• Tidak ada hasil yang ditemukan

BAB V KESIMPULAN DAN SARAN

5.2. Saran

1. Bagi peneliti selanjutnya agar dapat meneliti lebih lanjut tentang faktor-faktor yang mempengaruhi impor gula Indonesia selain variabel yang ada dalam penelitian ini agar diperoleh pengaruh yang lebih signifik

2. Bagi pemerintah agar dapat menekan mengurangi laju volume impor gula di Indonesia. Adapun dalam mengurangi laju volume impor gula antara lain: (1) strategi, program dan dukungan yang nyata untuk meningkatkan produksi dan produktivitas gula, (2) pemerintah harus memiliki mekanisme yang tepat untuk memelihara kestabilan kurs Rupiah, (3) mencari barang substitusi sebagai bahan pemanis yang lain untuk mengurangi konsumsi gula pasir yang

65

tinggi, dan (4) penguatan lembaga dan dukungan permodalan untuk para usaha gula di Indonesia.

DAFTAR PUSTAKA

Ajija, Shochrul R.,dkk. 2011. Cara Cerdas Menguasai Eviews. Jakarta: Salemba Empat.

Badan Perencanaan Pembanguna Nasional. 2014. Studi Pendahuluan Rencana Pembangunan Jangka Menengah Nasional (RPJMN) Bidang Pangan dan Pertanian 2015-2019. Jakarta

Badan Pusat Statistik. 2000-2018. Statistik Indonesia. Jakarta.

Calton, W. D., K. T. Harman, and H. Williamson. 2016. Species 2000 and ITIS Catalogue of Life. Royal Botanic Gardens Kew. Surrey.

Chen, C. 2002. Regression and Outlier Detection with the Robustreg Procedure.

Statstcs and Data Analysis. SAS Institute: Cary, NC.

Christianto, Edward. 2013. Faktor Yang Mempengaruhi Volume Impor Beras di Indonesia. Jurnal JIBENKA Volume 7 No.2

Dahlan, D. 2011. Buku Ajar Mata Kuliah Budidaya Tanaman Industri. Fakultas Pertanian, Universitas Hasanuddin.

Draper, N.R. and Smith, H. 1992. Analisis Regresi Terapan. Ed. Ke-2.

Diterjemahkkan olehnBambang Sumantri. Gramedia Pustaka Utama, Jakarta.

Fox, J. 2002. Robust Regression. Tersedia di: http://cran.r-project.org/doc/contrib/Fox-Companion/appendix-robust-regression.pdf (15 Desember 2010

Gujarati, Damodar. 1988. Basic Econometric, International Edition. McGraw-Hill Book Company. Boston.

_______________. 1991. Basic Econometric, International Edition. McGraw-Hill Book Company. Boston.

_______________. 1995. Basic Econometrics, 3th Ed. McGraw-Hill.

Harsoyo, Y. 2004. β€œMembangkitkan Kembali Agroindustri Gula Nasional”.

Antisipasi Vol.8 No.1

Krugman, Paul, R, dan Obstfeld, Maurice, 2005. Ekonomi Internasional Teori dan Kebijaksanaan, Rajawali Pers, Jakarta.

Mubyanto. 1984. Pengantar Ekonomi Pertanian. LP3ES. Yogyakarta.

Myers, R.H. 1990. Clasical and Modern Regression With Application.

PWSKENT publihing Company, Boston.

Olive, D.J, 2005. Applied Robust Statistic. Carbondale: Southern Illinois University.

P3GI, 1992. Statistik Tanaman Tebu, Pasuruan : P3GI.

Salvatore. 2014. Ekonomi Internasional. BPFE. Yogyakarta.

Sapuan, 1998. Kebijaksanaan Pergulaan dan Perkembangan Tata Niaga Gula di Indonesia, Available online at www.bulog.go.id\papers\k_001gula.html Steenis, C.G.C.J.V., G.D> Hoed, dan P.J. Emya. 2005. Flora. PT. Pradnya

Paramita. Jakarta.

Sudiatso, S. 1982. Bertanam Tebu. Fakultas Pertanian, Institut Pertanian Bogor.

Sumodiningrat, Gunawan, 1994. Ekonometrika, Yogyakarta : BPFE - UGM.

Sumodiningrat, Gunawan. 2010. Ekonometrika Pengantar. Yogyakarta:

BPFEYogyakarta.

Susila dan Bonar M. Sinaga, 2005. Analisis Kebijakan Industri Gula Indonesia, Jurnal Agro Ekonomi, Vol. 23 No.1.

Wijayanti, W.A. 2008. Pengelolaan Tanaman Tebu (Saccharum Officinarum L.) di Pabrik Gula Tjoekir PTPN X. Jombang, Jawa Timur; Studi Kasus Pengaruh Bongkar Ratoon terhadap Peningkatan Produktivitas Tebu.

Skripsi Institut Pertanian Bogor.

Wilcox, R.R. 2005. Introduction to Robust Estimation and Hypothesis. San Diego: Academic Press.

LAMPIRAN

Lampiran 1. Data Analisis Volume Impor Gula Indonesia

Lampiran 2. Hasil Uji Stasioner dengan E-Views 10 Y (Volume Impor Gula) : Level

Null Hypothesis: Y has a unit root Exogenous: Constant

Lag Length: 1 (Automatic - based on SIC, maxlag=9)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic 1.378641 0.9986

Test critical values: 1% level -3.615588

5% level -2.941145

10% level -2.609066

*MacKinnon (1996) one-sided p-values.

Y (Volume Impor Gula) : πŸπ’”π’• difference

Null Hypothesis: D(Y) has a unit root Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -8.922985 0.0000

Test critical values: 1% level -3.615588

5% level -2.941145

10% level -2.609066

*MacKinnon (1996) one-sided p-values.

X1 (Nilai tukar Rupiah terhadap Dollar/Kurs) : Level

Null Hypothesis: X1 has a unit root Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -0.403436 0.8987

Test critical values: 1% level -3.610453

5% level -2.938987

10% level -2.607932

*MacKinnon (1996) one-sided p-values.

X1 (Nilai tukar Rupiah terhadap Dollar/Kurs) : πŸπ’”π’• difference

Null Hypothesis: D(X1) has a unit root Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -7.393045 0.0000

Test critical values: 1% level -3.615588

5% level -2.941145

10% level -2.609066

*MacKinnon (1996) one-sided p-values.

X2 (Sugar Domestic Demand) : Level

Null Hypothesis: X2 has a unit root Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic 1.065699 0.9965

Test critical values: 1% level -3.610453

5% level -2.938987

10% level -2.607932

*MacKinnon (1996) one-sided p-values.

X2 (Sugar Domestic Demand) : πŸπ’”π’• difference

Null Hypothesis: D(X2) has a unit root Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -7.230627 0.0000

Test critical values: 1% level -3.615588

5% level -2.941145

10% level -2.609066

*MacKinnon (1996) one-sided p-values.

X3 (Produksi Gula Indonesiaa) : Level

Null Hypothesis: X3 has a unit root Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -2.144275 0.2293

Test critical values: 1% level -3.610453

5% level -2.938987

10% level -2.607932

*MacKinnon (1996) one-sided p-values.

X3 (Produksi Gula Indonesiaa) : πŸπ’”π’• difference

Null Hypothesis: D(X3) has a unit root Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -6.133025 0.0000

Test critical values: 1% level -3.615588

5% level -2.941145

10% level -2.609066

*MacKinnon (1996) one-sided p-values.

X4 (Sugar Lagged Import) : Level

Null Hypothesis: X4 has a unit root Exogenous: Constant

Lag Length: 1 (Automatic - based on SIC, maxlag=9)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic 0.801421 0.9928

Test critical values: 1% level -3.615588

5% level -2.941145

10% level -2.609066

*MacKinnon (1996) one-sided p-values.

X4 (Sugar Lagged Import) : πŸπ’”π’• difference

Null Hypothesis: D(X4) has a unit root Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -9.251523 0.0000

Test critical values: 1% level -3.615588

5% level -2.941145

10% level -2.609066

*MacKinnon (1996) one-sided p-values.

Grafik Sebelum dan Sesudah Uji Stasioneritas 1. Volume Impor Gula di Indonesia (Y)

0

1980 1985 1990 1995 2000 2005 2010 2015

Y

1980 1985 1990 1995 2000 2005 2010 2015

Differenced Y

2. Nilai Tukar Rupiah terhadap Dollar/Kurs (X1)

0

1980 1985 1990 1995 2000 2005 2010 2015

X1

1980 1985 1990 1995 2000 2005 2010 2015

Differenced X1

1980 1985 1990 1995 2000 2005 2010 2015

X2

1980 1985 1990 1995 2000 2005 2010 2015

Differenced X2

4. Produksi Gula Indonesia (X3)

1980 1985 1990 1995 2000 2005 2010 2015

X3

1980 1985 1990 1995 2000 2005 2010 2015

Differenced X3

1980 1985 1990 1995 2000 2005 2010 2015

X4

1980 1985 1990 1995 2000 2005 2010 2015

Differenced X4

Lampiran 3. Hasil Uji Kointegrasi dengan E-Views-10 Date: 09/15/20 Time: 00:56

Sample (adjusted): 1981 2018

Included observations: 38 after adjustments Trend assumption: Linear deterministic trend Series: X1 X2 X3 X4 Y

Lags interval (in first differences): 1 to 1

Unrestricted Cointegration Rank Test (Trace)

Hypothesized Trace 0.05

No. of CE(s) Eigenvalue Statistic Critical Value Prob.**

None * 0.769390 93.50328 69.81889 0.0002 At most 1 0.427143 37.75632 47.85613 0.3127 At most 2 0.291037 16.58577 29.79707 0.6704 At most 3 0.088134 3.515612 15.49471 0.9387 At most 4 0.000254 0.009647 3.841466 0.9215 Trace test indicates 1 cointegrating eqn(s) at the 0.05 level

* denotes rejection of the hypothesis at the 0.05 level **MacKinnon-Haug-Michelis (1999) p-values

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized Max-Eigen 0.05

No. of CE(s) Eigenvalue Statistic Critical Value Prob.**

None * 0.769390 55.74696 33.87687 0.0000 At most 1 0.427143 21.17054 27.58434 0.2660 At most 2 0.291037 13.07016 21.13162 0.4458 At most 3 0.088134 3.505965 14.26460 0.9075 At most 4 0.000254 0.009647 3.841466 0.9215 Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level

**MacKinnon-Haug-Michelis (1999) p-values

Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):

X1 X2 X3 X4 Y

Unrestricted Adjustment Coefficients (alpha):

Normalized cointegrating coefficients (standard error in parentheses)

X1 X2 X3 X4 Y

1.000000 0.002416 -0.005076 -0.048544 0.044483 (0.00057) (0.00078) (0.00386) (0.00384) Adjustment coefficients (standard error in parentheses)

D(X1) -0.365184

Normalized cointegrating coefficients (standard error in parentheses)

X1 X2 X3 X4 Y

1.000000 0.000000 -0.002647 -0.042365 0.039848 (0.00055) (0.00367) (0.00380) 0.000000 1.000000 -1.005635 -2.557043 1.918187 (0.16792) (1.12151) (1.16307) Adjustment coefficients (standard error in parentheses)

D(X1) -0.533462 0.000311

D(Y) 144.5452 1.111371

Normalized cointegrating coefficients (standard error in parentheses)

X1 X2 X3 X4 Y Adjustment coefficients (standard error in parentheses)

D(X1) -0.550768 0.000435 0.000636

Normalized cointegrating coefficients (standard error in parentheses)

X1 X2 X3 X4 Y Adjustment coefficients (standard error in parentheses)

D(X1) -0.554710 0.000447 0.000653 0.022270 (0.10443) (0.00048) (0.00058) (0.00421) D(X2) 66.39138 0.046095 0.001301 -3.035448 (27.8010) (0.12676) (0.15559) (1.12009)

(27.2899) (0.12443) (0.15273) (1.09949) D(X4) 7.851859 -0.006838 0.001649 -0.456837 (4.82798) (0.02201) (0.02702) (0.19452) D(Y) 149.6689 1.098387 -1.540710 -8.802106 (43.0416) (0.19625) (0.24089) (1.73412)

Lampiran 4. Hasil Uji Asumsi Klasik dengan E-Views 10

-999998 -499998 3 500003 1000003 1500003

Series: Residuals

Coefficient Uncentered Centered

Variable Variance VIF VIF

3. Uji Heterokedastisita

Heteroskedasticity Test: Breusch-Pagan-Godfrey

F-statistic 0.611868 Prob. F(4,35) 0.6569

Obs*R-squared 2.614297 Prob. Chi-Square(4) 0.6243 Scaled explained SS 3.936427 Prob. Chi-Square(4) 0.4147

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares

Date: 09/15/20 Time: 00:50 Sample: 1979 2018

Included observations: 40

Variable Coefficient Std. Error t-Statistic Prob.

C 8.71E+10 3.33E+11 0.261035 0.7956

X1 17362573 29477522 0.589011 0.5596

X2 -132682.0 126593.6 -1.048094 0.3018

X3 153731.1 203899.5 0.753955 0.4559

X4 104816.1 124495.4 0.841927 0.4055

R-squared 0.065357 Mean dependent var 1.90E+11

Adjusted R-squared -0.041459 S.D. dependent var 3.81E+11 S.E. of regression 3.89E+11 Akaike info criterion 56.32763 Sum squared resid 5.29E+24 Schwarz criterion 56.53874 Log likelihood -1121.553 Hannan-Quinn criter. 56.40396 F-statistic 0.611868 Durbin-Watson stat 1.891871 Prob(F-statistic) 0.656859

4. Uji Autokorrelasi

Breusch-Godfrey Serial Correlation LM Test:

F-statistic 2.492147 Prob. F(2,33) 0.0982

Obs*R-squared 5.248795 Prob. Chi-Square(2) 0.0725

Test Equation:

Dependent Variable: RESID Method: Least Squares Date: 09/15/20 Time: 00:49 Sample: 1979 2018

Included observations: 40

Presample missing value lagged residuals set to zero.

Variable Coefficient Std. Error t-Statistic Prob.

C 191145.0 394139.2 0.484968 0.6309

X1 -87.00228 54.38001 -1.599895 0.1192

X2 -0.463512 0.278015 -1.667221 0.1049

X3 0.460748 0.335118 1.374883 0.1784

X4 0.764355 0.404579 1.889260 0.0677

RESID(-1) -0.976840 0.483637 -2.019780 0.0516

RESID(-2) -0.043800 0.198108 -0.221089 0.8264

R-squared 0.131220 Mean dependent var 2.33E-11

Adjusted R-squared -0.026740 S.D. dependent var 441142.2 S.E. of regression 447001.4 Akaike info criterion 29.01614 Sum squared resid 6.59E+12 Schwarz criterion 29.31169 Log likelihood -573.3228 Hannan-Quinn criter. 29.12300 F-statistic 0.830716 Durbin-Watson stat 1.881867 Prob(F-statistic) 0.554809

Lampiran 5. Hasil Uji Regresi Robust dengan E-Views 10 Dependent Variable: Y

Method: Robust Least Squares Date: 07/17/20 Time: 00:02 Sample: 1979 2018

Included observations: 40 Method: M-estimation

M settings: weight=Bisquare, tuning=4.685, scale=MAD (median centered) Huber Type I Standard Errors & Covariance

Variable Coefficient Std. Error z-Statistic Prob.

C -15220.98 310483.0 -0.049024 0.9609

X1 -40.41597 27.65855 -1.461247 0.1439

X2 0.826737 0.122707 6.737509 0.0000

X3 -0.869174 0.191603 -4.536337 0.0000

X4 0.422860 0.114192 3.703073 0.0002

Robust Statistics

R-squared 0.709701 Adjusted R-squared 0.676524

Rw-squared 0.946787 Adjust Rw-squared 0.946787

Akaike info criterion 42.21216 Schwarz criterion 54.23089

Deviance 4.67E+12 Scale 361347.7

Rn-squared statistic 472.3267 Prob(Rn-squared stat.) 0.000000 Non-robust Statistics

Mean dependent var 1301051. S.D. dependent var 1311418.

S.E. of regression 475915.6 Sum squared resid 7.93E+12

Lampiran 6. Hasil Analisis Forecasting atau Peramalan dengan E-Views dengan metode ARIMA (Ar-1)

Hasil Uji ARIMA (AR-1) Dependent Variable: D(Y)

Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 07/17/20 Time: 09:41

Sample: 1980 2018 Included observations: 39

Convergence achieved after 23 iterations

Coefficient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic Prob.

C 118391.8 64974.35 1.822131 0.0768

AR(1) -0.374993 0.138975 -2.698269 0.0105

SIGMASQ 2.68E+11 7.20E+10 3.715135 0.0007

R-squared 0.145721 Mean dependent var 121250.6

Adjusted R-squared 0.098261 S.D. dependent var 567075.4 S.E. of regression 538494.6 Akaike info criterion 29.30863 Sum squared resid 1.04E+13 Schwarz criterion 29.43660 Log likelihood -568.5183 Hannan-Quinn criter. 29.35454 F-statistic 3.070392 Durbin-Watson stat 1.874615 Prob(F-statistic) 0.058722

Inverted AR Roots -.37

Hasil Uji Correlogram of Residuals Date: 07/21/20 Time: 15:16

Sample: 1979 2025 Included observations: 39

Q-statistic probabilities adjusted for 1 ARMA term

Autocorrelation Partial Correlation AC PAC Q-Stat Prob . | . | . | . | 1 0.035 0.035 0.0510

. | . | . | . | 2 0.009 0.008 0.0544 0.816 **| . | **| . | 3 -0.295 -0.296 3.9290 0.140 . | . | . | . | 4 0.000 0.023 3.9290 0.269 . | . | . | . | 5 0.055 0.068 4.0708 0.397 . |** | . |** | 6 0.325 0.256 9.2014 0.101 . |*. | . |*. | 7 0.116 0.118 9.8747 0.130 . | . | . | . | 8 0.028 0.050 9.9150 0.193 **| . | .*| . | 9 -0.260 -0.141 13.512 0.095 .*| . | .*| . | 10 -0.111 -0.084 14.187 0.116 . |*. | . |*. | 11 0.154 0.175 15.548 0.113 . | . | .*| . | 12 0.018 -0.195 15.567 0.158 . | . | .*| . | 13 -0.043 -0.189 15.682 0.206 . | . | . | . | 14 -0.029 0.055 15.737 0.264 . | . | . |*. | 15 -0.014 0.082 15.750 0.329 .*| . | .*| . | 16 -0.089 -0.079 16.307 0.362

Dokumen terkait