• Tidak ada hasil yang ditemukan

BAB 5 KESIMPULAN DAN SARAN

5.2. Saran

Beberapa saran yang perlu disampaikan untuk kelanjutan dari penelitian ini adalah sebagai berikut :

54 1. Untuk mendapatkan nilai respon gas terhadap etanol konsentrasi 100 ppm yang lebih baik lagi perlu dilakukan dan tambah beberapa lagi variasi suhu serta variasi perbandingan mol Fe3O4 : ZnO.

2. Penelitian ini masih berpeluang besar untuk dikembangkan lagi ditinjau dari aspek metode sintesis Fe3O4-ZnO yang digunakan serta gas target yang akan disensor seperti karbon monoksida atau jenis gas VOC lainnya.

3. Untuk lebih meningkatkan kinerja dan sensitivitas sensor Fe3O4-ZnO ini perlu juga dirancang penelitian kedepan dengan menambahkan (mengcoating) penambahan bahan aditif, terutama dari bahan logam mulia seperti Platina (Pt), Paladium (Pd), Aurum/emas (Au) dan Argentum/Perak (Ag) pada sensor Fe3O4-ZnO.

4. Dalam uji gas etanol 100 ppm untuk sensor Fe3O4, perlu dilakukan variasi suhu lebih banyak lagi antara 250 ℃ sampai 300 ℃. Hal ini dilakukan untuk melihat secara pasti pada suhu berapa idealnya sensor Fe3O4 mulai respon ketika terpapar oleh gas etanol pada konsentrasi 100 ppm.

55 DAFTAR PUSTAKA

Ahadpour Shal, A., & Jafari, A. (2014). Study of structural and magnetic properties of superparamagnetic Fe 3 O 4 -ZnO core-shell nanoparticles.

Journal of Superconductivity and Novel Magnetism, 27(6), 1531–1538.

https://doi.org/10.1007/s10948-013-2469-9

B. Permana, T. Saragi, M. Saputri, L. Safriani, I. Rahayu, R. (2009). Sintesis Nanopartikel ZnO dengan Metode Kopresipitasi. Jurnal Teknik POMITS, 07(02), 1–7.

Bang, J. H., & Suslick, K. S. (2010). Applications of ultrasound to the synthesis of nanostructured materials. Advanced Materials, 22(10), 1039–1059.

https://doi.org/10.1002/adma.200904093

Bisht, G., & Rayamajhi, S. (2016). ZnO Nanoparticles: A Promising Anticancer Agent. Nanobiomedicine, 3. https://doi.org/10.5772/63437

Brust, J. C. M. (2010). Ethanol and cognition: Indirect effects, neurotoxicity and neuroprotection: A review. International Journal of Environmental Research and Public Health, 7(4), 1540–1557. https://doi.org/10.3390/ijerph7041540 Capone, S., Manera, M. G., Taurino, A., Siciliano, P., Rella, R., Luby, S.,

Benkovicova, M., Siffalovic, P., & Majkova, E. (2014). Fe3O4/γ-Fe2O3 nanoparticle multilayers deposited by the langmuir-blodgett technique for gas sensors application. Langmuir, 30(4), 1190–1197.

https://doi.org/10.1021/la404542u

Cuong, N. D., Hoa, T. T., Khieu, D. Q., Lam, T. D., Hoa, N. D., & Van Hieu, N.

(2012). Synthesis, characterization, and comparative gas-sensing properties of Fe 2O 3 prepared from Fe 3O 4 and Fe 3O 4-chitosan. Journal of Alloys

and Compounds, 523, 120–126.

https://doi.org/10.1016/j.jallcom.2012.01.117

Debataraja, A., Zulhendri, D. W., Yuliarto, B., Nugraha, Hiskia, & Sunendar, B.

(2017). Investigation of Nanostructured SnO2 Synthesized with Polyol Technique for CO Gas Sensor Applications. Procedia Engineering, 170, 60–

64. https://doi.org/10.1016/j.proeng.2017.03.011

Firdaus, C. M., Shah Rizam, M. S. B., Rusop, M., & Rahmatul Hidayah, S.

(2012). Characterization of ZnO and ZnO: TiO2 thin films prepared by sol-gel spray-spin coating technique. Procedia Engineering, 41(Iris), 1367–

1373. https://doi.org/10.1016/j.proeng.2012.07.323

Grzybowska, B., Ruszel, M., Samson, K., Grabowski, R., & Spiridis, N. (2009).

Au / Fe 3 O 4 and Au / Fe 2 O 3 Cat a lysts : Physicochemical Prop er ties and Ox i da tion of CO and Pro pane. 2136(2), 2129–2136.

Guo, T., Bian, X., & Yang, C. (2015). A new method to prepare water based Fe3O4 ferrofluid with high stabilization. Physica A: Statistical Mechanics

and Its Applications, 438(xxxx), 560–567.

https://doi.org/10.1016/j.physa.2015.06.035

56 He, H., & Gao, C. (2010). Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles. ACS Applied Materials and Interfaces, 2(11), 3201–3210.

https://doi.org/10.1021/am100673g

He, L., Liu, Y., Mustapha, A., & Lin, M. (2011). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum.

Microbiological Research, 166(3), 207–215.

https://doi.org/10.1016/j.micres.2010.03.003

Heo, Y. W., Ren, F., & Norton, D. P. (2006). Gas, Chemical and Biological Sensing with ZnO. Zinc Oxide Bulk, Thin Films and Nanostructures, 491–

523. https://doi.org/10.1016/B978-008044722-3/50014-2

Kazeminezhad, I., & Mosivand, S. (2014). Phase transition of electrooxidized Fe3O4 to γ and α-Fe2O3 nanoparticles using sintering treatment. Acta

Physica Polonica A, 125(5), 1210–1214.

https://doi.org/10.12693/APhysPolA.125.1210

Kim, S. H., Umar, A., Kumar, R., Algarni, H., & Kumar, G. (2015). Facile and rapid synthesis of ZnO nanoparticles for photovoltaic device application.

Journal of Nanoscience and Nanotechnology, 15(9), 6807–6812.

https://doi.org/10.1166/jnn.2015.11597

Koutu, V., Shastri, L., & Malik, M. M. (2016). Effect of NaOH concentration on optical properties of zinc oxide nanoparticles. Materials Science- Poland, 34(4), 819–827. https://doi.org/10.1515/msp-2016-0119

Leano, J. M. G., Villapando, J. M. L. A., Balaaldia, A. E., Gianan, G., Manalo, F.

K. B., & Florido, E. A. (2017). Carbon monoxide gas sensing using zinc oxide film deposited by spray pyrolysis. IOP Conference Series: Materials Science and Engineering, 201(1). https://doi.org/10.1088/1757-899X/201/1/012051

Long, N. V., Teranishi, T., Yang, Y., Thi, C. M., Cao, Y., & Nagomi, M. (2015).

Iron Oxide Nanoparticles for Next Generation Gas Sensors Fe 3 O 4 , α-Fe 2 O 3 , Metal nanoparticles. International Journal of Metallurgical and

Materials Engineering, 119, 18.

https://www.graphyonline.com/archives/IJMME/2015/IJMME-119/article.pdf

Ma, J., Liu, Y., Zhang, H., Ai, P., Gong, N., & Zhang, Y. (2014). Synthesis and high sensing properties of a single Pd-doped SnO2 nanoribbon. Nanoscale Research Letters, 9(1), 1–10. https://doi.org/10.1186/1556-276X-9-503 Madhubala, V., & Kalaivani, T. (2018). Phyto and hydrothermal synthesis of Fe 3

O 4 @ZnO core-shell nanoparticles using Azadirachta indica and its cytotoxicity studies. Applied Surface Science, 449, 584–590.

https://doi.org/10.1016/j.apsusc.2017.12.105

Miller, D. R., Akbar, S. A., & Morris, P. A. (2014). Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sensors and Actuators, B:

57

Paliwal, A., Sharma, A., Tomar, M., & Gupta, V. (2017). Carbon monoxide (CO) optical gas sensor based on ZnO thin films. Sensors and Actuators, B:

Chemical, 250, 679–685. https://doi.org/10.1016/j.snb.2017.05.064

Petcharoen, K., & Sirivat, A. (2012). Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 177(5), 421–427. https://doi.org/10.1016/j.mseb.2012.01.003

Premanathan, M., Karthikeyan, K., Jeyasubramanian, K., & Manivannan, G.

(2011). Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation.

Nanomedicine: Nanotechnology, Biology, and Medicine, 7(2), 184–192.

https://doi.org/10.1016/j.nano.2010.10.001

Putri, F. D., Ritongga, H. M., Murdiati, V., & Zainul, R. (2018). What Is Hydrothermal Liquefaction? Hydrothermal.

Rasmussen, J. W., Martinez, E., Louka, P., & Wingett, D. G. (2010). Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opinion on Drug Delivery, 7(9), 1063–1077.

https://doi.org/10.1517/17425247.2010.502560

Rocha-Santos, T. A. P. (2014). Sensors and biosensors based on magnetic nanoparticles. TrAC - Trends in Analytical Chemistry, 62, 28–36.

https://doi.org/10.1016/j.trac.2014.06.016

Safari, J., Zarnegar, Z., & Hekmatara, H. (2016). Green Synthesis of Fe3O4 Nanoparticles and Survey their Magnetic Properties. Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, 46(7), 1047–1052.

https://doi.org/10.1080/15533174.2013.776597

Septiani, N. L. W., Kaneti, Y. V., Yuliarto, B., Nugraha, Dipojono, H. K., Takei, T., You, J., & Yamauchi, Y. (2018). Hybrid nanoarchitecturing of hierarchical zinc oxide wool-ball-like nanostructures with multi-walled carbon nanotubes for achieving sensitive and selective detection of sulfur dioxide. Sensors and Actuators, B: Chemical, 261(January), 241–251.

https://doi.org/10.1016/j.snb.2018.01.088

Sharma, D., Rajput, J., Kaith, B. S., Kaur, M., & Sharma, S. (2010). Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties.

Thin Solid Films, 519(3), 1224–1229.

https://doi.org/10.1016/j.tsf.2010.08.073

Sharma, R. K., & Ghose, R. (2015). Synthesis of zinc oxide nanoparticles by homogeneous precipitation method and its application in antifungal activity

58 against Candida albicans. Ceramics International, 41(1), 967–975.

https://doi.org/10.1016/j.ceramint.2014.09.016

Shokry Hassan, H., Kashyout, A. B., Morsi, I., Nasser, A. A. A., & Ali, I. (2014).

Synthesis, characterization and fabrication of gas sensor devices using ZnO and ZnO:In nanomaterials. Beni-Suef University Journal of Basic and Applied Sciences, 3(3), 216–221. https://doi.org/10.1016/j.bjbas.2014.10.007

H. (2016). Synthesis and surface functionalization of Fe3O4-SiO2 core-shell nanoparticles with 3-glycidoxypropyltrimethoxysilane and 1,1′-carbonyldiimidazole for bio-applications. Colloids and Surfaces A:

Physicochemical and Engineering Aspects, 504, 376–383.

https://doi.org/10.1016/j.colsurfa.2016.05.008

Vistak, M., Sushynskyi, O., Mykytyuk, Z., Aksimentyeva, O., & Semenova, Y.

(2015). Sensing of carbon monoxide with porous Al2O3 intercalated with Fe3O4 nanoparticles-doped liquid crystal. Sensors and Actuators, A:

Physical, 235, 165–170. https://doi.org/10.1016/j.sna.2015.10.001

Yuliarto, B., Zhou, H., Yamada, T., Honma, I., & Asai, K. (2003). The SPV NO2 Gas Sensor Fabricated by Mesoporous Tin Oxide Film. Chemistry Letters, 32(6), 510–511. https://doi.org/10.1246/cl.2003.510

Zainul, R., Oktavia, B., Dewata, I., & Efendi, J. (2018). Thermal and Surface Evaluation on the Process of Forming a Cu2O/CuO Semiconductor Photocatalyst on a Thin Copper Plate. IOP Conference Series: Materials Science and Engineering, 335(1). https://doi.org/10.1088/1757-899X/335/1/012039

Zarringhadam, P., & Farhadi, S. (2018). Hydrothermal synthesis of novel magnetic plate-like Bi2O2CO3/CoFe2O4 hybrid nanostructures and their catalytic performance for the reduction of some aromatic nitrocompounds.

Acta Chimica Slovenica, 65(2), 448–461.

https://doi.org/10.17344/acsi.2018.4224

Zhang, Z., Liao, Q., Zhang, X., Zhang, G., Li, P., Lu, S., Liu, S., & Zhang, Y.

(2015). Highly efficient piezotronic strain sensors with symmetrical Schottky contacts on the monopolar surface of ZnO nanobelts. Nanoscale, 7(5), 1796–

1801. https://doi.org/10.1039/c4nr05597g

59 Lampiran

1. Publikasi Seminar Internasional

Penelitian ini telah menghasilkan publikasi AIP Conference Proceedings pada tanggal 31 Maret 2020. Link publikasi :

https://aip.scitation.org/doi/pdf/10.1063/5.0003210

60

61

62

63

64 2. Publikasi Jurnal Terindeks Scopus (Q1)

65

66

67

68

69

70

71

72

73

74

75

76

Dokumen terkait