• Tidak ada hasil yang ditemukan

29

DAFTAR PUSTAKA

Alawi H, Nuraini, Sukendi. 2006. Genetika dan Pemuliaan Ikan. UNRI Press, Pekan Baru.

Anggadiredja JT, Zatnika A, Purwoto H, Istini S. 2006. Rumput Laut, pembudidayaan, pengolahan, dan pemasaran komoditas perikanan potensial. Penebar Swadaya, Jakarta.

Angka SL dan Suhartono TS. 2000. Bioteknologi Hasil Laut. Pusat Kajian Sumber Daya Pesisir dan Lautan. Institut Pertanian Bogor.

BPPT. 2010. Produk Olahan Rumput Laut Indonesia [Artikel].

http://kkp.go.id/index.php/arsip/c/2418/BPPT-Produk-Olahan-Rumput Laut-Indonesia-Rendah/ [30 Juli 2012].

Campbell NA, Jane BR, Lawrence G.M. 2003. Biologi, Edisi Kelima Jilid 2. Erlangga, Jakarta.

Darley WM. 1982. Alga Biology; A Physiologycal Approach. Blackwell Scientific Publications, London.

Dian. 2011. Bisa Meniru Jepang, Usaha Rumput Laut Berpola Green Finance

[Artike]http://kkp.go.id/index.php/arsip/c/3920/Bisa-Meniru-Jepang-Usaha-Rumput-Laut-Berpola-Green-Finance-/ [30 Juli 2012].

Dhargalkar VK, Devanand K. 2004. Seaweeds: a field manual. National Institute of Oceanography, Dona Paula, Goa.

Effendi H. 2003. Telaah Kualitas Air bagi Pengelolaan Sumber Daya dan Lingkungan Perairan. Kanisius, Yogyakarta.

Fattah N, Niartiningsih, Khusnul Y. 2011. Analisis Performa Biologis dan Kualitas Rumput Laut Jenis Kappaphycus alvarezii pada Kondisi Lingkungan Perairan yang berbeda. Universitas Hasanuddin, Makassar. Febriko SD, Agus S, Sofiati, M. A. Rahman. 2008. Peningkatan Produksi Rumput

Laut Gracilaria Verrucosa di Tambak Dengan Penambahan Pupuk

[Makalah Seminar Indonesia Aquaculture]

www.perbenihan-budidaya.kkp.go.id [30 Juli 2012].

Figueroa FL, A. Israel, A. Neori, B. Martinez, E.J. Malta, A. Put, S. Inken, R. Marquardt, R.Abdala, N. Korbee. 2010. Effect of nutrient supply on photosynthesis and pigmentation to short-term stress (UV radiation) in

Gracilaria conferta (Rhodophyta). Marine Pollution Bulletin 60:1768-1778.

Hayes M. 2012. Marine Bioactive Compounds; Sources, Characterization and Applications. Springer, New York.

30 Hutabarat S, Stewart ME. 2008. Pengantar Oseanografi. Universitas Indonesia,

Jakarta.

Iriawan N dan SP Astuti. 2006. Mengolah Data Statistik dengan Mudah Menggunakan Minitab 14. C.V Andi Offset, Yogyakarta.

Kumar M, Puja K, Vishal G, C.R.K. Reddy, Bhavanath J. 2010. Biochemical responses of red alga Gracilaria corticata (Gracilariales, Rhadophyta) to salinity induced oxidative stress. Experimental Marine Biology and Ecology 39:27-34.

Lobban CS, Michael JW. 1981. The Biology of Seaweeds. University of California Press, Barkeley dan Los Angeles.

Meneses, I. 1996. Sources of morphological variation in populations of Gracilaria chilensis Bird, McLachlan & Oliveira of Chile. Revista Chilena de Historia Natural 69:35-44.

Novia GM. 2011. Pengaruh salinitas yang berbeda terhadap pertumbuhan rumput laut Gracilaria spp. dalam rumah kaca [Skripsi]. Fakultas Perikanan dan Ilmu Kelautan Institut Pertanian Bogor.

Pickering TD, Margaret E. G., Lennard J. T. 1995. A preliminary trial of a spray culture technique for growing the agarophyte Gracilaria chilensis

(Gracilariales, Rhodophyta). Aquaculture 130:43-49.

Ramus J dan John PM. 1983. A physiological test of the theory of complementary chromatic adaptation color mutants of a red seaweed. J.Phycol 19:86-91. Saskiartono O. 2008. Penataan Wilayah Pesisir Kabupaten Subang. Jurnal

Perencanaan Iptek 6(2):28-35.

Setyobudianto I, Eddy S, Ucun J, Bahtiar, Harmin H. 2009. Rumput Laut Indonesia: Jenis dan Upaya Pemanfaatan. Unhalu Press, Makassar.

Soegiarto A, Sulistijo, WS Atmadja, H. Mubarak. 1978. Rumput Laut (Algae) Manfaat, Potensi dan Usaha Budidayanya. LON-LIPI, Jakarta.

Steel RGD and J.H. Torrie. 1991. Principles and Procedures of Statistics. A Biometrical Approach. 2nd Ed. Mc Graw Hill International Book Company: Tokyo.

Steentoft M, L.M. Irvine, W.F. Farnham. 1995. Two terete species of Gracilaria

and Gracilariopsis (Gracilariales, Rhodophyta) in Britain. Phycologia 34: 113-127, 37 figs.

Stekoll M, Deysher L, Hess M. 2006. A remote sensing approach to estimating harvestable kelp biomass. Journal of Applied Phycology 18:323-334. Suwargana N. 2002. Analisis Kesesuaian Lahan tambak Konvensional Melalui

Uji Kualitas Lahan dan Produksi dengan Bantuan Data Pengindraan Jauh dan SIG [Tesis]. Program Pascasarjana Institut Pertanian Bogor.

31

Trobos. 2007. Masalah Gracilaria Ada di Kualitas [Artikel].

http://www.trobos.com/show_article.php?rid=12&aid=532. [3 Januari 2012].

Utomo BSB, Satriyana N. 2006. Sifat Fisiko-Kimia Agar-Agar dari Rumput Laut

Gracilaria chilensis yang Diekstrak dengan Jumlah Air Berbeda. Jurnal Ilmu-Ilmu Perairan dan Perikanan Indonesia. 13(1):45-50. Departemen Manajemen Sumberdaya Perairan. Fakultas Perikanan dan Ilmu Kelautan. Institut Pertanian Bogor.

Yu J, dan Feng Y. 2008. Physiological and biochemical response of seaweed

Gracilaria lemaniformis to concentration changes of N and P. Experimental Marine Biology and Ecology 367:142-148.

32

33 Lampiran 1 Hasil observasi warna talus rumput laut

TAMBAK Persentase Penutupan Warna

Hijau Tua Hijau Muda Kuning

T1 i 100 0 0 m 50 0 50 o 33 17 50 T2 i 20 10 70 m 40 0 60 o 90 10 0 T3 i 30 0 70 m 60 20 20 o 50 20 30 T4 i 70 60 10 m 40 60 0 o 90 10 0

Lampiran 2 Data fenotipe Gracilaria spp.

TAMBAK b d PTU JTS PTS ITS JTT PTT ITT ∑Blade IP HT HM K T1 i 0,442 0,859 106,981 16 31,682 5,515 34 15,132 6,142 146 306,898 100 0 0 m 0,827 0,958 107,88 15 46,893 6,468 50 23,681 5,901 182 257,102 50 0 50 o 0,521 1,082 92,348 13 37,619 6,372 158 11,568 6,294 34 132,939 33 17 50 T2 i 0,345 0,547 95,815 9 39,028 7,073 13 29,312 8,756 27 167,681 20 10 70 m 0,387 0,883 76,118 11 38,505 5,963 25 20,905 4,968 193 439,845 40 0 60 o 0,438 1,045 106,735 9 33,600 7,178 13 13,902 6,880 71 214,413 90 10 0 T3 i 0,298 0,816 89,37 11 37,153 5,036 17 16,696 6,074 38 193,464 30 0 70 m 0,251 1,087 96,398 11 40,836 5,488 21 20,389 5,104 27 199,581 60 20 20 o 0,357 1,000 102,953 13 37,527 6,478 23 14,516 5,441 47 275,209 50 20 30 T4 i 0,637 1,219 92,25 12 57,595 5,610 32 20,620 6,645 140 236,237 70 60 10 m 0,734 1,064 114,317 16 45,857 5,228 41 19,420 5,630 139 279,159 40 60 0 o 0,637 0,656 129,963 15 47,895 6,437 32 23,070 5,873 56 269,263 90 10 0 Keterangan:

b : Bobot individu Gracilaria (g) i : inlet d : Diameter talus utama (mm) m : middle PTU : Panjang talus utama (mm) o : outlet JTS : Jumlah talus sekunder T1 : Tambak 1 PTS : Panjang talus sekunder (mm) T3 : Tambak 3 ITS : Internode talus sekunder (mm) T4 : Tambak 4 JTT : Jumlah talus tersier T : Suhu (0C) PTT : Panjang talus tersier (mm)

ITT : Internode talus tersier (mm)

∑Blade : Jumlah blade IP : Indeks percabangan

HT : Persentase warna hijau tua pada talus (%) HM : Persentase warna hijau muda pada talus (%) K : Persentase warna kuning pada talus (%)

Lampiran 3 Hasil analisis MANOVA salinitas terhadap morfometrik

General Linear Model: Bobot, d, ... versus Salinitas Factor Type Levels Values

Salinitas fixed 10 4.0, 4.1, 4.4, 5.8, 6.5, 7.3, 7.4, 11.7, 11.8, 11.9

34

Analysis of Variance for d, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P Salinitas 9 0.396743 0.396743 0.044083 6.71 0.136 Error 2 0.013146 0.013146 0.006573

Total 11 0.409889

S = 0.0810740 R-Sq = 96.79% R-Sq(adj) = 82.36%

Analysis of Variance for JTT, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P Salinitas 9 16301.6 16301.6 1811.3 5.08 0.175 Error 2 712.7 712.7 356.3

Total 11 17014.3

S = 18.8768 R-Sq = 95.81% R-Sq(adj) = 76.96%

Lampiran 4 Hasil analisis MANOVA jumlah talus sekunder terhadap kualitas gel Gracilaria

General Linear Model: Kekuatan Gel, Viskositas, Kadar Air versus JTS Factor Type Levels Values

JTS fixed 6 9, 11, 12, 13, 15, 16

Analysis of Variance for Kekuatan Gel, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P JTS 5 257.61 257.61 51.52 0.96 0.508 Error 6 322.02 322.02 53.67

Total 11 579.63

S = 7.32594 R-Sq = 44.44% R-Sq(adj) = 0.00%

Analysis of Variance for Viskositas, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P JTS 5 0.33333 0.33333 0.06667 0.96 0.508 Error 6 0.41667 0.41667 0.06944

Total 11 0.75000

S = 0.263523 R-Sq = 44.44% R-Sq(adj) = 0.00%

Analysis of Variance for Kadar Air, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P JTS 5 0.19845 0.19845 0.03969 3.60 0.075 Error 6 0.06615 0.06615 0.01102

Total 11 0.26460

35 Lampiran 5 Hasil analisis korelasi parameter kualitas air dan morfometrik

Correlations: Kedalaman, Suhu, Salinitas, ORP Air, ORP Lumpur, ... Kedalaman Suhu Salinitas ORP Air

d -0.130 -0.087 0.108 0.383 0.688 0.789 0.739 0.220 PTU -0.135 0.199 0.453 0.468 0.677 0.536 0.139 0.125 JTS 0.247 0.301 0.313 0.527 0.438 0.342 0.321 0.078 PTS 0.427 -0.224 0.734 0.363 0.166 0.483 0.007 0.247 ITS -0.535 0.009 -0.352 -0.479 0.073 0.978 0.262 0.115 JTT -0.314 0.310 -0.209 0.224 0.320 0.328 0.514 0.484 PTT 0.525 -0.227 0.261 -0.314 0.080 0.477 0.412 0.320 ITT -0.127 -0.218 -0.101 -0.549 0.693 0.497 0.756 0.065 ∑ Blade 0.281 -0.244 -0.054 -0.198 0.376 0.444 0.869 0.538 IP 0.335 -0.305 0.005 -0.220 0.288 0.335 0.988 0.493

ORP Lumpur Konduktivita Turbidity TDS

d 0.439 0.099 -0.079 0.101 0.153 0.760 0.808 0.754 PTU 0.241 0.454 -0.340 0.459 0.451 0.138 0.280 0.134 JTS 0.330 0.311 -0.472 0.318 0.295 0.325 0.121 0.313 PTS 0.606 0.730 -0.192 0.730 0.037 0.007 0.549 0.007 ITS -0.198 -0.355 -0.263 -0.356 0.537 0.258 0.409 0.256 JTT 0.225 -0.211 -0.467 -0.207 0.481 0.511 0.126 0.518 PTT -0.138 0.263 0.000 0.260 0.669 0.408 0.999 0.414 ITT -0.565 -0.103 0.035 -0.107 0.055 0.751 0.914 0.741 ∑ Blade 0.253 -0.071 -0.526 -0.065 0.427 0.826 0.079 0.841

36 IP 0.229 -0.007 -0.226 -0.002 0.474 0.983 0.480 0.995 pH DO Ketebalan Lu Nitrat d 0.121 -0.374 -0.070 0.481 0.708 0.231 0.829 0.113 PTU 0.027 0.534 0.034 -0.059 0.933 0.074 0.917 0.855 JTS 0.174 0.503 -0.199 0.041 0.588 0.095 0.536 0.900 PTS 0.457 0.098 0.167 0.613 0.135 0.761 0.605 0.034 ITS -0.186 0.007 0.106 0.120 0.562 0.982 0.743 0.710 JTT 0.368 -0.139 0.055 0.503 0.239 0.668 0.866 0.096 PTT 0.080 0.229 0.197 0.084 0.805 0.474 0.540 0.796 ITT -0.265 -0.217 0.129 0.244 0.406 0.498 0.689 0.444 ∑ Blade -0.302 0.280 -0.545 0.127 0.340 0.378 0.067 0.694 IP -0.375 0.384 -0.242 -0.276 0.229 0.218 0.449 0.386 Fosfat d 0.306 0.333 PTU 0.011 0.973 JTS 0.201 0.532 PTS 0.109 0.737 ITS -0.138 0.670 JTT -0.027 0.934 PTT -0.303 0.338 ITT -0.062 0.848 ∑ Blade 0.662 0.019

37

IP 0.359 0.252 Cell Contents: Pearson correlation P-Value

Lampiran 6 Hasil analisis korelasi antar parameter morfometrik

Correlations: Salinitas, Bobot, d, PTU, JTS, PTS, ITS, JTT, ...

Salinitas Bobot d PTU JTS PTS Bobot 0.345 0.271 d 0.108 0.212 0.739 0.509 PTU 0.453 0.509 -0.194 0.139 0.091 0.546 JTS 0.313 0.650 0.096 0.574 0.321 0.022 0.766 0.051 PTS 0.734 0.632 0.265 0.185 0.237 0.007 0.027 0.405 0.565 0.458 ITS -0.352 0.030 -0.299 0.184 -0.372 -0.179 0.262 0.926 0.345 0.568 0.234 0.578 JTT -0.209 0.295 0.301 -0.077 0.294 -0.007 0.514 0.352 0.342 0.813 0.354 0.982 PTT 0.261 0.175 -0.545 0.085 -0.122 0.461 0.412 0.587 0.067 0.793 0.705 0.132 ITT -0.101 -0.054 -0.423 0.014 -0.432 -0.035 0.756 0.867 0.170 0.966 0.160 0.915 ∑ Blade -0.054 0.560 0.226 -0.088 0.425 0.280 0.869 0.058 0.480 0.785 0.169 0.378 IP 0.005 0.112 -0.048 -0.091 0.284 0.008 0.988 0.729 0.882 0.778 0.371 0.981

ITS JTT PTT ITT ∑ Blade

JTT 0.051 0.876 PTT 0.166 -0.424 0.607 0.170 ITT 0.518 -0.061 0.365 0.084 0.850 0.243 ∑ Blade -0.225 -0.083 0.132 -0.318 0.481 0.798 0.683 0.313 IP -0.195 -0.350 0.091 -0.543 0.743 0.543 0.264 0.778 0.068 0.006

Cell Contents: Pearson correlation P-Value

38 Lampiran 7 Data kualitas air

TAMBAK h T Salt ORPa ORPl Kond Turb TDS pH DO t L N P

T1 i 1,05 29,69 4,4 62 33 8,64 26,00 5,44 6,55 9,91 10 0,013 0,525 m 0,90 30,04 4,1 74 236 8,24 9,68 5,19 8,22 8,70 5 0,212 0,461 o 0,75 29,74 4,0 77 240 8,03 17,20 5,06 8,19 6,61 50 0,377 0,378 T2 i 1,00 29,03 5,8 34 -26 11,20 101,00 6,93 7,25 6,68 65 0,232 0,271 m 1,00 28,86 4,1 44 255 8,03 45,80 5,06 7,09 7,98 35 0,139 0,465 o 0,60 29,09 4,1 58 200 8,01 48,00 5,05 6,59 7,11 25 0,165 0,536 T3 i 0,90 29,69 6,5 83 182 12,60 156,00 7,80 8,16 6,71 25 0,013 0,429 m 1,05 29,66 7,4 86 180 14,10 111,00 8,73 7,98 7,88 55 0,119 0,262 o 0,90 29,59 7,3 77 187 13,90 135,00 8,61 7,94 6,74 60 0,132 0,311 T4 i 1,10 28,91 11,8 74 296 21,40 59,10 13,20 7,74 7,29 40 0,424 0,536 m 0,95 28,72 11,7 85 306 21,20 61,40 13,20 7,46 6,63 60 0,344 0,417 o 0,95 29,58 11,9 91 352 21,80 16,90 13,50 8,00 10,82 50 0,126 0,393 Keterangan: h : Kedalaman (m) i : inlet T : Suhu (0C) m : middle

Salt : Salinitas (ppt) o : outlet

ORPa : Redoks Potensial Air (mV) T1 : Tambak 1 ORPl : Redoks Potensial Lumpur (mV) T2 : Tambak 2 Kond : Konduktivitas (mS/cm) T3 : Tambak 3

Turb : Turbiditas (NTU) T4 : Tambak 4

TDS : Total Dissolved Solid (g/L) pH : Power of hydrogen

DO : Dissolved oxygen (ppm) tL : Ketebalan lumpur (cm) N : Kadar Nitrat (ppm) P : Kadar Fosfat (ppm)

Lampiran 8 Hasil analisis general manova parameter kualitas air terhadap salinitas

General Linear Model: Kedalaman, Suhu, ... versus Salinitas Analysis of Variance for Kedalaman, using Adjusted SS for Tests P = 0.906 R-Sq = 59.18%

Analysis of Variance for Suhu, using Adjusted SS for Tests P = 0.885 R-Sq = 61.89%

Analysis of Variance for ORP Air, using Adjusted SS for Tests P = 0.473 R-Sq = 86.74%

Analysis of Variance for ORP Lumpur, using Adjusted SS for Tests P = 0.053 R-Sq = 98.79%

Analysis of Variance for Konduktivitas, using Adjusted SS for Tests P = 0.000 R-Sq = 99.99%

Analysis of Variance for Turbidity, using Adjusted SS for Tests P = 0.148 R-Sq = 96.50%

Analysis of Variance for TDS, using Adjusted SS for Tests P = 0.000 R-Sq = 99.99%

Analysis of Variance for pH, using Adjusted SS for Tests P = 0.854 R-Sq = 65.23%

39

Analysis of Variance for DO, using Adjusted SS for Tests P = 0.243 R-Sq = 94.00%

Analysis of Variance for Ketebalan Lumpur, using Adjusted SS for Tests P = 0.393 R-Sq = 89.51%

Analysis of Variance for Nitrat, using Adjusted SS for Tests P = 0.062 R-Sq = 98.59%

Analysis of Variance for Fosfat, using Adjusted SS for Tests P = 0.146 R-Sq = 96.54%

Lampiran 9 Hasil analisis faktor antar parameter kualitas air

Factor Analysis: Salinitas, Kedalaman, ORP Air, ORP Lumpur, …,Turbidity Principal Component Factor Analysis of the Correlation Matrix

Unrotated Factor Loadings and Communalities

Variable Factor1 Factor2 Factor3 Factor4 Communality Salinitas -0.974 0.066 -0.093 0.059 0.965 Kedalaman -0.386 -0.087 -0.654 0.485 0.819 ORP Air -0.627 0.249 -0.019 -0.625 0.847 ORP Lumpur -0.605 0.511 0.371 -0.267 0.835 Konduktivitas -0.975 0.054 -0.104 0.044 0.967 Turbidity -0.120 -0.786 -0.218 -0.377 0.822 TDS -0.976 0.061 -0.101 0.044 0.968 DO -0.026 0.646 -0.641 0.083 0.836 Ketebalan Lumpur -0.570 -0.676 0.175 0.154 0.837 Nitrat -0.412 0.022 0.736 0.474 0.936 Fosfat 0.196 0.787 0.155 0.087 0.689 Variance 4.3072 2.4542 1.6493 1.1095 9.5201 % Var 0.392 0.223 0.150 0.101 0.865

Rotated Factor Loadings and Communalities Varimax Rotation

Variable Factor1 Factor2 Factor3 Factor4 Communality Salinitas 0.850 0.126 -0.413 -0.234 0.965 Kedalaman 0.109 0.103 -0.890 0.063 0.819 ORP Air 0.860 0.034 0.206 0.251 0.847 ORP Lumpur 0.788 -0.333 0.249 -0.205 0.835 Konduktivitas 0.854 0.143 -0.413 -0.219 0.967 Turbidity 0.026 0.875 0.038 0.233 0.822 TDS 0.856 0.136 -0.410 -0.221 0.968 DO 0.149 -0.573 -0.476 0.509 0.836 Ketebalan Lumpur 0.262 0.706 -0.188 -0.485 0.837 Nitrat 0.210 -0.110 0.053 -0.937 0.936 Fosfat 0.016 -0.819 0.136 0.009 0.689 Variance 3.6924 2.4515 1.6906 1.6856 9.5201 % Var 0.336 0.223 0.154 0.153 0.865

Sorted Rotated Factor Loadings and Communalities

Variable Factor1 Factor2 Factor3 Factor4 Communality ORP Air 0.860 0.034 0.206 0.251 0.847 TDS 0.856 0.136 -0.410 -0.221 0.968 Konduktivitas 0.854 0.143 -0.413 -0.219 0.967 Salinitas 0.850 0.126 -0.413 -0.234 0.965

40 ORP Lumpur 0.788 -0.333 0.249 -0.205 0.835 Turbidity 0.026 0.875 0.038 0.233 0.822 Fosfat 0.016 -0.819 0.136 0.009 0.689 Ketebalan Lumpur 0.262 0.706 -0.188 -0.485 0.837 DO 0.149 -0.573 -0.476 0.509 0.836 Kedalaman 0.109 0.103 -0.890 0.063 0.819 Nitrat 0.210 -0.110 0.053 -0.937 0.936 Variance 3.6924 2.4515 1.6906 1.6856 9.5201 % Var 0.336 0.223 0.154 0.153 0.865

Factor Score Coefficients

Variable Factor1 Factor2 Factor3 Factor4 Salinitas 0.184 0.012 -0.145 -0.051 Kedalaman -0.111 -0.015 -0.587 -0.004 ORP Air 0.372 0.063 0.321 0.322 ORP Lumpur 0.280 -0.133 0.272 -0.028 Konduktivitas 0.188 0.021 -0.141 -0.039 Turbidity 0.062 0.399 0.116 0.245 TDS 0.189 0.018 -0.140 -0.040 DO 0.037 -0.233 -0.306 0.277 Ketebalan Lumpur -0.009 0.247 -0.071 -0.240 Nitrat -0.063 -0.125 -0.011 -0.609 Fosfat 0.021 -0.339 0.037 -0.055 Loading Plot of Salinitas, ..., Fosfat

Lampiran 10 Hasil analisis PCA salinitas dan morfometrik

Principal Component Analysis: Salinitas, Bobot, Diameter,….,IP Eigenanalysis of the Correlation Matrix

Eigenvalue 3.4260 2.4467 1.9469 1.4485 1.2341 0.6850 0.4209 0.2405 Proportion 0.285 0.204 0.162 0.121 0.103 0.057 0.035 0.020 Cumulative 0.285 0.489 0.652 0.772 0.875 0.932 0.967 0.987 Eigenvalue 0.0836 0.0498 0.0179 0.0000 Proportion 0.007 0.004 0.001 0.000 Cumulative 0.994 0.999 1.000 1.000 Variable PC1 PC2 PC3 PC4 PC5 PC6 Salinitas -0.312 0.293 -0.085 0.471 0.183 0.095 Bobot -0.418 0.188 -0.203 -0.293 -0.250 0.043 Diameter thallus -0.195 -0.358 -0.253 0.269 -0.324 0.473 Panjang Thallus Utama -0.216 0.322 -0.237 -0.230 0.504 0.311 Jumlah Thallus sekunder -0.429 -0.039 -0.151 -0.271 0.311 -0.291 Panjang Thallus Sekunder -0.353 0.293 -0.071 0.317 -0.366 0.026 Internode Thallus sekunder 0.251 0.256 -0.098 -0.449 -0.186 0.535 Jumlah Thallus tersier -0.041 -0.211 -0.522 -0.230 -0.235 -0.425 Panjang Thallus tersier -0.034 0.496 0.318 0.035 -0.200 -0.293 Internode Thallus tersier 0.288 0.400 -0.119 -0.095 -0.254 -0.107

∑ Blade -0.353 -0.124 0.337 -0.294 -0.341 0.011

41 Lampiran 11 Hasil analisis MANOVA dan korelasi salinitas dan warna

General Linear Model: Hijau Muda, versus Salinitas Factor Type Levels Values

Salinitas fixed 10 4.0, 4.1, 4.4, 5.8, 6.5, 7.3, 7.4, 11.7, 11.8, 11.9

Analysis of Variance for Hijau Muda, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P Salinitas 9 4951.58 4951.58 550.18 16.51 0.058 Error 2 66.67 66.67 33.33

Total 11 5018.25

S = 5.77350 R-Sq = 98.67% R-Sq(adj) = 92.69%

Correlations: Hijau Tua, Hijau Muda, Kuning, Salinitas Hijau Tua Hijau Muda Kuning Hijau Muda -0.040 0.901 Kuning -0.818 -0.455 0.001 0.137 Salinitas 0.146 0.742 -0.494 0.650 0.006 0.103

Cell Contents: Pearson correlation P-Value

Lampiaran 12 Hasil analisis korelasi parameter kualitas air dengan warna

Correlations: Kedalaman, Suhu, Salinitas, ORP Air, ORP Lumpur, ... Kedalaman Suhu Salinitas ORP Air

Hijau Tua -0.027 0.121 0.146 0.194 0.934 0.708 0.650 0.547 Hijau Muda 0.242 -0.561 0.742 0.330 0.448 0.058 0.006 0.295 Kuning 0.000 0.169 -0.494 -0.398 1.000 0.599 0.103 0.200

ORP Lumpur Konduktivita Turbidity TDS

Hijau Tua 0.130 0.138 -0.433 0.141 0.688 0.668 0.160 0.662 Hijau Muda 0.420 0.732 0.045 0.734 0.174 0.007 0.888 0.007 Kuning -0.324 -0.483 0.345 -0.488 0.305 0.112 0.272 0.107

42 pH DO Ketebalan Lu Nitrat Hijau Tua -0.427 0.680 -0.400 -0.274 0.166 0.015 0.197 0.390 Hijau Muda 0.108 -0.370 0.480 0.741 0.738 0.236 0.114 0.006 Kuning 0.341 -0.391 0.008 -0.080 0.279 0.209 0.981 0.804

Fosfat Hijau Tua Hijau Muda Hijau Tua 0.519 0.084 Hijau Muda 0.048 -0.040 0.882 0.901 Kuning -0.353 -0.818 -0.455 0.261 0.001 0.137

Cell Contents: Pearson correlation P-Value

Lampiran 13 Hasil analisis general manova nitrat dan morfometrik

General Linear Model: Bobot, d, ... versus Nitrat Factor Type Levels Values

Nitrat fixed 11 0.013, 0.119, 0.126, 0.132, 0.139, 0.165, 0.212, 0.232,

0.344, 0.377, 0.424

Analysis of Variance for d, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P Nitrat 10 0.408964 0.408964 0.040896 44.24 0.117 Error 1 0.000925 0.000925 0.000925

Total 11 0.409889

S = 0.0304056 R-Sq = 99.77% R-Sq(adj) = 97.52%

Analysis of Variance for ITS, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P Nitrat 10 5.3176 5.3176 0.5318 4.64 0.348 Error 1 0.1147 0.1147 0.1147

Total 11 5.4323

S = 0.338704 R-Sq = 97.89% R-Sq(adj) = 76.77%

Analysis of Variance for JTT, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P Nitrat 10 16869.8 16869.8 1687.0 11.67 0.224 Error 1 144.5 144.5 144.5

43

Total 11 17014.3

S = 12.0208 R-Sq = 99.15% R-Sq(adj) = 90.66%

Analysis of Variance for PTT, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P Nitrat 10 273.428 273.428 27.343 22.36 0.163 Error 1 1.223 1.223 1.223

Total 11 274.651

S = 1.10592 R-Sq = 99.55% R-Sq(adj) = 95.10%

Analysis of Variance for ITT, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P Nitrat 10 10.9958 10.9958 1.0996 475.60 0.036 Error 1 0.0023 0.0023 0.0023

Total 11 10.9981

S = 0.0480833 R-Sq = 99.98% R-Sq(adj) = 99.77%

Lampiran 14 Hasil analisis general manova fosfat dan morfometrik

General Linear Model: Bobot, d, ... versus Fosfat Factor Type Levels Values

Fosfat fixed 11 0.262, 0.271, 0.311, 0.378, 0.393, 0.417, 0.429, 0.461,

0.465, 0.525, 0.536

Analysis of Variance for JTT, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P Fosfat 10 16833.8 16833.8 1683.4 9.33 0.250 Error 1 180.5 180.5 180.5

Total 11 17014.3

S = 13.4350 R-Sq = 98.94% R-Sq(adj) = 88.33%

Analysis of Variance for ITT, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P Fosfat 10 10.9705 10.9705 1.0970 39.73 0.123 Error 1 0.0276 0.0276 0.0276

Total 11 10.9981

S = 0.166170 R-Sq = 99.75% R-Sq(adj) = 97.24%

Analysis of Variance for IP, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P Fosfat 10 68555.2 68555.2 6855.5 28.79 0.144 Error 1 238.1 238.1 238.1

Total 11 68793.4

Dokumen terkait