2010 dan Keadaan Angkatan Kerja di Sumatera Barat Tahun 2008-2010 yang diterbitkan oleh Badan Pusat Statistik Provinsi Sumatera Barat.
2. Data Pengeluaran Pemerintah diperoleh dari publikasi Statistik Keuangan Daerah Kabupaten/Kota yang diterbitkan oleh BPS RI.
3. Data PDRB diperoleh dari publikasi Produk Domestik Regional Bruto Sumatera Barat menurut Kabupaten/Kota yang diterbitkan oleh Badan Pusat Statistik Provinsi Sumatera Barat.
4. Data Upah Riil diperoleh dari hasil pembagian antara rata-rata pendapatan/gaji/upah nominal dengan indeks harga konsumen dikalikan 100, dimana:
rata-rata pendapatan/gaji/upah nominal diperoleh dari publikasi Statistik Upah Buruh dan hasil Survei Angkatan Kerja Nasional,
data Indeks Harga Konsumen (IHK) diperoleh dari publikasi Indeks Harga Konsumen Kota Padang Tahun 2005-2010 yang diterbitkan oleh Badan Pusat Statistik Provinsi Sumatera Barat.
3.2 Metode Analisis
Pengolahan atas data sekunder yang telah dikumpulkan dari berbagai sumber dilakukan menggunakan beberapa paket program statistik, seperti: Microsoft Excel 2010, dan EViews 6.0. Kegiatan pengolahan data menggunakan Microsoft Excel 2010 menyangkut pembuatan tabel dan analisis. Sementara itu pada pengolahan regresi data panel, penulis menggunakan paket program EViews 6.0.
3.2.1 Analisis Deskriptif
Analisis deskriptif merupakan bentuk analisis sederhana yang bertujuan mendeskripsikan dan mempermudah penafsiran yang dilakukan dengan memberikan pemaparan dalam bentuk tabel, grafik, dan diagram. Analisis deskriptif ini digunakan untuk menggambarkan situasi ketenagakerjaan secara umum meliputi jumlah angkatan kerja, penyerapan tenaga kerja dan pengangguran. Selain itu, juga untuk menggambarkan deskripsi variabel-variabel yang mempengaruhi penyerapan tenaga kerja yaitu pengeluaran pemerintah, PDRB, dah upah riil.
3.2.2 Analisis Regresi Data Panel
Analisis regresi data panel digunakan untuk melihat pengaruh pengeluaran pemerintah, PDRB dan Upah Riil terhadap Penyerapan Tenaga Kerja di Provinsi Sumatera Barat melalui persamaan strukturalnya.
Data panel diperoleh dengan menggabungkan data cross section dan time series. Penggunaan model regresi data panel memungkinkan peneliti untuk dapat menangkap karakteristik antar individu dan antar waktu yang bisa saja berbeda- beda.
Regresi dengan menggunakan panel data / data panel / pooled data, memberikan beberapa keunggulan dibandingkan dengan pendekatan standar cross section dan time series (Gujarati, 2004:637), diantaranya sebagai berikut:
1. Data panel mampu menyediakan data yang lebih banyak, sehingga dapat memberikan informasi yang lebih lengkap. Sehingga diperoleh degree of freedom (df) yang lebih besar sehingga estimasi yang dihasilkan lebih baik. 2. Dengan menggabungkan informasi dari data time series dan cross section
dapat mengatasi masalah yang timbul karena ada masalah penghilangan variabel (omitted variable).
3. Data panel mampu mengurangi kolinearitas antarvariabel.
4. Data panel lebih baik dalam mendeteksi dan mengukur efek yang secara sederhana tidak mampu dilakukan oleh data time series murni dan cross section murni.
5. Dapat menguji dan membangun model perilaku yang lebih kompleks. Sebagai contoh, fenomena seperti skala ekonomi dan perubahan teknologi.
6. Data panel dapat meminimalkan bias yang dihasilkan oleh agregat individu, karena data yang diobservasi lebih banyak.
Model regresi linear pada data panel dapat dituliskan sebagai berikut:
(3.1)
Dimana:
i = 1,……, N;
N adalah jumlah individu/cross-sectional units (kabupaten/kota)
t = 1,…….,T;
T adalah jumlah periode waktu (6 yaitu dari tahun 2005-2010)
Pada ada sebanyak k slope (tidak termasuk intersep) yang menunjukkan jumlah variabel bebas yang digunakan dalam model. Sedangkan merupakan efek individu yang dapat bernilai konstan sepanjang periode t atau bahkan berbeda-beda untuk setiap individu ke-i. Apabila diasumsikan sama untuk setiap unit, maka model itu dapat disebut juga sebagai model regresi klasik (classical regression model), dimana metode Ordinary Least Square (OLS) akan menghasilkan penduga yang konsisten dan efisien untuk dan . Apabila diasumsikan berbeda-beda antar cross-section unit, dan slope konstan, maka terdapat dua model regresi data panel yang mungkin yaitu model fixed effects atau model random effects. Apabila perbedaan intersep antar cross-sectional units tersebut merupakan variabel random
atau stochastic maka model random effects-lah yang sesuai.
Sementara itu error dalam model regresi data panel dapat dituliskan sebagai berikut:
(3.2) dimana
= time specific effects (residual yang terjadi karena pengaruh perbedaan waktu)
= individual specific effects (residual yang terjadi karena perbedaan karakteristik setiap individu)
= efek hanya pada observasi it.
Untuk menyederhanakan analisis biasanya sering diasumsikan = 0 (tidak ada pengaruh spesifik waktu/no time specific effects/time invariant). Terdapat tiga jenis estimasi standar untuk regresi data panel yaitu common effects Model (pooled regression), fixed effects model (Least Square Dummy Variables estimation, LSDV estimation) dan random effects model.
3.2.2.1 Model Common Effects (Pooled Regression)
Model common effects merupakan pendekatan data panel yang paling sederhana, yakni dengan hanya mengkombinasikan data cross-section dalam bentuk pool.
untuk i = 1,2,…..,19 t = 1,2,…,6 (3.3) Dari persamaan (3.2), apabila = 0 dan = 0, maka model tersebut adalah model pooled regression (common effects), yang dapat diestimasi dengan metode Least Square, namun asumsi jarang sekali terpenuhi pada model regresi data panel. Model ini tidak memperhatikan dimensi individu maupun waktu, sehingga diasumsikan bahwa perilaku individu sama dalam
berbagai kurun waktu. Kelemahan model ini adalah ketidakseuaian model dengan keadaan sebenarnya. Kondisi tiap obyek dapat berbeda dan kondisi suatu obyek satu waktu dengan waktu yang lain dapat berbeda. Pada model ini asumsi regresi linear klasik dengan metode OLS berlaku sepenuhnya.
3.2.2.2 Model Fixed Effects
Model ini mengasumsikan bahwa perbedaan antar individu dapat diakomodasi dari perbedaan intersepnya. Namun intersep masing-masing cross- section bersifat fixed, tidak random. Untuk mengestimasi model fixed effects dengan intersep berbeda antar individu, maka digunakan teknik variabel dummy. Model estimasi ini sering disebut dengan teknik Least Square Dummy Variable (LSDV). Model persamaan panel fixed effects dengan asumsi tidak ada pengaruh periode waktu (no time specific effects) dapat dituliskan sebagai berikut:
untuk i = 1,2,…..,19 t = 1,2,…,6 (3.4) Model pada persamaan (3.3) juga dapat dituliskan dalam bentuk stack model berdasarkan individu cross-section yaitu:
[ ] [ ] [ ] [ ] [ ] [ ] (3.5)
Dimana:
= vektor berukuran T x 1
= matriks berukuran T x k , dengan k adalah jumlah variabel bebas
= vektor berukuran T x 1
= vektor berukuran T x 1
Metode fixed effects, digunakan apabila error term terdiri dari:
(3.6)
3.2.2.3 Model Random Effects
Estimasi data panel dengan fixed effects melalui teknik variabel dummy sering menunjukkan ketidakpastian model yang digunakan. Untuk mengatasi masalah ini kita bisa menggunakan metode random effects yang mengasumsikan bahwa individual effects ( ) bersifat random dan tidak berkorelasi dengan variabel bebasnya. Dengan asumsi tidak ada pengaruh waktu (no time specific effects) maka dalam model random effects terdapat dua komponen residual, yaitu residual yang tidak terukur oleh pengaruh individu dan waktu ( ) dan residual secara individu ( ).
Persamaan regresi untuk model random effects dengan asumsi no time effects dapat ditulis sebagai berikut:
untuk i = 1,2,…..,19 t = 1,2,…,6 (3.7) dimana
Ada beberapa asumsi yang harus dipenuhi dalam model random effects, yaitu:
E( = E( = 0 ; E( , = 0 ; E( , ) = E( , ) = 0 E( ) = 0 dimana t ≠ s dan i ≠ j
3.2.2.4 Pemilihan Model Estimasi Data Panel 1. Signifikansi Fixed Effects Model
Signifikansi model fixed effects dapat dilakukan dengan statistik uji F. Statistik uji F digunakan untuk mengetahui apakah teknik regresi data panel dengan fixed effects lebih baik dari model regresi data panel tanpa variabel dummy(common effects) dengan melihat residual sum of squares (RSS).
Hipotesis yang digunakan adalah: H0 :
nilai intersep sama untuk setiap individu crosssection H1 : sekurang-kurangnya ada 1 intercept yang berbeda
Adapun statistik uji F-nya dapat dituliskan sebagai berikut:
(3.8)
dimana:
N = jumlah individu
k = jumlah variabel bebas/ regressor
= residual sum of squares teknik tanpa variabel dummy
= residual sum of squares teknik fixed effects dengan variabel dummy.
Nilai statistik akan mengikuti distribusi statistik F dengan derajat bebas (df) sebanyak N-1 dan NT-N-k. Jika nilai statistik lebih besar daripada pada tingkat signifikansi tertentu, maka hipotesis null akan ditolak, yang berarti asumsi koefisien intersept dan slope adalah sama tidak
berlaku, sehingga teknik regresi data panel dengan fixed effects lebih baik dari model regresi data panel tanpa variable dummy (common effects).
2. Signifikansi Random Efects Model
Untuk mengetahui apakah model random effects lebih baik dari model common effects, dapat digunakan uji Lagrange Multiplier (LM) yang dikembangkan oleh Bruesch-Pagan. Metode ini didasarkan pada nilai residual dari metode common effects. Hipotesis null (H0) yang digunakan adalah bahwa intersep bukan merupakan variabel random atau stochastic. Dengan kata lain varians dari residual bernilai nol.
Adapun nilai Breusch-Pagan LM statistik dapat dihitung berdasarkan formula sebagai berikut:
[
∑ |∑ |∑ ∑
]
(3.9)[
∑∑ ∑
]
(3.10)Dimana N = jumlah individu; T = jumlah periode waktu dan adalah residual metode common effects (OLS). Uji LM ini didasarkan pada distribusi chi-square dengan derajat bebas (df) sebesar 1. Jika hasil LM statistik lebih besar dari nilai kritis statistik chi-square, maka hipotesis null akan ditolak, yang berarti estimasi yang tepat untuk regresi data panel adalah metode random effects daripada metode common effects.
3. Signifikansi Hausman
Untuk mengetahui model yang terbaik antara fixed effects dengan random effects digunakan signifikansi Hausman. Uji signifikansi Hausman menggunakan hipotesis null residual persamaan panel tidak berkorelasi dengan variabel bebasnya yang berarti model random effects lebih baik dibandingkan model fixed effects.
Adapun nilai statistik Hausman dapat dihitung berdasarkan formula sebagai berikut:
̂ ̂ ̂ (3.11)
dimana ̂ ⌊ ̂ ̂ ⌋ dan ̂ ⌊ ̂⌋ ⌊ ̂ ⌋
Statistik uji Hausman mengikuti distribusi statistik chi-square dengan derajat bebas sebanyak jumlah variabel independen (k). Jika nilai statistik Hausman lebih besar daripada nilai kritis statistik chi-square, maka hipotesis null akan ditolak, yang berarti estimasi yang tepat untuk regresi data panel adalah model fixed effects dibandingkan dengan model random effects.
3.2.2.5 Pengujian Asumsi 1. Asumsi Normalitas
Pengujian asumsi normalitas dilakukan untuk melihat apakah error term mengikuti distribusi normal. Jika asumsi tidak terpenuhi maka prosedur pengujian
menggunakan uji-t menjadi tidak sah. Pengujian dilakukan dengan uji Jarque Bera atau dengan melihat plot dari sisaan.
Hipotesis dalam pengujian normalitas adalah: H0 : error term mengikuti distribusi normal
H1 : error term tidak mengikuti distribusi normal.
Keputusan diambil dengan membandingkan nilai probabilitas Jarque Bera dengan taraf nyata α = 0,05. Jika nilai probabilitas Jarque Bera lebih dariα = 0,05 maka dapat disimpulkan bahwa error term terdistribusi dengan normal.
2. Asumsi Autokorelasi
Autokorelasi adalah korelasi yang terjadi antar observasi dalam satu peubah atau korelasi antar error masa yang lalu dengan error masa sekarang. Metode untuk mendeteksi adanya korelasi serial dilakukan dengan dengan membandingkan nilai Durbin Watson (DW) dari penghitungan dengan nilai DW tabel.
Hipotesis dalam pengujian autokorekasi adalah: H0 : tidak ada Otokorelasi positif atau negatif
H1 : terdapat masalah Otokorelasi positif atau negatif. Kriteria pengujian: d 0 dL dU 2 4 - dU 4 - dL 4 Tolak H0 Ada masalah Otokorelasi positif Tolak H0 Ada masalah Otokorelasi negatif Tidak Tolak H0
tidak ada masalah Otokorelasi Tidak ada
kesimpulan
Tidak ada kesimpulan
Tolak H0 bila
Nilai d hitung atau nilai Durbin Watson Model lebih besar daripada nilai Durbin Watson table batas bawah (dL) yang berarti terdapat masalah otokorelasi positif (dw < dL)
Atau, nilai d hitung atau nilai Durbin Watson Model terletak antara nilai (4–dL < dw < 4) yang berarti terdapat masalah otokorelasi negatif
Tidak tolak H0 bila
Nilai d hitung atau nilai Durbin Watson Model terletak antara nilai (dU < dw < 4-dU)
3. Asumsi Homoskedastisitas
Heteroskedastisitas berarti bahwa variasi residual tidak sama untuk semua pengamatan. Heteroskedastisitas bertentangan dengan salah satu asumsi dasar regresi homoskedastisitas yaitu variasi residual sama untuk semua pengamatan.
Untuk mendeteksi adanya heteroskedastisitas dalam model dilakukan menggunakan metode General Least Square (Cross section Weights) yaitu dengan membandingkan sum square Resid pada Weighted Statistics dengan sum square Resid unweighted Statistics. Jika sum square Resid pada Weighted Statistics lebih kecil dari sum square Resid unweighted Statistics, maka terjadi heteroskedastisitas. Untuk mengatasi masalah heteroskedastisitas, model diestimasi dengan menggunakan white-heteroscedasticity
3.2.2.6 Pengujian Parameter Model
Pengujian parameter model bertujuan untuk mengetahui kelayakan model dan apakah koefisien yang diestimasi telah sesuai dengan teori atau hipotesis. Pengujian ini meliputi koefisien determinasi (R2), uji koefisien regresi parsial (uji t) dan uji koefisien regresi secara menyeluruh (F-test/uji F).
1. Uji-F
Uji-F digunakan untuk melakukan uji hipotesis koefisien (slope) regresi secara menyeluruh/bersamaan. Uji-F memperlihatkan ada tidaknya pengaruh variabel independen terhadap variabel dependen secara bersama-sama. Hipotesis dalam uji-F adalah :
Ho : β1 = β2 =….. = 0 H1 : β1 ≠ β2 ≠ … ≠ 0
Kriteria pengujiannya adalah jika nilai nilai > atau probabilitas F-statistic < taraf nyata, maka keputusannya adalah tolak H0. Dengan menolak H0 berarti minimal ada satu peubah bebas yang berpengaruh nyata terhadap tak bebas.
2. Uji-t
Setelah melakukan uji koefisien regresi secara keseluruhan, maka langkah selanjutnya adalah menguji koefisien regresi secara parsial menggunakan uji-t. Hipotesis pada uji-t adalah :
H0 : βi = 0 , H1 : βi ≠ 0.
Keputusan dalam pengujian ini dilakukan dengan membandingkan nilai dengan atau dengan melihat nilai probabilitas dari . Jika nilai > atau jika nilai probabilitas t < α = 0,05 maka tolak H0, sehingga kesimpulannya adalah peubah bebas secara parsial signifikan memengaruhi peubah tak bebas.
3. Koefisien Determinasi (R2)
Koefisien determinasi (Goodness of Fit) merupakan suatu ukuran yang penting dalam regresi, karena dapat menginformasikan baik atau tidaknya model regresi yang terestimasi. Nilai R2 mencerminkan seberapa besar variasi dari tak bebas dapat diterangkan oleh peubah bebas X atau seberapa besar keragaman peubah tak bebas yang mampu dijelaskan oleh model. Jika R2 = 0, maka variasi dari Y tidak dapat diterangkan oleh X sama sekali dan jika R2 = 1 berarti variasi dari Y secara keseluruhan dapat diterangkan oleh X.
3.2.2.7 Model Penelitian
Secara matematis pengaruh pengeluaran pemerintah, PDRB, upah riil dapat digambarkan dalam fungsi sebagai berikut :
(3.12) Keterangan:
Emp : Employment/ penyerapan tenaga kerja (jiwa)
G : Goverment Expenditure/ Pengeluaran Pemerintah (juta Rp.) PDRB : Produk Domestik Regional Bruto (milyar Rp.)
i : urutan kabupaten/kota t : series tahun 2005-2010
α : intersep
β1 - β3 : parameter pengeluaran pemerintah, PDRB, dan upah riil : error term
4.1 Keadaan Geografi
Provinsi Sumatera Barat terletak di sebelah barat pulau Sumatera dan sekaligus berbatasan langsung dengan Samudera Indonesia, Provinsi Riau, Provinsi Jambi dan Provinsi Sumatera Utara. Secara geografis, Sumatera Barat terletak antara 0° 54’ LU dan 3° 30’ LS serta 98° 36’ dan 101° 53’ BT, tercatat memiliki luas daerah sekitar 42,297 ribu Km2. Luas tersebut setara dengan 2,20 persen dari luas Republik Indonesia.
Tabel 4.1 Luas Daerah dan Persentase Kabupaten/Kota di Sumatera Barat
Kabupaten / Kota Luas (km2) Persentase
(1) (2) (3) Kabupaten / Regency 01. Kep. Mentawai 6.011,35 14,21 02. Pesisir Selatan 5.794,95 13,70 03. S o l o k 3.738,00 8,84 04. Sijunjung 3.130,80 7,40 05.Tanah Datar 1.336,00 3,16 06. Padang Pariaman 1.328,79 3,14 07. A g a m 2.232,30 5,28 08. 50 K o t a 3.354,30 7,93 09. P a s a m a n 3.947,63 9,33 10. Solok Selatan 3.346,20 7,91 11. Dharmasraya 2.961,13 7,00 12. Pasaman Barat 3.887,77 9,19 Kota/Municipality 71. P a d a n g 694,96 1,64 72. S o l o k 57,64 0,14 73. Sawahlunto 273,45 0,65 74. Padang Panjang 23,00 0,05 75. Bukittinggi 25,24 0,06 76. Payakumbuh 80,43 0,19 77. Pariaman 73,36 0,17 SUMATERA BARAT 42.297,30 100,00
Sumatera Barat mempunyai 19 Kabupaten/Kota dengan Kabupaten Kepulauan Mentawai memiliki wilayah terluas, yaitu 6,01 ribu Km2 atau sekitar 14,21 persen dari luas Provinsi Sumatera Barat. Sedangkan Kota Padang Panjang, memiliki luas daerah terkecil, yakni 23,0 Km2 (0,05%).
4.2 Penduduk
Penduduk mempunyai peran besar dalam menjalankan roda kehidupan masyarakat jika dimbangi dengan sumber daya alam yang memadai. Jumlah penduduk suatu daerah sangat dipengaruhi oleh faktor kelahiran, kematian dan migrasi atau perpindahan penduduk.
Tabel 4.2 Jumlah dan Persentase Penduduk Sumatera Barat Dirinci Menurut Kabupaten/Kota Tahun 2010 (jiwa)
Kabupaten/Kota Laki-laki Perempuan Jumlah Persentase
(1) (2) (3) (4) (5) 01 Kepulauan Mentawai 39.504 36.669 76.173 1,57 02 Pesisir Selatan 212.228 217.018 429.246 8,86 03 Solok 171.845 176.721 348.566 7,19 04 Sijunjung 100.764 101.059 201.823 4,16 05 Tanah Datar 164.852 173.642 338.494 6,98 06 Padang Pariaman 191.940 199.116 391.056 8,07 07 Agam 223.077 231.776 454.853 9,38
08 Lima Puluh Kota 172.571 175.984 348.555 7,19
09 Pasaman 125.249 128.050 253.299 5,23 10 Solok Selatan 72.568 71.713 144.281 2,98 11 Dharmas Raya 98.892 92.530 191.422 3,95 12 Pasaman Barat 184.022 181.107 365.129 7,53 71 Kota Padang 415.315 418.247 833.562 17,20 72 Kota Solok 29.359 30.037 59.396 1,23
73 Kota Sawah Lunto 28.161 28.705 56.866 1,17
74 Kota Padang Panjang 23.369 23.639 47.008 0,97
75 Kota Bukittinggi 53.845 57.467 111.312 2,30
76 Kota Payakumbuh 57.894 58.931 116.825 2,41
77 Kota Pariaman 38.922 40.121 79.043 1,63
Provinsi Sumatera Barat 2.404.377 2.442.532 4.846.909 100,00
Berdasarkan hasil Sensus Penduduk Tahun 2010, jumlah penduduk Provinsi Sumatera Barat sebanyak 4.846.909 jiwa yang mencakup mereka yang bertempat tinggal di daerah perkotaan sebanyak 1.877.822 jiwa (38,74 persen) dan di daerah perdesaan sebanyak 2.969.087 jiwa (61,26 persen). Persentase distribusi penduduk menurut kabupaten/kota bervariasi dari yang terendah sebesar 0,97 persen di Kota Padang Panjang hingga yang tertinggi sebesar 17,20 persen di Kota Padang.
Gambar 4.1 Piramida Penduduk Provinsi Sumatera Barat Dirinci Menurut Kelompok Umur Tahun 2010 (jiwa)
Sumber: Data Sensus Penduduk 2010 – BPS Republik Indonesia.
Penduduk laki-laki Provinsi Sumatera Barat sebanyak 2.404.377 jiwa dan perempuan sebanyak 2.442.532 jiwa. Seks Rasio adalah 98, berarti terdapat 98 laki-laki untuk setiap 100 perempuan. Seks Rasio menurut kabupaten/kota yang terendah adalah Kota Bukittinggi sebesar 94 dan tertinggi adalah Kabupaten
Kepulauan Mentawai sebesar 108. Seks Rasio pada kelompok umur 0-4 sebesar 106, kelompok umur 5-9 sebesar 107, kelompok umur lima tahunan dari 10 sampai 64 berkisar antara 92 sampai dengan 106, dan kelompok umur 65-69 sebesar 78.
Median umur penduduk Provinsi Sumatera Barat tahun 2010 adalah 25,74 tahun. Angka ini menunjukkan bahwa penduduk Provinsi Sumatera Barat termasuk kategori menengah. Penduduk suatu wilayah dikategorikan penduduk muda bila median umur < 20, penduduk menengah jika median umur 20-30, dan penduduk tua jika median umur > 30 tahun (BPS, 2010).
Rasio ketergantungan penduduk Provinsi Sumatera Barat adalah 60,22. Angka ini menunjukkan bahwa setiap 100 orang usia produktif (15-64 tahun) terdapat sekitar 60 orang usia tidak produkif (0-14 dan 65+), yang menunjukkan banyaknya beban tanggungan penduduk suatu wilayah. Rasio ketergantungan di daerah perkotaan adalah 53,07 sementara di daerah perdesaan sebesar 65,10.
5.1 Analis Deskriptif
5.1.1 Penyerapan Tenaga Kerja
Tenaga kerja sebagai salah satu dari faktor produksi merupakan unsur yang penting dan paling berpengaruh dalam mengelola dan mengendalikan sistem ekonomi, seperti produksi, distribusi, konsumsi maupun investasi. Adapun kondisi tenaga kerja di Sumatera Barat adalah sebagai berikut:
Penduduk usia kerja (PUK) merupakan penduduk yang berusia 15 tahun ke atas. PUK mengalami perubahan seiring dengan adanya perubahan proses demografi. Dengan kata lain, jika jumlah penduduk terus bertambah maka jumlah PUK pun akan meningkat. Sejak tahun 2005 hingga tahun 2009 PUK Sumatera Barat terus meningkat. Pada tahun 2010 jumlah PUK sekitar 3,3 juta orang, sedikit lebih rendah jika dibandingkan tahun 2009 yang mencapai 3,38 juta orang. Bagian dari tenaga kerja yang aktif dalam kegiatan ekonomi disebut angkatan kerja. Angkatan kerja akan meningkat seiring dengan adanya peningkatan PUK. Angkatan kerja yang terus bertambah tanpa adanya perluasan lapangan kerja dapat menyebabkan pengangguran. Secara umum, jumlah angkatan kerja ini terus meningkat. Tahun 2010 jumlah angkatan kerja telah mencapai 2,19 juta orang atau dua per tiga dari penduduk usia kerja.
Tabel 5.1 Keadaan Tenaga Kerja di Sumatera Barat Tahun 2005-2010 Jenis Kegiatan/Type of
Activity 2005 2006 2007 2008 2009 2010
(1) (2) (3) (4) (5) (6) (7)
Penduduk Berumur 15 Tahun ke Atas 3.139.890 3.161.612 3.225.756 3.325.258 3.383.457 3.306.264
Population 15 Years of Age and Over
Angkatan Kerja/Economically Active 1.963.332 2.501.800 2.106.711 2.127.512 2.172.002 2.194.040 Bekerja/Working 1.737.472 1.808.275 1.889.406 1.956.378 1.998.922 2.041.454
Pengangguran Terbuka /Unemploy. 225.860 243.525 217.305 171.134 173.080 152.586
TPAK/Tk. Partisipasi Angkatan Kerja 62,53 64,90 65,31 63,98 64,19 66,36
Labor Force Participation Rate (%)
TPT (Tingkat Pengangguran Terbuka) 11,50 9,73 10,31 8,04 7,97 6,95
Unemployment Rate(%)
Sumber: BPS, diolah.
Tingkat Partisipasi Angkatan Kerja (TPAK) merupakan hasil bagi antara jumlah angkatan kerja dengan jumlah tenaga kerja. TPAK merupakan ukuran yang menggambarkan jumlah angkatan kerja untuk setiap 100 orang tenaga kerja. TPAK di Sumatera Barat berkisar antara 62-66 persen. Terjadinya fluktuasi TPAK ini disebabkan karena kondisi sosial ekonomi yang belum stabil, yang dapat mempengaruhi faktor-faktor produksi. Karena naik turunnya faktor produksi dapat mempengaruhi tinggi atau rendahnya permintaan dan penawaran tenaga kerja.
Besarnya pengangguran terlihat dari nilai Tingkat Pengangguran Terbuka