• Tidak ada hasil yang ditemukan

Berdasarkan data yang dihasilkan pada proses sintesis inhibitor korosi dan uji performanya pada material baja ASTM A36, maka dapat ditarik kesimpulan sebagai berikut:

1. Sintesis inhibitor korosi telah berhasil dilakukan dengan produk akhir berupa fatty

acid diethanolamide 1:6 dan 1:20. Hasil karakterisasi FTIR menunjukkan bahwa telah

terbentuk peak pada bilangan gelombang 3325 cm-1 (1:6 dan 1:20) yang mengindikasikan gugus fungsi OH (stretching), 1620 cm-1 (1:6) dan 1622 cm-1 (1:20) yang mengindikasikan gugus fungsi C=O amida tersier (stretching), dan 1123 cm-1 (1:6 dan 1:20) yang mengindikasikan gugus fungsi C-O (stretching). Produk yang dihasilkan dari 2 rasio tersebut memiliki %yield sebesar 70,97% (1:6) dan 73,92% (1:20). 2. Hasil uji densitas dan viskositas pada inhibitor korosi 1:6 dan 1:20 menghasilkan nilai

sebesar 1,0397 g/cm3 dan 1231,3870 cSt untuk rasio 1:6. Sedangkan, 1,0707 g/cm3 227,5365 cSt untuk rasio 1:20.

3. Pengujian korosi yang dilakukan terhadap inhibitor korosi 1:6 pada material baja ASTM A36 dalam larutan uji korosif NaCl 3,5% menunjukkan kemampuan penghambatan, dengan adanya penurunan laju korosi yaitu, dari 0,25 mm/year (tanpa inhibitor) menjadi 0,20 mm/year (50 ppm), 0,01 mm/year (100 ppm), 0,05 mm/year (500 ppm), dan 0,17 mm/year (1000 pppm). Sedangkan, terhadap inhibitor korosi 1:20, penurunan laju korosinya dari 0,25 mm/year (tanpa inhibitor) menjadi 0,06 mm/year (50 ppm), 0,120 mm/year (100 ppm), 0,193 mm/year (500 ppm), dan 0,165 mm/year (1000 pppm). Lalu, inhibitor korosi 1:6 juga menghasilkan persentase efisiensi penghambatan sebesar 22,47% (50 ppm), 93,18% (100 ppm), 79,87% (500 ppm), dan 31,91% (1000 pppm). Sedangkan, inhibitor korosi 1:20 menghasilkan efisiensi penghambatan sebesar 73,79% (50 ppm), 53,61% (100 ppm), 25,40% (500 ppm), dan 36,23% (1000 pppm). Hasil ini sesuai dengan Hipotesis 1 (H1), yang menyatakan bahwa inhibitor korosi dapat menurunkan laju korosi dan menghasilkan nilai %efisiensi penghambatan korosi pada baja karbon rendah (ASTM A36) dalam larutan uji korosif berupa NaCl 3.5%.

4. Konsentrasi 100 ppm pada inhibitor korosi 1:6 merupakan konsentrasi optimum dalam menghambat proses korosi pada material baja di dalam elektrolit NaCl 3,5%.

Universitas Pertamina - 46

5.2 Saran

Saran yang dapat diaplikasikan atau dilakukan untuk penelitian selanjutnya

1. Melakukan pengujian inhibitor korosi dengan beberapa variasi suhu dan beberapa tambahan range konsentrasi untuk mengetahui tingkat penghambatan korosi lebih lanjut dengan lebih spesifik dari inhibitor korosi berupa fatty acid diethanolamide (rasio 1:6 dan 1:20).

2. Melakukan karakterisasi tambahan menggunakan SEM EDS untuk mengetahui kondisi permukaan dan komposisi dari baja setelah dilakukan pengujian performa inhibitor korosi.

Universitas Pertamina - 47

DAFTAR PUSTAKA

[1] M.A. Quraishi, D. Jamal, Technical note: CAHMT—a new and eco-friendly acidizing corrosion inhibitor, Corrosion 56 (2000) 983–985.

[2] M. Finšgar and J. Jackson, “Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: A review,” Corros. Sci., vol. 86, pp. 17–41, 2014, doi: 10.1016/j.corsci.2014.04.044.

[3] F. Nasirpouri, A. Mostafaei, L. Fathyunes, and R. Jafari, “Assessment of localized corrosion in carbon steel tube-grade AISI 1045 used in output oil-gas separator vessel of desalination unit in oil refinery industry,” Eng. Fail. Anal., vol. 40, pp. 75–88, 2014, doi: 10.1016/j.engfailanal.2014.02.012.

[4] D. Dwivedi, K. Lepková, and T. Becker, “Carbon steel corrosion: a review of key surface properties and characterization methods,” RSC Advances, vol. 7, no. 8, pp. 4580–4610, 2017. [5] D. Senthil, R. Saratha, and R. Vasantha, “ISSN : 2278 – 7798 International Journal of Science , Engineering and Technology Research ( IJSETR ) Corrosion Inhibition of Mild Steel in Hydrochloric Acid Medium Using Plant Extract – A Succinct Review ISSN : 2278 – 7798 International Journal of Scienc,” vol. 5, no. 12, pp. 3324–3340, 2016.

[6] E. D. D. During, Corrosion atlas: a collection of illustrated case histories, 3rd ed. Amsterdam : Elsevier, 2018.

[7] Sharma SK, Mudhoo A, Khamis E. Adsorption studies, modeling and use of green inhibitors in corrosion inhibition: an overview of recent research, green corrosion inhibitors: status in developing countries. In: Sharma SK, editor. Green corrosion chemistry and engineering. Weinheim: Wiley-VCH Publications, 2011: 319

[8] B. N. Popov, Corrosion Engineering: Principles and Solved Problems. Amsterdam : Elsevier, 2015.

[9] E. Reyes-Dorantes, J. Zuñiga-Díaz, A. Quinto-Hernandez, J. Porcayo-Calderon, J. G. Gonzalez-Rodriguez, and L. Martinez-Gomez, “Fatty amides from crude rice bran oil as green corrosion inhibitors,” J. Chem., vol. 2017, 2017.

[10] D. Kumar, S. M. Kim, and A. Ali, “One step synthesis of fatty acid diethanolamides and methyl esters from triglycerides using sodium doped calcium hydroxide as a nanocrystalline heterogeneous catalyst,” New J. Chem., vol. 39, no. 9, pp. 7097–7104, 2015, doi: 10.1039/c5nj00388a.

[11] Ditjenbun, “Statistik Perkebunan Indonesia Komoditas Kelapa Sawit 2017-2019,”

Kementeri. Pertan., p. 81, 2018.

Universitas Pertamina - 48 [13] G. P. K. S. Indonesia and G. P. K. S. Indonesia, “Strategi dan Kebijakan Pengembangan

Industri Hilir Minyak Sawit Indonesia,” Indonesian Palm Oil Association (GAPKI IPOA), 03-Jul-2017. [Online]. Tersedia: https://gapki.id/news/2422/strategi-dan-kebijakan-pengembangan-industri-hilir-minyak-sawit-indonesia. [Diakses: 08-Apr-2020].

[14] G. C. Gervajio, “from Coconut Oil,” no. 2, 2001.

[15] F. Sari, B. H. Susanto, and S. Bismo, “The potential utilization of coconut oil and palm oil as raw material of alkanolamide under alkaline conditions,” IOP Conf. Ser. Earth Environ. Sci., vol. 105, no. 1, 2018, doi: 10.1088/1755-1315/105/1/012035.

[16] J. Zhang, Y. Song, H. Su, L. Zhang, G. Chen, and J. Zhao, “Investigation of Diospyros Kaki L.f husk extracts as corrosion inhibitors and bactericide in oil field,” Chem. Cent. J., vol. 7, no. 1, p. 1, 2013, doi: 10.1186/1752-153X-7-109.

[17] N. I. N. Haris, S. Sobri, and N. Kassim, “Oil palm empty fruit bunch extract as green corrosion inhibitor for mild steel in hydrochloric acid solution: Central composite design optimization,” Mater. Corros., vol. 70, no. 6, pp. 1111–1119, 2019, doi: 10.1002/maco.201810653.

[18] K. Xhanari, “Green corrosion inhibitors for aluminium and its alloys : a review †,” pp. 27299–27330, 2017, doi: 10.1039/C7RA03944A.

[19] H. M. A. El-lateef, V. M. Abbasov, L. I. Aliyeva, E. E. Qasimov, and I. T. Ismayilov, “Inhibition of carbon steel corrosion in CO 2 -saturated brine using some newly surfactants based on palm oil : Experimental and theoretical investigations,” Mater. Chem. Phys., pp. 1–11, 2013, doi: 10.1016/j.matchemphys.2013.07.044.

[20] Hasrul Abdi Hasibuan, et al., “KAJIAN MUTU DAN KARAKTERISTIK MINYAK SAWIT INDONESIA SERTA PRODUK FRAKSINASINYA The Study of Quality and Characteristic on Indonesian Palm Oil and Its Fractionation,” Standardisasi, vol. 14, no. 1, pp. 13–21, 2012. [21] T. F. Tadros, An introduction to surfactants. Berlin: De Gruyter, 2014.

[22] “Esters Reaction with Amines – The Aminolysis Mechanism,” Chemistry Steps, 02-Mar-2020. [Online]. Tersedia: https://www.chemistrysteps.com/esters-reaction-with-amines-the-aminolysis-mechanism/. [Diakses: 08-Agust-2020].

[23] W. by A. Z. M. J. 5 2012, “ASTM A36 Mild/Low Carbon Steel,” AZoM.com, 23-May-2014. [Online]. Tersedia: https://www.azom.com/article.aspx?ArticleID=6117. [Diakses: 03-Mar-2020].

[24] J. G. Speight, Oil and Gas Corrosion Prevention: From Surface Facilities to Refineries. USA : Elsevier, 2014.

[25] H. R. Li et al., “Effect of organic alkalis on interfacial tensions of surfactant/polymer solutions against hydrocarbons,” Energy and Fuels, vol. 29, no. 2, pp. 459–466, 2015. [26] M. Kutz, Handbook of environmental degradation of materials, 3rd ed. Norwich: William

Universitas Pertamina - 49 [27] M. Goyal, S. Kumar, I. Bahadur, C. Verma, and E. E. Ebenso, “Organic corrosion inhibitors

for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: A review,” J.

Mol. Liq., vol. 256, no. February, pp. 565–573, 2018, doi: 10.1016/j.molliq.2018.02.045.

[28] S. A. Khan, S. B. Khan, L. U. Khan, A. Farooq, K. Akhtar, and A. M. Asiri, “Fourier transform infrared spectroscopy: Fundamentals and application in functional groups and nanomaterials characterization,” Handb. Mater. Charact., no. February, pp. 317–344, 2018, doi: 10.1007/978-3-319-92955-2_9.

[29] A. A. Bunaciu, E. gabriela Udriştioiu, and H. Y. Aboul-Enein, “X-Ray Diffraction: Instrumentation and Applications,” Crit. Rev. Anal. Chem., vol. 45, no. 4, pp. 289–299, 2015, doi: 10.1080/10408347.2014.949616.

[30] Connolly, J. R. Introduction to X-Ray Powder Diffraction; Spring, 2007.

[31] P. Flowers, E. J. Neth, W. R. Robinson, K. Theopold, and R. Langley, “Lattice Structures in Crystalline Solids,” Chemistry Atoms First 2e, 19-Oct-2018. [Online]. Tersedia: https://opentextbc.ca/chemistryatomfirst2eopenstax/chapter/lattice-structures-in-crystalline-solids/. [Diakses: 23-Jun-2020].

[32] M. Autolab, Metrohm Autolab potentiostat used in experimental investigation

electrochemical reduction of CO2, 2014. [Online]. Tersedia:

https://www.metrohm.com/id-id/perusahaan/artikel/news-electrochemical-reduction-of carbon-dioxide/. [Diakses: 23-Jun-2020].

[33] L. Oluwole, “Development Of A Field-Portable Digital Potentiostat,” Artic. Int. J. Sci. Eng.

Res., vol. 5, no. 4, 2014.

[34] Gopinath Ashwini V. and Russell D. (2006).‘An Inexpensive Field-Portable Programmable Potentiostat’. Journal of Chem. Educator, Vol. 11, No. 1, Pg. 11, 23-28.

[35] Perez N.,(2004). ‘Electrochemistry and Corrosion Science’, Kluwer Academic Publishers, Boston, pp. 27-187.

[36] Reay R. J., Kounaves S. P., Kovacs, G. T. A. (1995). ‘Microfabricated Electrochemical Analysis System for Heavy Metal Detection’. Presented at the 8th International Conference on Solid-State Sensors and Actuators and Eurosensors IX, Stockholm, Sweden, Digest of Technical Papers, Vol 2, pp 932.935.

[37] S. Zeng et al., “Amide Synthesis via Aminolysis of Ester or Acid with an Intracellular Lipase,” ACS Catal., vol. 8, no. 9, pp. 8856–8865, 2018.

[38] ASTM D5555-95, “Standard Test Method for Determination of Free Fatty Acids Contained in Animal, Marine, and Vegetable Fats and Oils Used in Fat Liquors and Stuffing Compounds,” ASTM International, West Conshohocken, PA, 2017, doi: 10.1520/D5555-95R17.

[39] A. American and N. Standard, “Designation: D 446-07 Designation: 71/2/95 Standard Specifications and Operating Instructions for Glass Capillary Kinematic Viscometers 1,” pp. 1–24, 2009.

[40] A. Item et al., “Discussion Paper on the Replacement of Acid Value With Free Fatty Acids for Virgin Palm Oils in The Standard for Named Vegetable Oils (CODEX STAN 210-1999),”

Universitas Pertamina - 50 [41] He. Bob B, Two-dimensional x-ray diffraction, Second. Hoboken, NJ 07030, USA: 2018 John

Wiley & Sons, Inc., 2018.

[42] A. Imtiaz, M. A. Farrukh, M. Khaleeq-ur-rahman, and R. Adnan, “Micelle-Assisted Synthesis of Al 2 O 3 ⋅ CaO Nanocatalyst : Optical Properties and Their Applications in Photodegradation of 2 , 4 , 6-Trinitrophenol,” vol. 2013, 2013.

[43] “Preparation and Characterization of Calcium Oxide Heterogeneous Catalyst Derived from Anadara Granosa Shell for Biodiesel Synthesis: KnE Engineering,” KNE Publishing. [Online]. Tersedia: https://knepublishing.com/index.php/KnE-Engineering/article/view/494/1554. [Diakses: 09-Jun-2020].

[44] Kouzu, M., Hidaka, J. Transesterification of Vegetable Oil into Biodiesel Catalyzed by CaO: a review. Fuel Vol. 93 : 1-12, 2012.

[45] J. Zhang et al., “Efficient method for the synthesis of fatty acid amide from soybean oil methyl ester catalysed by modified CaO,” Can. J. Chem. Eng., vol. 92, no. 5, pp. 871–875, 2014, doi: 10.1002/cjce.21948.

[46] University of Delaware. [Online]. Tersedia: https://www1.udel.edu/. [Diakses: 30-Jul-2020].

[47] “The C=O Bond, Part VI: Esters and the Rule of Three,” Spectroscopy Online. [Online]. Tersedia: https://www.spectroscopyonline.com/view/co-bond-part-vi-esters-and-rule-three. [Diakses: 05-Agust-2020].

[48] Edge.rit.edu. [Online]. Tersedia: http://edge.rit.edu/edge/. [Diakses: 06-Aug-2020] [49] M. A. B. P. N Bhasagi, “Analysis of Kinematic Viscosity for Liquids by Varying

Temperature,” Int. J. Innov. Res. Sci. Eng. Technol., vol. 04, no. 04, pp. 1951–1954, 2015. [50] Fluid viscosity and density: A pump user's guide,” Grundfos, 06-Oct-2017. [Online].

Tersedia: https://www.grundfos.com/about-us/news-and-press/news/fluid-viscosity-and-density-a-pump-user-s-guide.html. [Diakses: 11-Agust-2020]

[51] ASTM G102-89e1, “Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements,” ASTM International, West Conshohocken, PA, 2015, doi : 10.1520/G0102-89R15E01.

[52] R. T. Loto, C. A. Loto, and T. Fedotova, “Electrochemical studies of mild steel corrosion inhibition in sulfuric acid chloride by aniline,” Res. Chem. Intermed., vol. 40, no. 4, pp. 1501–1516, 2014.

[53] E. Akbarzadeh, M. N. M. Ibrahim, and A. A. Rahim, “Corrosion inhibition of mild steel in near neutral solution by Kraft and Soda lignins extracted from oil palm empty fruit bunch,”

Int. J. Electrochem. Sci., vol. 6, no. 11, pp. 5396–5416, 2011.

[54] A. K. Chakma and A. Meisen, “Corrosivity of Diethanolamine Solutions and Their Degradation Products,” Ind. Eng. Chem. Prod. Res. Dev., vol. 25, no. 4, pp. 627–630, 1986. [55] S. Öztürk, S. Mudaber, and A. Yıldırım, “Synthesis of 2,3-dihydroxypropyl-sulfanyl

derivative nonionic surfactants and their inhibition activities against carbon steel corrosion in acidic media,” J. Turkish Chem. Soc. Sect. A Chem., vol. 5, no. 2, pp. 333–346, 2018

Universitas Pertamina - 51 [56] Taylor & Francis. 2020. Yield Response Of Biodiesel Production From Heterogeneous And

Homogeneous Catalysis Of Milk Bush Seed (Thevetia Peruviana) Oil. [online] Tersedia: https://www.tandfonline.com/doi/full/10.1080/23815639.2017.1319772 [Diakses: 06- Agust-2020].

NORMA NK FAKULTAS SAINS DAN ILMU KOMPUTER | 1

Dokumen terkait