• Tidak ada hasil yang ditemukan

AFNUR IMSYA

SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR

BOGOR 2013

AFNUR IMSYA. HasilBiodegradasi Lignoselulosa Pelepah Kelapa Sawit (Elaeis guineensis) oleh Phanerochaete chrysosporium sebagai Antioksidan dan Bahan Pakan Ternak Ruminansia. Dibawah Bimbingan ERIKA BUDIARTI LACONI, KOMANG G WIRYAWAN AND YANTYATI WIDYASTUTI

Lignoselulosa merupakanbagian dari biomassa yang terdapat pada tanaman. Komponen utama lignoselulosa adalah selulosa, hemiselulosa dan lignin Polimer selulosa, hemiselulosa dan lignin terjalin dengan kuat dan secara kimia berikatan melalui kekuatan non-kovalen dan saling bertautan melalui ikatan kovalen.Phanerochaete chrysosporiumtelah secara luas dimanfaatkan untuk proses biodegradasi lignoselulosa yang terdapat pada limbah pertanian dan menghasilkan peningkatan nilai gizi bagi pakan ternak. Penelitian ini bertujuan untuk mengetahui hasil dari proses biodegradasi lignoselulosa pelepah sawit menggunakan P. chrysosporiumsebagai antioksidan dan bahan pakan ternak.

Penelitian pertama dilakukan untuk menentukan waktu inkubasi terbaik dari proses biodegradasi lignoselulosa dan lignin yang berasal dari pelepah sawit menggunakan P. chrysosporium untuk menghasilkan antioksidan dan mengidentifikasi senyawa fenol yang memiliki aktivitas antioksidan. Pelepah sawit dan lignin (hasil ekstraksi dari pelepah sawit) diinokulasi dengan P. chrysosporiumdan diinkubasi pada suhu ruang selama 0, 4, 8, 10 dan 12 hari, setiap waktu inkubasi dilakukan 2 kali pengulangan.Identifikasi senyawa fenolik dilakukan dengan GC-MS dan aktivitas antioksidan dari biodegradasi lignoselulosa dan lignin dari pelepah sawit dilakukan dengan menggunakan metode α,α-Diphenyl-β- Picrylhydrazyl (DPPH).

Penelitian kedua dilakukan untuk mengetahui interaksi terbaik dari dosis inokulan dan waktu inkubasi biodegradasi pelepah sawit dengan P.chrysosporiumterhadap perubahan nilai gizi dan fraksi serat pelepah sawit.Penelitian dilakukan dengan menggunakan rancangan acak lengkap pola faktorial.Perlakuan terdiri dari 2 faktor yaitu dosis inokulan (105cfu/ml, 106cfu/ ml, and 107cfu/ml) dan lama inkubasi (10, 15, dan 20 hari).

Penelitian ketiga bertujuan untuk mengetahui pemakaian pelepah sawit fermentasi menggunakan P

Hasil penelitian menunjukkan bahwa biodegradasi pelepah sawit dengan lama inkubasi sampai hari ke-10 menghasilkan peningkatan persentase inhibisi yang digunakan sebagai gambaran aktivitas antioksidan, namun pada hari ke-12 degradasi terjadi penurunan aktivitas antioksidan. Pola yang sama diperoleh pada degradasi lignin yang berasal dari ekstraksi pelepah sawit. Persentase inhibisi yang dihasilkan .chrysosporiumpengganti rumput gajahdalam ransum sapi potong.Penelitian menggunakan rancangan acak kelompok dengan 4 perlakuan. Perlakuan terdiri ransum 1 (R1) 60% rumput gajah, ransum 2 (R2) 40% rumput gajah 20% pelepah sawit fermentasi, ransum 3 (R3) 20%rumput gajah 40% pelepah sawit fermentasi dan ransum 4 (R4) 60 % pelepah sawit fermentasi. Setiap ransum ditambah 40% konsentrat.Parameter yang diukur adalah kecernaan in vitrodari bahan kering, bahan organik, NDF, ADF, serat kasar, konsentrasi N-NH3,TVFA, jumlah bakteri selulolitik, protozoa dan aktivitas antioksidan.

lignin pada 10 hari fermentasi ditemukan komponen terbesar dari senyawa fenol berupa 2.6dimethoxy phenol, Vanilic acid, Coumaric acid, Vanilin acid and Syringic aldehid, sementara pada pelepah sawit fermentasi diperoleh komponen terbesar senyawa fenol berupa Syringic acid, 2.6dimethoxy phenol, Hidroxy Benzaldehyd, Methoxy Phenol and Syringic aldehid

Pada penelitian ke-2 diperoleh bahwa interaksi terbaik untuk biodegradasi pelepah sawit denganP.crhysosoporium terjadi pada dosis inokulan 107cfu/ml dengan lama inkubasi 10 hari terhadap fraksi serat dan nutrient pelepah sawit fermentasi. Penurunan kandungan lignin mencapai 47.79%, NDF 40.16%, ADF 40.93%, selulosa 35.69%, hemiselulosa 36.90%, degradasi lignin 49.47%,rasio selulosa dengan lignin1.35. Tidak terdapat interaksi antara dosis inokulan dan lama inkubasi terhadap kandungan bahan kering, bahan organik, protein kasar, serat kasar, lemak kasar dan BETN fermentasi pelepah sawit. Pada percobaan In vitro, hasil penelitian menunjukkan bahwa peningkatan pemakaian pelepah sawit fermentasi sampai 60% dalam ransum menggantikan rumput gajah menurunkan kecernaan bahan kering, bahan organik, NDF, ADF, serat kasar, konsentrasi

Kesimpulan dari penelitian ini adalah biodegradasi lignoselulosa dan lignin yang berasal dari pelepah sawit dengan

N-NH3, TVFA dan jumlah bakteri selulolitik, namun tidak mempengaruhi total protozoa rumen. Aktivitas antioksidan yang dihasilkan menunjukkan peningkatan dengan semakin meningkatnya pemakaian pelepah sawit fermentasi pada inkubasi awal (0 jam) namun pada 72 jam inkubasi in vitro terjadi penurunan aktivitas dan konsentrasi antioksidan.

P.chrysosporium menghasilkan senyawa fenolik yang memiliki aktivitas antioksidan yang tinggi pada hari ke-10 degradasi. Interaksi terbaik antara dosis inokulan dan lama fermentasi adalah 107cfu/mldan 10 hari untuk penurunan kandungan lignin fermentasi pelepah sawitolehP

Kata kunci: antioksidan,lignin, pelepah sawit,phanerochaete chrysosporium, ransum ruminansia

.crhysosporium.Pelepah sawit fermentasi bisa digunakan sebagai pengganti rumput gajah sampai taraf 20% dalam ransum ruminansia.

SUMMARY

AFNUR IMSYA. Biodegradation of Lignocelulosic of Palm Oil Frond (Elacis guineensis) by Phanerochaete chrysosporium as Antioxidant and Feedstuff for Ruminant. Under the directions of ERIKA BUDARTI LACONI, KOMANG G WIRYAWAN AND YANTYATY WIDYASTUTI

Lignocellulose is the major component of biomass, it consists of three types of polymers, cellulose, hemicelllose and lignin that are stongly intermeshed and chemically bonded by non-covalent force and by covalent cross linkages. Phanerochaete chrysosporium was widely used to delignify agriculture waste product and improve biodegradation of the substrate as animal feed. This research was conducted to determine the optimum fermentation time of lignin and fermented palm oil frond with Phanerochaete chrysosporium based on the amount of phenolic compounds produce, its antioxidant activity and fiber digestibility in ruminant ration.

The first experiment, palm oil frond and lignin (extraction of palm oil frond) were inoculated with P. chrysosporium and incubated at room temperature for 0, 4, 8, 10 and 12 days. For each incubation time, two replications were employed. The phenolic compounds in the supernatant was determined by GC-MS and antioxidant activity test of lignin and palm oil frond fermented products using the method of α,α- Diphenyl-β-Picrylhydrazyl (DPPH).

The second experiment was conducted to study the interaction between inoculant doses and time of fermentation with Phanerochaete chrysosporium on pH, water activity, fiber components and nutrient. This research was done based on completely randomized design with 2 factor as treatments. The first factor was inoculant doses : 105cfu/ml, 106cfu/ ml, and 107

The third experiment was carried out to increase the use of palm oil fronds as a substitute material for Napier grass through biodegradation process with Phanerochaete chrysosoporium. A randomized completelyblockdesign with four treatments and four replications was used. The treatments were ration 1 (R1) containing 60% Napier grass, ration 2 (R2) containing 40% Napier grass and 20% fermented palm oil frond, ration 3 (R3) containing 20% Napier grass and 40% fermented palm oil frond, ration 4 (R4) containing 60 % fermented palm oil frond. Forty percent concentrate was included in all treatment rations. Parameters measured were in vitro digestibilities of dry matter, organic matter, crude fiber, NDF, and ADF. N-NH3 and TVFA concentration, number of celllulolitic bacteria and protozoa rumen and antioxidant activity in the rumen.

cfu/ml, the second factor was length of fermentation : 10, 15, and 20 days.

Results showed that longer incubation time (up to day 10) of oil palm frond increased the percentage of inhibition with89.411% inhibitionrate and antioxidant activity was declined at 12 days of incubation. Similar pattern was obtained from fermented lignin with 92.108% inhibition rate for 10 days fermentation.On day 10 fermentation, the main components of phenolic compounds resulted from lignin degradation included 2.6dimethoxy phenol, vanillic acid, coumaric acid, vanillin acid and syringic aldehid and those from fermented oil palm frond included syringic acid, 2.6dimethoxy phenol, hidroxy benzaldehyd, methoxy phenol, and syringic

cellulose to lignin (1.35). There was no interaction between inoculant doses and time of fermentation on fermented palm oil frond dry matter, organic matter, crude protein, crude fiber, crude fat and BETN. In vitro experiment showed that incresing level of fermented palm oil frond in the ration reduced (P<0.05) digestibility

As the conclusion,

of dry matter, organic matter, crude fiber, NDF, ADF, N-NH3, TVFA concentration and number of ruminal cellulolytic bacteria, antioxidant activity but unsignificantly for number of ruminal protozoa.

the process oflignocelluloses and lignindegradation of palm oil frond using P.chrysosporiumproducedphenoliccompoundswithantioxidantactivity. The bestdegradationtimefor degradation of lignocelllusic and lignin of palm oil frond for anxtioxidant activity was 10 days with89.411% inhibitionrate for fermented palm oil frond and92.108%forfermented lignin derivedfrom the extraction ofoil palm frond. The best interaction between inoculant doses and time of fermentation was 107cfu/ml inoculants and 10 days incubation time for degradation of lignin and nutrient of fermented palm oil frond.Fermented palm oil frond up to20% could be used as a substitutefor napier grass for ruminant rations

Keywords: antioxidant, lignin, palm oil frond, phanerochaete chrysosporium, biodegradationbbbbb

DAFTAR PUSTAKA

Aggawal B, A Kumar, AC Bharti. 2003. Anticancer potential of curcumin:preclinical and clinical studies. Anticancer Res, 23:363-398

Alcaide EM, Ruiz DRY, Moumen A, Garcia AIM. 2003. Ruminal degradability and in vitro intestinal digestibility of sunflower meal and in vitro digestibility of olive by-products supplemented with urea or sunflower meal comparison between goats and sheep. Anim. Feed Sci Technol. 110:3-15 Alemawor F, Dzogbefia VP, Oddoye EOK, Oidham JH. 2009. Effect of Pleurotus

ostreatus fermentation on cocoa pod husk composition:influence of

fermentation period and Mn 2+ supplementation on the fermentation process. Afr Journal Biotechnol 8:1950-1958

Andarwulan N, Kusnandar F, Herawati. 2011. Analisis Pangan. Jakarta (ID) : Dian Rakyat

Annison EF, Lindsay DB, Nolan JV. 2002. Digestion and Metabolism.in: Freer M, Dove H, Editor, Sheep Nutrition. Collingwood:Cabi Publishing, hlm 95- 118

AOAC (Association of Official Agriculture Chemists). 1998. Official Methods of Analysis of AOAC international. Ed ke-16. Gaitherburg:AOAC International

Arora DS, Chander M, Gill PK. 2002. Involvement of lignin peroxidase, manganase peroxidase and laccase in degradation and selective ligninolysis of wheat straw. Int biodeter Biodegrad 50:115-120

Badan Pusat Statistik. 2003. HTTP: //

Baurhoo B, CA Ruiz, X Zhao. 2008. Purified lignin:Nutritional and health impact on farm anial: A review. Animal Feed Science and Tech. 144:175-148

(DIAKSES TANGGAL 27

MARET 2005).

Bennett JW, Wunch KG, Faison BD. 2002. Use of fungi in biodegradation. In: Hurst CJ, editor. Manual of Environmental Microbiology.Washington DC: AMS press: 960–7

Boerjan WRJ, Baucher M. 2003. Lignin Biosyntesis. Annu. Rev. Plant Biol 54: 519-546

Buranov AU, Mazza G. 2008. Lignin in straw of herbaceous crops. Industrial

Crops and Products. 28:237-259

Castro E, Conde E, Moure A, Falqué E, Cara C, Ruiz E. 2008. Antioxidant activity of liquors from steam explosion of Olea europea wood.Wood

Science and Technology, 42,:579-592.

Cattani M, Franco TB, Lucia B, Stefano S. 2012. Synthetic and natural polyphenols with antioxidant properties stimulate rumen microbial growth in vitro. Animal Production Science. 52: 44–50

Cherdthong A, Wanapat M, Kongmun P, Pilajun R, Khejornsart P. 2010. Rumen fermentation, microbial protein synthesis and cellulo- lytic bacterial population of swamp buffaloes as affected by roughage to concentrate ratio. J. Anim. Vet. Adv. 9:1667–1675.

Cherdthong A,Wanapat M ,Wachirapakorn C. 2011. Influenceof urea–calcium mixturesasrumenslow-releasefeedon in vitro fermentation using gas production technique. Arch.Anim.Nutr.65:242–254.

Cherdthong A,Wanapat M. 2013.Manipulationof in vitro ruminal fermentation and digestibility by dried rumen digesta. Livestock Science. 153:94-100 Conde E, Moure ., Domínguez H, Parajó JC. 2008. Fractionation of antioxidants

from autohydrolysis of barley husks. Journal of Agricultural and Food

Chemistry. 56:10651-10659.

Conde EC, Cara, A Moure, E Ruiz, E Castro, H Dominguez. 2009. Antioxidant activity of the phenolic coumpound by hydrothermal treatments of olive tree pruning. Food Chemistry. 114:806-812

Conde EC, A Moure, H Domínguez , JC Parajó. 2011. Production of antioxidants by non-isothermal autohydrolysis of lignocellulosic Wastes. Food Science

and Technology 44:436-442

Couto SR, Dominguez A, Sanroman A. 2001. Utilisation of lignocellulosic wastes for lignin peroxidase production by semi-solid-state cultures of

Phanerochaetae chrysosporium. Biodegradation 12:283-289.

Cruz JM, JM Dominguez, H Dominguez, JC Parajo. 2001. Antioxidant dan antimicrobial effect of extract from hydrolysates of lignocellulosic material. J. Agric Food Chem. 49:2459-2464

Cutrignelli MI, Piccolo G, D’Urso S, Calabro S, Bovera F, Tudisco R, Infascelli F. 2010. Urinary excretion of purine derivatives in dry buffalo and Fresian cows. Ital.J.Anim.Sci.6(2):563–566.

Dahia DS, Khatta VK, Kumar N, mann NS. 2004. Fungal treatment of crop residues by Coprinus fimetarius and its utilization by goats. Indian J. dairy Sci, 57:122-126

Dashtban M, Schraft H, Qin W. 2009. Fungal bioconvertion of lignocellulosic residues: Opportunities and perspectives. Int J Biol Sci 5 (6):578-595 Davidson, S., B. A. Hopkins, D. E. Diaz, S. M. Bolt, C. Brownie, V. Fellner and

L. W. Whitlow. 2003. Effects of amounts and degradability of dietary protein on lactation, nitrogen utilization, and excretion in early lactation Holstein cows. J. Dairy Sci. 86:1681-1689.

Detmann, E. 2009. Parameterization of ruminal fiber degradation in low-quality tropica forage using michaelis-menten kinetics. Livestock Sci. 126:136-146 DINAS PERKEBUNAN PROPINSI SUMATERA SELATAN. 2004. Buku Saku Data

Perkebunan Sumatera Selatan Tahun 2004. Palembang

straw lignin by solid state fermentation with white rot fungi. Bioresour

Technol 100:4829-4835

Diwyanto K, D Sitompul, I Marti, IW Mathius, Soentoro. 2003. Pengkajian Pengembangan Usaha Sistem Integrasi Kelapa Sawit-Sapi. Prosiding Lokakarya Nasional Sistem Integrasi Kelapa Sawit – Sapi. Bengkulu, 9-10 September 2003. Puslitbang Peternakan, Bogor. hlm. 1-22

Dizhbite, T., Telysheva, G., Jurkjane, V., Viesturs, U., 2004. Characterization of the radical scavenging activity of lignins natural antioxidants. Bioresour.

Dudonne S,Vitrac X, Couti P, Woillez M, Me´ rillon J. 2009. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem 57: 1768–1774.

Egüés I, C Sanchez, I Mondragon, JL Abidi. 2012. Antioxidant activity of phenolic compounds obtained by autohydrolysis of corn residues.

Industrial Crops and Products, 36 :164–171

Eugène, M., Archimède, H., Sauvant, D., 2004. Quantitative meta-analysis on the effects of defaunation of the rumen on growth, intake and digestion in ruminants. Livest. Prod. Sci. 85: 81–97.

Fadilah, Distantina S, Artati EK, Jumari A. 2008. Biodelignifikasi Batang Jagung dengan Jamur Pelapuk Putih Phanaerochaete chrysosporium. Ekuilibrium. 7(1):7-11.

Fiorentinia G, JD Messanaa, PHM Diana, RA Reisa, RC Canesina, AV Piresb, TT Berchielli . 2013. Digestibility, fermentation and rumen microbiota of crossbred heifers fed diets with different soybean oil availabilities in the rumen. Animal Feed Science and Technology. 181:26– 34

Garrote G, Cruz JM, Domínguez, H, & Parajó JC. 2003. Valorisation of waste fractions from autohydrolysis of selected lignocellulosic materials. Journal

of Chemical Technology and Biotechnology. 78:392-398.

Garrote G, Falqué E, Domínguez H, & Parajó JC. 2007. Autohydrolysis of agricultural residues: study of reaction byproducts. Bioresource

Technology 98:1951-1957.

Gervais P. 2008. Water relations in solid satae fermentation. Didalam:Pandey A, Soccol CR, Larroche C, editor. Current Development in Solid-State Fermentation New Delhi:Asiatech Publisher Inc

Gorinstein S, Zachwieja Z, Katrich E, Pawelzik E, Harvenkit R, Trakhtenberg S, Martin-Belloso O. 2004, Comparison of the contents of the main antioxidant compounds and antioxidant activity of white grapefruit and his hybrid. Lebensm. Wiss. Technol. 37:337–343.

Gold MH, Alic M. 2002. Molecular biology of the lignin-degrading basidiomycetes Phanerochaetae chrysosporium. Microbiol Rev. 57:605- 622

Griswold, K. E., G. A. Apgar, J. Bouton and J. L. Firkins. 2003. Effects of urea infusion and ruminal degradable protein concentration on microbial growth, digestibility, and fermentation in continuous culture. J. Anim. Sci. 81:329- 336

Gupte A, Gupte S, Patel H. 2007. Ligninolytic enzyme production under solid- state fermentation by white rot fungi. J Sci Ind Res. 66:611-614.

Gutierrez A, Delrio JC, Martinez-Inigo MJ, Martinez MJ, Martinez AT. 2005. Production of new unsaturated lipids during wood decay by ligninolytic basidiomycetes. Appl. Environ. Microbiol. 68:1344-1350.

Haddadin MSY, Jamal H, Omar IA, Butros H. 2009. Biological conversion of olive pomace into compost by using Tricoderma harizanum and

Phanerochaetae chrysosporium. Bioresource Technology 100:4773-4782

Hendriks, ATWM, Zeeman G. 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10-18

Holovska K, Lenartova V, Holovska K, Pristas P, Javorski P. 2002. Are ruminal bacteria protected against environmental stress by plant antioxidants?

Letters in Applied Microbiology. 35: 301–304.

Howard RL, Abotsi E, Van Rensburg ELJ, Howard S. 2003. Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr. J.

Biotechnol. 2:602-619.

Hu TQ. 2002.Chemical modification, properties, dan usage of lignin; Kluwer Academic/Plenum Publishers: New York,

Imsya A, R Palupi. 2009. The change of lignin, NDF (Neutral Detergent Fiber), dan ADF (Acid Detergent Fiber) palm fronds with biodegumming process as fiber source feedstuff for ruminantia. JITV 14(4): 284-288.

Irianti A. 2008. Aplikasi ekstrak daun sirih dalam menghambat oksidasi lemak jambal patin. [tesis]. Bogor: Sekolah Pascasarjana Institut Pertanian Bogor.

Islam M, I Dahlan, MARajion, ZA Jelan. 2000. Productivity and nutritive values of different fractions of Oil Palm (Elaeis guineensis) Frond. Asian-

Aust.J.Anim.Sci. Vol.13 No. 8 : 1113-1120

Iyayi EA, 2004. Changes in the cellulose, sugar and crude protein contents of agro-industrial by product fermented with Aspergillus niger, Aspergillus

flavus and Penicilium sp.Afr Journal Biotechnol 3:186-188

Jalc D, Zora V, Andrea L, Petr H, Filip J. 2009. Effect of inoculated corn silage on rumen fermentation and lipid metabolism in artificial rumen (Rusitec).

Animal Feed Science and Technology. 152:256-266

John F, Monsalve G, Medina PIV, Ruiz CAA. 2006. Ethanol production of banana shell and cassava starch. Dyna Universidad Nacional de Colombia.

73:21–7.

Jonathan SG, Fasidi IO, Ajayi AO, Adegeye A. 2008. Biodegradation of Nigerian wood waste by Pleurotus tuber-regium (Fries) Singer. Bioresource and

Technology 99: 807- 811.

Jonathan SG, Okorie AN, Babayemi OJ, Oyelakin AO, Akinfemi . 2012. Biodegradation of agricultural wastes (rice straw and sorghum stalk ) into substrates of utilizable products using white rot fungus Pleurotus florida.

Nature and Science :10(9): 131-137

Jung HJG, DS Himmelsbach. 2008. Isolation and Characterization of wheat straw lignin. J. Agric. Food Chem. 37: 81-87

Jung HJG, DA Deetz. 2003. Cell wall lignifications anf degradability. In HG Jung, DR. Buxton, RD Hatfield, J Ralph (ed) Forage cell wall structure and digestibility. P.315. ASA-CSSA-SSSA, Medison, WI

Jun HJG, DR Mertens, AJ Payne. 2003. Correlation of acid detergent and klason lignin in forage with in vitro and in vivo dry matter and neural detergent fiber digestibility. J. Dairy Sci. 76:248 (abstrak)

Karabulut A, CanbolatO, Kalkan H, Gurbuzol F, Sucu E, Filya I. 2007. Comparisonof in vitro gas production, metabolizable energy, organic matter digestibility and microbial protein production of some legume hays.Asian-

Kongmun P,Wanapat M, Pakdee P, Navanukraw C. 2010. Effect of coconut oil and garlic powder on in vitro fermentation using gas production technique.

Livest.Sci.127:38–44.

Lee KG, GR Takeoka, JH Kim, BS Park. 2005. Antioxidant activity and characterization of volatile constituents of beechwood creosote. Journal of

the Sci of Food and Agric, 85:1580-1586

Liu, J.X, Susenbeth A, Sudekum KH. 2002. In vitro gas production measurements to evaluate interactions between untreated and chemically treated rice straws,grass hay,and mulberry leaves. J. Anim.Sci.80 :517–524.

Lynd LR, Weimer RJ. Van Zyl WH, Pretorius IS. 2002. Microbial Cellulose Utilization:Fundamental and Biotechnology. Microbiol Mol Biol Rev

66:506-577

McDonald P, RA Edwards, JFD Greenhalg, CA Morgan. 2002. Animal Nutrition. 6th Ed. Ashford Color Pr., Gosport

MacFaddin JF. 1985. Media for Isolation-Cultivation-Identification-Maintenance of Medical Bacteria, Vl. I, Williams and Wilkins, Baltimore. Landon

Malherbe S, Cloete TE. 2003. Lignocellulose biodegradation:Fundamentals and applications. Environ Sci Biotechnol 1:105-114

Martin C, C Mirandeb, DP Morgavia, E Foranoc, E Devillardb, P.Mosonic. 2013. Methionine analogues HMB and HMBi increase theabundance of cellulolytic bacterial representatives in therumen of cattle with no direct effects on fibre degradation. Anim. Feed Scie and Techn. Accepted 18 March 2013.

Martínez AT. 2002. Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme Microb Technol. 30:425–32.

Martinez G, Larrondo N, Putman N, Gelpke MDS, Huang K, Chapman J, 2004. Genome sequence of the lignocelluloses degrading fungus P.

chrysosporium strain RP78. Nature Biotechnol 22:1-6

Martínez AT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F,. 2005. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol;8:195–204 Moure A, Cruz JM, Franco D, Domínguez JM, Sineiro J, Domínguez H. 2001.

Natural antioxidants from residual sources e a review. Food Chemistry. 72:145-171

Musnandar, E. 2004. Pertumbuhan jamur Marasmius sp. pada substrat kelapa sawit untuk bahan pakan ternak. Majalah Ilmiah Angsana Vol. 08. No.3, Desember ; 25 - 30.

Nagadi S, Herrero M, Jessop NS. 2000. The effect of fermentable nitrogen availability on in vitro gas production and degradability of NDF. Animal

Feed Sci technol. 87:241-251

Nelson, Suparjo. 2011. Penentuan lama fermentasi kulit buah kakao dengan

Phanerochaete chrysosporium: evaluasi kualitas nutrisi secara kimiawi. J

Agrin. 1(1):1-10.

Nenkova S, T Radoykova, K Stanulov. 2011. Prepatation and antioxidant propetties of biomass low molecular phenolic compounds (Review).

Journal of the University of Chemichal Technology and Metallurgy. 46

Noferdiman, Y Rizal, Mirzah, Y. Heryanti,Y. Marlinda. 2008. Penggunaan urea sebagai sumber nitrogen pada proses biodegradasi substrat lumpur sawit oleh jamur Phanerochaete chrysosporium. J. Ilmiah Ilmu ilmu Peternakan

XI (4): 175 – 182.

Nurhaita, Rita W, Definiati N, Zurina R. 2012. Fermentasi Bagase Tebu Dengan

Neurospora sitophila dan Pengaruhnya Terhadap Nilai Gizi dan

Kecernaan Secara in Vitro. Jur. Embrio. 5 (1) : 1-7.

Ogata M. M Hoshi, K Shimotohno, S. Urano, T Endo. 2007. Antioxidant activity of magnolol, honokiol, and related phenolic compounds. J. Am.Oil. Chem. Soc. 84 (5):557-562

Ogimoto K, Imai S. 1981. Atlas of Rumen Microbilogy. Japan Scientific Societies Press. Tokyo. p.201-221

Okano, K., Iida, Y., Samsuri, M., Prasetya, B., Usagawa, T., &Watanabe, T., 2006. Comparison of in vitro digestibility and chemical composition among sugarcane bagasse treated by four white rot fungi. Anim. Sci. J. 77:308– 313.

Okano, K., Fukui, S., Kitao, R., Usagawa, T., 2007. Effects of cultural length of Pleurotus eryngii grown on sugarcane bagasse on in vitro digestibility and chemical composition. Anim. Feed Sci. Technol. 136:240–247.

Orskov ER. 1992. Protein nutrition in ruminants. 2nd Ed. Academic press, 24-28 oval Road, London. NWI 7DX. pp. 20-42.

Park BS, KG Lee, T Shibamoto, SE Lee, GR Takeoka. 2002. Antioxidant activity and characterization of volatile constituents of Taheeboo (Tabebuia

impetiginosa matius ex dc). Jour.of Agrucult and Food Chem., 51:295-300

Perez j, Munoz-Dorado J, De La Rubia T, Martinez J. 2002. Biodegradation and