• Tidak ada hasil yang ditemukan

TINJAUAN PUSTAKA

2.10 PENGUJIAN DAN KARAKTERISAS

2.10.1 UJI KEKUATAN TARIK (TENSILE STRENGTH)

Kekuatan tarik adalah salah satu sifat dasar dari bahan polimer yang terpenting dan sering digunakan untuk karakteristik suatu bahan polimer. Kekuatan tarik suatu bahan didefenisikan sebagai besarnya beban maksimum (F maks) yang digunakan untuk memutuskan spesimennya bahan dibagi dengan luas penampang awal (Ao) dapat ditunjukkan pada persamaan 2.1 [55].

σ = Fmaks

o ...(2.1)

Dimana :

σ = kekuatan tarik (kgf/mm2) F maks = beban maksimum (kgf) Ao = luas penampang awal (mm2)

Kekuatan tarik dari karet lebih sering diukur dibandingkan sifat-sifat yang lain kecuali kekerasan dan karet sering digunakan pada berbagai aplikasinya, contohnya sarung tangan dan kondom tergantung pada sifat kekuatan tariknya. Alasannya adalah bahwa kekuatan tarik merupakan ukuran kualitas senyawa tersebut dan ikut berperan dalam pengaturan penggunaan bahan pengisi berbiaya rendah. Senyawa-senyawa yang dipakai untuk industri umumnya memiliki kualitas yang tinggi, sehingga kekuatan tarik mengambil bagian penting pada spesifikasi senyawa- senyawa yang dipakai untuk industri.

Kekuatan tarik karet juga memiliki ketertarikan sains tersendiri dan tipe ikat silang serta derajat ikat silang mempunyai pengaruh yang signifikan pada kekuatan tarik karet alam. Umumnya, kekuatan tarik akan mencapai maksimum seiring dengan meningkatnya derajat ikat silang. Nilai maksimum kekuatan tarik terjadi pada densitas ikat silang yang lebih tinggi [56].

2.10.2 KARAKTERISASI FOURIER TRANSFORM INFRA RED (FT-IR) Penggunaan spektrofotometer FT-IR untuk analisa banyak diajukan untuk identifikasi suatu senyawa. Hal ini disebabkan spektrum FT-IR suatu senyawa (misalnya organik) bersifat khas, artinya senyawa yang berbeda akan mempunyai spektrum berbeda pula. Vibrasi ikatan kimia pada suatu molekul menyebabkan pita serapan hampir seluruh di daerah spektrum IR 4000-450 cm-1.

Formulasi bahan polimer dengan kandungan aditif bervariasi seperti pemlastis, pengisi, pemantap, dan antioksidan memberikan kekhasan pada spektrum inframerahnya. Analisis infra merah memberikan informasi tentang kandungan aditif, panjang rantai, dan struktur rantai polimer. Di samping itu, analisis IR dapat digunakan untuk karakterisasi bahan polimer yang terdegradasi oksidatif dengan

munculnya gugus karbonil dan pembentukan ikatan rangkap pada rantai polimer [57].

2.10.3 KARAKTERISASI SCANNING ELECTRON MICROSCOPE (SEM) SEM adalah alat yang dapat membentuk bayangan permukaan spesimen secara mikroskopik. Berkas elektron dengan diameter 5-10 nm diarahkan pada spesimen. Interaksi berkas elektron dengan spesimen menghasilkan beberapa fenomena yaitu hamburan balik berkas elektron, Sinar X, elektron sekunder dan absorbsi elektron.

Teknik SEM pada hakikatnya merupakan pemeriksaan dan analisa permukaan. Data atau tampilan yang diperoleh adalah data dari permukaan atau dari

lapisan yang tebalnya sekitar 20 m dari permukaan. Gambar permukaan yang

diperoleh merupakan tofografi segala tonjolan, lekukan, dan lubang pada permukaan. Gambar topografi diperoleh dari penangkapan elektron sekunder yang dipancarkan oleh spesimen. Sinyal elektron sekunder yang dihasilkan ditangkap oleh detektor dan diteruskan ke monitor. Pada monitor akan diperoleh gambar yang khas yang menggambarkan struktur permukaan spesimen. Selanjutnya gambar dimonitor dapat dipotret dengan menggunakan film hitam putih atau dapat pula direkam ke dalam suatu disket.

Sampel yang dianalisa dengan teknik ini harus mempunyai permukaan dengan konduktifitas tinggi, karena polimer mempunyai konduktifitas rendah, maka bahan perlu dilapisi dengan bahan konduktor (bahan penghantar) yang tipis. Yang biasa digunakan adalah perak, tetapi jika dianalisa dalam waktu yang lama, lebih baik digunakan emas atau campuran emas dan palladium [58].

2.10.4 ANALISA KANDUNGAN AMILUM

milum (pati) merupakan hompolimer glukosa dengan ikatan α-glikosidik.

Berbagai macam pati tidak sama sifatnya, tergantung dari panjang rantai karbonnya, serta lurus atau bercabangnya rantai molekul. Amilum (pati) yang berikatan dengan Iodin (I2) akan menghasilkan warna biru. Sifat ini dapat digunakan untuk menganalisis adanya pati. Hal ini disebabkan oleh struktur molekul iodin dan terbentuklah warna biru. Bila pati dipanaskan, spiral merenggang, molekul-molekul

iodin terlepas sehingga warna biru menghilang. Pati akan merefleksikan warna biru bila berupa polimer glukosa yang lebih besar dari 20, misalnya molekul-molekul amilosa. Bila polimernya kurang dari 20 seperti amilopektin, maka akan dapat dihasilkan warna merah. Sedangkan desktrin dengan polimer 6,7 dan 8 membentuk warna coklat. Polimer yang lebih kecil dari 5 tidak memberikan warna dengan iodin [59].

2.10.5 X-RAY DIFFRACTION (XRD)

Kaidah difraksi sinar x sangat penting khususnya dalam penentuan struktur kristal. Kaidah ini digunakan seiring dengan kenyataan bahwa panjang gelombang sinar x berorde sama dengan kisi kristal sehingga kisi kristal berperan sebagai kisi difraksi. Lebih lanjut kaidah difraksi sinar x dapat juga digunakan untuk menentukan ukuran kristal atau butir, fase dan komposisi suatu padatan [60].

Sinar x juga dapat dihasilkan melalui peristiwa ―pengereman‖ elektron yang dipercepat yang disebut peristiwa Bremsstrahlung. Pancaran sinar x akibat transisi elektron akan memberikan suatu spektrum karakteristik. Artinya puncak-puncak intensitas spektrum sinar x terbentuk dengan panjang gelombang tertentu. Sedangkan sinar x yang berasal dari gejala Bremsstrahlung membentuk spektrum yang kontinyu dan rendah. Misal untuk padatan tembaga (Cu) sebagai target pada sumber sinar x,

intensitas spektrum sinar x karakteristik (Kα) yang dihasilkan memiliki panjang

gelombang sekitar 1.54 Å.

Sinar-x memiliki daya tembus yang cukup besar dan panjang gelombangnya berorde 10-10 m yang bersesuaian dengan ukuran kisi kristal. Karena itu sinar x dapat digunakan untuk menganalisis struktur kristal bahan padatan melalui peristiwa difraksi. Peristiwa difraksi sinar x pada kristal padatan dinyatakan dengan persamaan Bragg [60]:

2 dhkl Sin Ɵ = n �………..(2.2)

Dengan �hkl adalah jarak antar bidang kristal, � adalah sudut difraksi, � adalah

Gambar 2.3 Sinar x datang dan terdifraksi oleh atom-atom kristal [60] Kristalinitas merupakan salah satu sifat yang paling penting yang berkontribusi pada sifat fisika, kimia dan mekanik suatu bahan. Indeks kristalinitas (CrI) adalah parameter yang umumnya digunakan untuk menghitung jumlah kristalin dalam suatu bahan dan juga diterapkan untuk menafsirkan perubahan dalam struktur bahan setelah perlakuan fisikokimia dan biologis. Salah satu metode analitik untuk menentukan indeks kristalinitas adalah X-ray diffraction (XRD) [61].

Indeks kristalinitas dapat dihitung dengan metode Segal sebagai berikut [44].

Pada persamaan ini, CrI menyatakan derajat kristalinitas relatif, I002 adalah intensitas maksimum dari difraksi kisi 002 pada 2θ = 22o dan Iam adalah intensitas difraksi dalam satuan yang sama pada 2θ = 18o.

100 I I I CrI 002 am 002         ………...(2.3)

BAB I

PENDAHULUAN

Dokumen terkait