• Tidak ada hasil yang ditemukan

Perbandingan model fungsi transfer dan arima : studi kasus model antara curah hujan dengan kelembaban udara

N/A
N/A
Protected

Academic year: 2017

Membagikan "Perbandingan model fungsi transfer dan arima : studi kasus model antara curah hujan dengan kelembaban udara"

Copied!
54
0
0

Teks penuh

(1)

i

PERBANDINGAN MODEL FUNGSI TRANSFER DAN ARIMA

STUDI KASUS MODEL ANTARA CURAH HUJAN DENGAN

KELEMBABAN UDARA

Skripsi

Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Sains

Fakultas Sains dan Teknologi

Universitas Islam Negeri Syarif Hidayatullah Jakarta

Oleh: Catur Aprialis

106094003178

PROGRAM STUDI MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI

UNIVERSITAS ISLAM NEGERI SYARIF HIDAYATULLAH JAKARTA

(2)

PENGESAHAN UJIAN

Skripsi berjudul “Perbandingan Model Fungsi Transfer dan ARIMA Studi Kasus Model Antara Curah Hujan dengan Kelembaban Udara” yang ditulis oleh Catur Aprialis, NIM 106094003178 telah diuji dan dinyatakan lulus dalam sidang Munaqosyah Fakultas Sains dan Teknologi Universitas Islam Negeri Syarif Hidayatullah Jakarta pada tanggal 31 Agustus 2010, skripsi ini telah diterima sebagai salah satu syarat untuk memperoleh gelar Sarjana strata satu (S1) Program Matematika.

Menyetujui :

Penguji 1, Penguji 2,

Taufik Edy Sutanto, M.Sc.Tech Gustina Elfiyanti, M.Si NIP. 19790530 200604 1 002 NIP. 19820820 200901 2 006

Pembimbing 1, Pembimbing 2,

Hermawan Setiawan, M.Kom Suma’inna, M.Si NIP. 19740623 199312 1 001 NIP. 150 408 699

Mengetahui :

Dekan Fakultas Sains dan Teknologi, Ketua Program Studi Matematika,

(3)

iii

PERNYATAAN

DENGAN INI SAYA MENYATAKAN BAHWA SKRIPSI INI BENAR-BENAR HASIL KARYA SENDIRI YANG BELUM PERNAH DIAJUKAN SEBAGAI SKRIPSI PADA PERGURUAN TINGGI ATAU LEMBAGA MANAPUN.

Jakarta, 31 Agustus 2010

(4)

PERSEMBAHAN

Skripsi ini aku persembahkan untuk

Kedua orang tuaku, Papa dan Mama tercinta,

Mbaku, Masku, Adikku, Keponakanku dan

Keluarga besarku tersayang, serta

Pacarku (“tercinta, tersayang, tercantik dan terbaik”) dan

Keluarganya untuk do’a, kasih sayang, dukungan dan

semangat tiada henti yang membuat

aku bertahan hingga sejauh ini...

Sahabat-sahabat dan Keluarga besar Program Studi Matematika

terhebat yang selalu mendampingi dan berjuang bersama

dalam semangat persahabatan dan persaudaraan...

MOTTO

Firman Allah Subhanahu Wa Ta’ala :

…” dan katakanlah: Ya Tuhanku, tambahkanlah kepadaku ilmu pengetahuan”

[QS Thaha : 114]

Sabda Nabi Muhammad Shalallahu Alaihi Wasallam :

“Ya Allah, aku mohon kepada-Mu ilmu yang bermanfaat, rizki yang halal dan

amalan yang diterima.”

[HR Ahmad]

“ Barang siapa yang menempuh jalan untuk mencari ilmu, niscaya Allah SWT

memudahkan baginya jalan ke surga. Dan sesungguhnya malaikat sungguh

meletakkan sayapnya terhadap orang yang mencari ilmu karena ridho tentang apa

yang ia perbuat..”

(5)

v

ABSTRAK

CATUR APRIALIS, Perbandingan Model Fungsi Transfer dan ARIMA Studi Kasus Model Antara Curah Hujan dengan Kelembaban Udara. Di bawah bimbingan Hermawan Setiawan, M.Kom dan Suma’inna, M.Si.

Informasi tentang banyaknya curah hujan adalah salah satu unsur penting dan besar pengaruhnya terhadap segala macam aktifitas, seperti produksi pertanian, perkebunan, perikanan, penerbangan, dan sebagainya. Prakiraan curah hujan dengan segala bentuk analisis dan informasi yang dihasilkan besar dampaknya guna membantu dan menunjang kegiatan sosial ekonomi di Indonesia. Banyak metode dalam statistika yang dapat digunakan dalam melakukan peramalan suatu deret waktu, seperti ARIMA dan Model Fungsi Transfer

Pada skripsi ini dilakukan perbandingan antara kedua metode tersebut dalam meramalkan curah hujan bulanan dari tahun 1998 sampai dengan 2007. Pada Model Fungsi Transfer menggunakan kelembaban udara yang berpengaruh dalam meramalkan curah hujan.Hasil peramalan dengan menggunakan ARIMA diperoleh nilai MAPE sebesar 123,32 sedangkan pada Model Fungsi Transfer diperoleh nilai MAPE sebesar 106,82. Berdasarkan nilai tersebut, dengan nilai MAPE yang lebih kecil, dapat dikatakan untuk data curah hujan Model Fungsi Transfer lebih baik dari ARIMA dalam melakukan peramalan curah hujan.

(6)

ABSTRACT

CATUR APRIALIS, Comparison Transfer Function Models and ARIMA Case Study Between Rain Fall with Air Humidity under direction of Hermawan Setiawan, M.Kom and Suma’inna, M.Si.

The development of todays industry services motivated the company to control their qua lity of services. The control of quality should be done continually and in a long time period to mantain service qualities. There are lots of variabels used in this reaserch and Multivariate Statistical Process Control (MSPC) is one of the method that can be used in this kind of problem.

This reaserch done by first applying Principal Component Analysis method to reduce variable dimension and then analyse the resulting variables to make a standard of the service at Laboratory of Syarif Hidayatullah Hospital. This quality control is important currently the hospital does not have yet quality control departement at the time reserch. This reserch use 100 random samples from outpatient patient. The Analysis shows, some problems appear from the process, the main problems happened when registration process. The main cause of these problems are the undercomunication problem is utilization of registration technology and the information for patient, therefore in order to increase the service quality, the Hospital need to updates their facilities and make better information socialization to patients.

(7)

vii

KATA PENGANTAR

Segala puji bagi Allah SWT, Yang Maha Mulia, Sumber Cahaya Ilmu, yang senantiasa melimpahkan rahmat kepada hamba-Nya. Berkat anugrah dan ridho-Nya, penulis dapat menyelesaikan skripsi “Perbandingan Model Fungsi Transfer dan ARIMA Studi Kasus Model Antara Curah Hujan dengan Kelembaban Udara”. Shalawat dan salam teruntuk Baginda Nabi Muhammad saw, panutan paling hak di bumi ini, beserta keluarga dan para sahabatnya.

Skripsi ini dimaksudkan untuk memenuhi salah satu syarat menempuh ujian Sarjana Sains pada Program Studi Matematika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Syarif Hidayatullah Jakarta.

Pada penulisan skripsi ini, penulis mendapat bimbingan dan bantuan dari berbagai pihak, sehingga pada kesempatan ini penulis mengucapkan terima kasih kepada:

1. Dr. Syopiansyah Jaya Putra, M. Sis, Dekan Fakultas Sains dan Teknologi Universitas Islam Negeri Syarif Hidayatullah.

2. Yanne Irene, M.Si, Ketua Program Studi Matematika dan selaku Penguji I. 3. Suma’inna, M.Si, Sekretaris Program Studi Matematika dan selaku

Pembimbing II.

4. Taufik Edy Sutanto, M.Sc.Tech, selaku Penguji I. 5. Gustina Elfiyanti, M.Si, selaku Penguji II.

(8)

7. Kedua Orang tua, Papa dan Mama tercinta, Mba Rini, Mas Didit, Mas Yitno, Mba Nur, Mas Puji, Mba Citra, Ari, Vano, Bita dan Tsakib serta seluruh keluarga besar yang sudah mendampingi dan memberikan dukungan moral dan materil.

8. Sweetheartku, Niken Putri Pradanayanti yang selalu ada disampingku dalam memberikan semangat dan do’a selama ini, “ I love you”.

9. Bapak Abdullah Riva’i dan sekeluarga yang selalu membantu penulis. 10. Sahabat yang sudah lulus, Anas, Reza, Mahmudi, Dwi, Ulfah, Vivi dan Ella.

Sahabat satu perjuangan, Ramdhan, Farrah dan Epo. Sahabat yang belum lulus kalian harus tetap semangat, Arya, Zikri, Iben, Yayan, Rohmat, Indra, Arif, Sayuti, Jemy, Anty, Firda, Iif, Iis dan Jaka. Terima kasih untuk persahabatan, kasih sayang, dan dukungan kalian, gud luck guys!.

11. Kak Dennis, Kak Bambang, Kak Sopi, Pandu, Yanna, Peppi, Acong dan seluruh Keluarga besar Matematika Fakultas Sains dan Teknologi.

12. B 6041 CAD yang selalu setia mengiringi langkahku dalam menempuh panas dan hujan selama 4 tahun.

Pada akhirnya penulis berharap skripsi ini dapat bermanfaat bagi pembaca pada umumnya. Penulis menyadari masih banyak kekurangan dalam penulisan skripsi ini, sehingga penulis mengharapkan saran dan kritik yang konstruktif.

Jakarta, 31 Agustus 2010

(9)

ix DAFTAR ISI

HALAMAN JUDUL ... i

PENGESAHAN UJIAN ... ii

PERNYATAAN ... iii

PERSEMBAHAN DAN MOTTO ... iv

ABSTRAK ... v

ABSTRACT ... vi

KATA PENGANTAR ... vii

DAFTAR ISI ... ix

DAFTAR TABEL ... xii

DAFTAR GAMBAR ... xiii

BAB I PENDAHULUAN ... 1

1.1. Latar Belakang ... 1

1.2. Perumusan Masalah ... 2

1.3. Pembatasan Masalah ... 2

1.4. Tujuan Penelitian ... 3

1.5. Manfaat Penelitian ... 3

BAB II LANDASAN TEORI ... 4

2.1. Curah Hujan ... 4

2.2. ARIMA ... 5

2.3. Fungsi Transfer ... 6

(10)

2.3.2 Identifikasi Model Dasar Fungsi Transfer ... 9

2.3.3 Penaksiran Parameter-parameter Model ... 12

2.3.4 Pemeriksaan Diagnostik Pada Model ... 13

2.3.5 Peramalan Menggunakan Model Fungsi Transfer... 14

BAB III METODOLOGI PENELITIAN ... 16

3.1. Metode Pengumpulan Data ... 16

3.2. Metode Pengolahan Data ... 16

3.3. Alur Penelitian ... 18

BAB IV HASIL DAN PEMBAHASAN ... 20

4.1. Eksplorasi Data ... 20

4.2. Mempersiapkan Deret Output dan Deret Input (Penstasioneran Data) ... 20

4.3. Identifikasi Model ARIMA ... 22

4.3.1.Kelembaban Udara ... 22

4.3.2.Curah Hujan ... 23

4.4. Prewhitening Deret Input dan Output ... 25

4.5. Menghitung Korelasi Silang ... 25

4.6. Identifikasi Awal Model Fungsi Transfer ... 25

4.7. Identifikasi Model Sisaan ... 27

4.8. Pendugaan Akhir Parameter Model Fungsi Transfer ... 27

4.9. Peramalan Model Fungsi Transfer ... 28

BAB V KESIMPULAN DAN SARAN ... 31

(11)

xi

(12)

DAFTAR TABEL

Tabel 4.1 Nilai SBC dan AIC Kandidat Model ARIMA Xt Tabel 4.2 Nilai SBC dan AIC Kandidat Model ARIMA Y

... 23 t

Tabel 4.4 Perbandingan Peramalan Model Funsi Transfer dengan ARIMA ... 29 ... 24 Tabel 4.3 Rekapitulasi Identifikasi Awal Model Fungsi Transfer ... 26

(13)

xiii

DAFTAR GAMBAR

Gambar 3.1 Alur Penelitian ... 18 Gambar 4.1 Plot Yt

Gambar 4.2 Plot X

Stasioner ... 21 t

Gambar 4.3 Plot ACF Deret Input x

Stasioner... 21 t

Gambar 4.4 Plot PACF Deret Input x

... 22 t

Gambar 4.5 Plot ACF Deret Output y

... 22 t...

Gambar 4.6 Plot PACF Deret Output y

23 t

(14)

BAB I

PENDAHULUAN

1.1. Latar Belakang

Negara Indonesia merupakan negara dengan iklim tropis dan memiliki dua musim, musim kemarau dan musim penghujan. Musim penghujan berperan dalam menunjang berlangsungnya proses kehidupan masyarakat Indonesia, seperti produksi pertanian, perkebunan, perikanan, penerbangan, dan sebagainya. Informasi tentang banyaknya curah hujan adalah salah satu unsur penting dan besar pengaruhnya terhadap segala macam aktifitas tersebut.

Curah hujan adalah endapan atau deposit air dalam bentuk cair maupun padat yang berasal dari atmosfer. Curah hujan mencangkup tetes hujan, salju, batu es, dan embun. Salah satu faktor yang mempengaruhi curah hujan adalah kelembaban udara. Kelembaban udara adalah ukuran banyaknya uap air di udara [3]. Prakiraan curah hujan dengan segala bentuk analisis dan informasi yang dihasilkan besar dampaknya guna membantu dan menunjang kegiatan sosial ekonomi di Indonesia.

(15)

2 menggabungkan beberapa karakteristik model-model ARIMA univariat dengan beberapa karakteristik analisis regresi [4].

Berdasarkan uraian diatas maka penulis mengambil judul PERBANDINGAN MODEL FUNGSI TRANSFER DAN ARIMA STUDI KASUS MODEL ANTARA CURAH HUJAN DENGAN KELEMBABAN UDARA.

1.2. Perumusan Masalah

Berdasarkan latar belakang permasalahan di atas, maka dapat dirumuskan permasalahan sebagai berikut:

1. Bagaimana model peramalan curah hujan berdasarkan kelembaban udara dengan menggunakan model fungsi transfer?

2. Berapa besar ramalan curah hujan berdasarkan model yang telah diperoleh? 3. Bagaimana perbandingan hasil peramalan model fungsi transfer dengan

model ARIMA?

1.3. Pembatasan Masalah

(16)

1.4. Tujuan Penelitian

Tujuan dari penelitian ini adalah:

1. Mendapatkan model peramalan curah hujan berdasarkan kelembaban udara dengan menggunakan model fungsi transfer.

2. Memperoleh ramalan curah hujan berdasarkan model yang telah diperoleh. 3. Mendapatkan hasil perbandingan peramalan model fungsi transfer dengan

model ARIMA.

1.5. Manfaat Penelitian

Berikut adalah beberapa manfaat dari pemecah masalah yang dibahas dalam skripsi ini :

1. Memberikan sumbangan pemikiran bagi BMKG dalam memprediksikan curah hujan di suatu daerah.

2. Bagi penulis sangat bermanfaat dalam menerapkan ilmu pengetahuan yang selama ini dipelajari dalam perkuliahan dan tentunya juga dapat menambah wawasan terutama dalam penggunaan statistika di bidang peramalan.

(17)

4 BAB II

LANDASAN TEORI

2.1. Curah Hujan

Curah hujan adalah jumlah air hujan yang jatuh di permukaan tanah selama periode tertentu diukur dalam satuan tinggi di atas permukaan horizontal apabila tidak terjadi penghilangan oleh proses penguapan, pengaliran dan peresapan. Satuan yang digunakan adalah millimeter. Bagi bidang meteorologi pertanian, curah hujan dikumpulkan berdasarkan periode harian atau setiap periode 24 jam yang diukur setiap pagi hari. Dari data harian dapat dihimpun data curah hujan minggua n, sepuluh harian (dasarian), bulanan, tahunan, dan sebagainya [6].

Menurut pengertian klimatologi, satu hari hujan adalah periode 24 jam di mana terkumpul curah hujan setinggi 0.5 mm atau lebih. Kurang dari ketentuan ini hujan dinyatakan nol, meskipun tinggi curah hujannya tetap diperhitungkan. Curah hujan di suatu daerah tidaklah selalu sama dengan di daerah lain. Ada suatu daerah yang pada akhir tahun hujannya mulai meningkat tinggi dan mencapai puncaknya dan pertengahan tahun mencapai titik terendahnya. Sebaliknya, di daerah lain pada akhir tahun hujannya mencapai titik terendah, sedangkan pada pertengahan tahun mencapai titik tertingginya [3].

Rata-rata curah hujan di Indonesia untuk setiap tahunnya tidak sama. Namun masih tergolong cukup banyak, yaitu rata-rata 2000 – 3000 mm/tahun. Begitu pula antara tempat yang satu dengan tempat yang lain rata-rata curah hujannya tidak sama.

(18)

Curah hujan menurut BMKG dibagi menjadi empat kelompok, yaitu: 1. Curah hujan rendah: 0-20mm, 21-50mm, 51-100mm.

2. Curah hujan menengah: 101-150mm, 151-200mm, 201-300mm. 3. Curah hujan tinggi: 301-400mm

4. Curah hujan sangat tinggi: 401-500mm, >500mm.

2.2. ARIMA

Metode ARIMA pertama kali diperkenalkan oleh Box dan Jenkins. Pada model ini terjadi proses Autoregressive (AR) berordo-p atau proses Moving

Average (MA) q atau merupakan kombinasi keduanya. Pembeda

berordo-d berordo-dilakukan jika berordo-data berordo-deret waktu tiberordo-dak stasioner. Kebanyakan berordo-data berordo-deret waktu bersifat non stasioner, padahal aspek-aspek AR dan MA dari model ARIMA menghendaki data yang stasioner. Syarat utama dalam membuat model ARIMA adalah data bersifat stasioner, baik dalam rataan maupun ragam. Data dikatakan stasioner jika fluktuasi data berada di sekitar nilai yang konstan (stasioner dalam rataan) dan ragam dari fluktuasi tersebut tetap konstan dari waktu ke waktu (stasioner dalam ragam) [1].

Bentuk umummodel ARIMA (p,d,q) adalah sebagai berikut :

t q t

d

p(B) X µ θ (B)e

φ ∇ = + 2.1

dengan:

µ = konstanta

t

e = sisaan pada waktu ke-t

d

(19)

6

( merupakanpolinomial karakteristik AR

q

( merupakanpolinomial karakteristik MA

Memasukkan faktor musiman (S) ke dalam model akan dapat mereduksi besarnya sisaan yang disebabkan oleh fakor musiman. Bentuk umum dari model campuran dengan faktor musiman adalah ARIMA (p,d,q)(P,D,Q)s

t

s = banyaknya pengamatan deret waktu dalam satu musim

d

∇ = operator pembedaan dengan derajat pembeda d

p

( merupakanpolinomial karakteristik AR

q

( merupakanpolinomial karakteristik MA

) (B

Ps

Φ = merupakan polinomial karakteristik AR musiman

) (B Qs

Θ = merupakan polinomial karakteristik MA musiman

D s D

s =(1−B )

∇ merupakan operator pembedaan musiman dengan pembedaan

derajat D

2.3. Fungsi Transfer

(20)

Metode yang digunakan dalam moedel fungsi transfer adalah penggabungan pendekatan deret berkala dengan pendekatan kausal [4].

Deret waktu X t memberikan pengaruhnya kepada deret waktu Y t melalui fungsi transfer, yang mendistribusikan dampak X t melalui beberapa periode yang akan datang. Model yang dihasilkan disebut model fungsi transfer, yang menghubungkan deret output (Yt), deret input (Xt), dan noise (nt) [4]. Fungsi transfer digunakan untuk meramal nilai yang akan datang dari suatu deret output (

t

Y ) berdasarkan nilai yang lalu dari deret output tersebut dan deret-deret lain yang berhubungan (secara umum disebut deret input (Xt)).

Fungsi transfer memetekan deret input Xt ke deret output Ytdimana Xt

merupakan input yang terkendali. Tetapi pada kenyataannya input ini biasanya tidak terkendali. Upaya untuk mengatasi hal ini adalah melakukan pemutihan yaitu penghilangan seluruh pola yang diketahui sehingga yang berpengaruh hanyalah galat acak. Untuk mempertahankan hubungan fungsional fungsi transfer maka transformasi pemutihan yang dilakukan terhadap deret input haruslah dilakukan pula terhadap deret output.

2.3.1.Bentuk Dasar Model Fungsi Transfer

Model fungsi transfer bivariat ditulis dalam dua bentuk umum. Bentuk pertama adalah sebagai berikut:

t t

t v B X N

(21)

8

N pengaruh kombinasi dari seluruh faktor yang mempengaruhi Yt(disebut “gangguan”)

Deret input dan output harus ditransformasikan dengan tepat (untuk mengatasi varian yang nonstasioner), dibedakan (untuk mengatakan nilai tengah yang nonstasioner) dan mungkin perlu dihilangkan unsur musimannya. Jadi Xt

dan Yt (dan juga Nt) pada persamaan (2.3) harus diingat sebagai nilai yang telah ditransformasikan bukan dalam bentuk data mentah. Orde dari fungsi transfer adalah k (menjadi orde tertinggi untuk proses pembedaan) dan ini kadang-kadang dapat lebih besar (dan oleh karena itu tidak terlalu dibatasi). Karena alasan-alasan ini, model fungsi transfer juga ditulis sebagai berikut:

(22)

=

y nilai Yt yang telah ditransformasikan dan dibedakan

=

t

x nilai Xt yang telah ditransformasikan dan dibedakan

=

t

a nilai gangguan random,

r,s,p,q, dan b konstanta

2.3.2.Identifikasi Model Fungsi Transfer

1. Mempersiapkan Deret Input dan Output

Model ARIMA memperbolehkan pembedaan suatu deret berkala (time

series) sehingga proses AR dan MA dapat didefinisikan sebagai data yang

stasioner. Dengan kata lain, apabila data mentah tidak stasioner, maka biasanya data tersebut dibedakan terlebih dahulu untuk menghilangkan ketidakstasioneran. Keadaan ini juga dapat digunakan untuk model umum MARIMA. Jadi, di dalam pemodelan fungsi transfer perlu mentransformasi dan/atau membedakan deret-deret input dan output, terutama apabila terdapat ketidakstasioneran [4].

2. Pemutihan Deret Input

(23)

10 Misalkan jika deret inputxt dimodelkan sebagai proses ARIMA (px,0,qx

), maka deret ini memiliki model:

t average danαtadalah kesalahan random, yaitu white noise.

Dengan demikian deret input yang telah mengalami pemutihan (αt) adalah:

t

φ = Operator Autoregresif

) (B

x

θ = Operator Moving Avarage

t

x = Deret input yang stasioner 3. Pemutihan Deret Output

Fungsi transfer merupakan proses pemetaan xt terhadap yt. Sehingga apabila diterapkan suatu proses pemutihan terhadapxt, maka transformasi yang sama juga harus diterapkanyt agar dapat mempertahankan integritas hubungan fungsional. Sehingga deret output yang telah ditransformasi (βt) adalah:

(24)

t

β = Deret input yang diputihkan

) (B

x

φ = Operator Autoregresif

) (B

x

θ = Operator Moving Avarage

t

y

= Deret output yang stasioner

4. Penghitungan Korelasi Silang antara Deret Input dan Output yang Telah Diputihkan

Konstanta b, r, dan s ditentukan berdasarkan pola fungsi korelasi silang

antara αt dan βt

a. Korelasi silang berbeda nyata dengan nol untuk pertama kalinya pada lag ke-b. . Cara menentukan nilai b, s, dan r adalah :

b. Untuk s dilihat dari lag berikutnya yang mempunyai pola yang jelas atau lama x

mempengaruhi y setelah nyata yang pertama.

(25)

12

2.3.3.Penaksiran Parameter-parameter Model

1. Pendugaan awal parameter δ dan ω

ω = dicari dengan memanfaatkan persamaan berikut ini:

0

Taksiran awal model dilakukan dengan melihat pola korelasi silang antara

t

α dan βt. Sehingga identifikasi awal dari model fungsi transfer adalah :

v = bobot respon impuls

t

x =deret input yang stasioner

t

y =deret output yang stasioner

2. Identifikasi Model Deret Gangguan

Taksiran bobot impuls yang diperlihatkan memungkinkan untuk menghitung taksiran awal komponen noise dari model fungsi transfer.

(26)

Sesudah menggunakan persamaan 2.11 untuk mengukur deret gangguan,

dianalisis dengan cara ARIMA biasa untuk menentukan apakah terdapat model ARIMA (p, 0, q), untuk mendapatkan

2.12

3. Taksiran Akhir Parameter Model Fungsi Transfer

Taksiran awal parameter merupakan nilai awal pada logaritma pendugaan kuadrat terkecil nonlinier untuk membentuk penduga akhir parameter model yang dilakukan secara iteratif. Proses diulang sampai kekonvergenan dicapai. Iterasi akan berhenti jika jumlah kuadrat galatnya mencapai nilai minimum.

Pada prosedur SAS, pendugaan akhir parameter ini menggunakan Metode Kuadrat Terkecil (Least Squares Methods).

2.3.4.Pemeriksaan Diagnostik Pada Model

Pemeriksaan kesesuian model dilakukan dengan melihat perilaku sisaan (at) dan korelasi silang contoh (SCC) antara at dan αt

Uji statistik Q Box-Pierce dapat diaplikasikan untuk menguji kebebasan sisaan dan tidak adanya korelasi antara input dan sisaan, dengan rumus sebagai berikut:

(sisaan dan input). Keacakan sisaan serta tidak adanya nilai SCC yang berbeda nyata dengan nol menunjukkan model sudah sesuai.

(27)

14

r = autokorelasi untuk waktu tunda k df = derajat bebas =mpq

2.3.5.Peramalan Menggunakan Model Fungsi Transfer

Peramalan dihitung dengan menggunakan persamaan:

t

dengan memasukkan nilai-nilai parameterfungsi transfer dan nilai deret input dan outputyang didapat dari langkah-langkahsebelumnya.

Kriteria pemilihan model biasanya menggunakan Schwarz’s Bayesian

Criterion (SBC) atau disebut juga Bayesian Information Criterion (BIC) adalah

kriteria untuk memilih model. SBC merupakan kriteria pemilihan model berdasarkan fungsi kemungkinan maksimum. SBC didefinisikan sebagai :

n

dalam model, dan n banyaknya sisaan yang dapat dihitung dari suatu deret. Model terbaik adalah model dengan nilai SBC minimum [7].

SBC dibentuk untuk menyeleksi model dan memilih nilai parameter yang sebenarnya setepat mungkin. Sementara Akaike Information Criterion (AIC) cenderung dari SBC, dimana AIC dapat didefinisikan sebagai : nln ˆa 2M

2 +

σ .

(28)

Setelah melakukan peramalan, ketepatan peramalan dapat dicari dengan menghitung MAPE (Mean Absolute Percentage Error), dengan rumus sebagai berikut :

100

1

× −

=

n x

f x MAPE

n

t t

t t

2.14

dengan xt adalah pengamatan pada waktu ke-t dan ft adalah ramalan pada waktu

(29)

16 BAB III

METODOLOGI PENELITIAN

3.1 Metode Pengumpulan Data

Data yang penulis gunakan dalam penulisan Skripsi ini merupakan data sekunder, yakni data tentang jumlah curah hujan dan kelembaban udara pada Stasiun Klimatologi Pondok Betung periode 1997 – 2008. Penelitian ini dilaksanakan selama 1 bulan, dimulai pada tanggal 2 Februari 2009 sampai dengan 2 Maret 2009.

Penelitian berlokasi di kantor Balai Besar Meteorologi, Klimatologi, dan Geofisika Wilayah II, Jl. Kp. Bulak Raya No. 5 Cempaka Putih Ciputat Kabupaten Tangerang. Data yang diperoleh tepatnya berasal dari Sub Bidang Manajemen Data.

3.2 Metode Pengolahan Data

Pengolahan data dilakukan dengan menggunakan metode fungsi transfer untuk mendapatkan hasil peramalan curah hujan, dengan tahapan pengolahan sebagai berikut:

a. Mempersiapkan deret output dan deret input (penstasioneran data). Tahap ini mengidentifikasikan apakah deret input dan deret output sudah stasioner baik dalam rataan maupun dalam ragam. Jika data tidak stasioner maka dilakukan pembedaan dan transformasi untuk menghilangkan ketidakstasioneran,

(30)

t

Y : Curah hujan (deret output)

t

X : Kelembaban udara (deret input)

b. Identifikasi model ARIMA untuk seluruh peubah. Identifikasi model ARIMA dilakukan dengan memperhatikan beberapa nilai awal dan periode musiman dari korelasi diri dan korelasi diri parsialnya yang tidak nol, serta pola dari plot ACF dan plot PACFnya.

c. Prewhitening deret input (kelembaban udara) dan deret output (curah hujan).

Prewhitening/pemutihanderet input dan deret output maksudnya adalah untuk

menghilangkan seluruh pola yang diketahui supaya yang tertinggal hanya white noise.

d. Menghitung korelasi silang antara Deret Input dan Deret Output. Menghitung korelasi silang antara deret input dan deret output maksudnya adalah untuk mencari hubungan antara kelembaban udara dengan curah hujan.

e. Identifikasi awal model fungsi transfer. Identifikasi awal model dilakukan dengan melihat pola korelasi silang antara αt (pemutihan deret input) dan βt (pemutihan deret output).

f. Identifikasi model sisaan. Identifikasi model sisaan dilakukan dengan melihat plot ACF dan PACF dari identifikasi awal model fungsi transfer.

g. Identifikasi Akhir Parameter Model Fungsi Transfer. Identifikasi akhir parameter model fungsi transfer dilakukan dengan mengkombinasikan model awal dengan sisaannya.

h. Meramalkan jumlah Curah Hujan dengan menggunakan model terbaik.

(31)

18

3.3 Alur Penelitian

Alur penelitian dijelaskan pada Gambar 3.1 berikut:

Tidak Ya

Gambar 3.1 Alur Penelitian Transformasi dan

Pembedaan (xtdan yt)

Deret waktu Xtdan Yt

Identifikasi awal model sisaan Identifikasi awal nilai

b, r, dan s

Model ARIMA xt

Prewhitening yt(βt)

Korelasi Silang αt dan βt

Diagnostik Model Pendugaan Parameter

Fungsi Transfer

Prewhitening xt(αt)

Model ARIMA yt

Peramalan Transfer Peramalan ARIMA yt

(32)

Gambar 3.1 merupakan gambar alur penelitian yang menjelaskan proses alur penelitian yang dapat dijelaskan sebagai berikut :

Data deret waktu yang telah diperoleh berupa variabel input atau Xt yaitu

kelembaban udara dan variabel output atau Yt yaitu curah hujan. Tahap pertama

terlebih dahulu mempersiapkan deret input dan deret output, setelah itu deret input dan output dilakukan transformasi ataupun pembedaan untuk mendapatkan data yang stasioner. Setelah deret input telah stasioner (xt), lalu tentukan model

ARIMA dan pemutihan atau prewhitening (αt). Hal serupa juga dilakukan

terhadap deret output yang telah stasioner (yt). Deret output yang telah di

prewhitening(βt) lalu dikorelasi silang terhadap deret input yang telah di

prewhitening (αt

Sementara itu setelah dapat model ARIMA untuk deret output dan telah memenuhi semua asumsinya, maka deret output bisa dilakukan peramalan. Setelah itu hasil peramalan dari Model Fungsi Transfer dan ARIMA dibandingkan untuk mendapatkan peramalan terbaik.

). Selanjutnya, penerapan korelasi silang dari hasil prewhitening

(33)

20 BAB IV

HASIL DAN PEMBAHASAN

Setelah dilakukan pengumpulan data, maka pada bab ini dilakukan pengolahan dan analisa terhadap data tersebut. Pengolahan dan analisa dilakukan dengan pendefinisian variabel terdahulu. Pengolahan dan analisa dijabarkan sebagai berikut:

4.1 Eksplorasi Data

Data yang digunakan adalah data curah hujan bulanan tahun 1998 sampai dengan 2008 dan data kelembaban udara bulanan tahun 1998 sampai dengan 2007 Stasiun Klimatologi Pondok Betung (Lampiran 1). Berdasarkan Lampiran 2, ternyata curah hujan dan kelembaban udara memiliki nilai-p korelasi sebesar 0.736, menunjukkan bahwa kelembaban udara memilki hubungan yang kuat dengan curah hujan.

Curah hujan tertinggi terdapat pada bulan Februari 2007 mencapai 831.40 mm dan terendah pada bulan September 2006 mencapai 0.20 mm. Sedangkan kelembaban udara tertinggi pada bulan Februari 2002 mencapai 89.13% dan terendah pada bulan September dan Oktober 2006 mencapai 65.33% (Lampiran 3).

4.2 Mempersiapkan Deret Output dan Deret Input (Penstasioneran Data)

Data deret waktu memerlukan transformasi dan pembedaan untuk mencapai kestasioneran data. Transformasi diperlukan agar stasioner dalam ragam,

(34)

sedangkan pembedaan agar deret stasioner dalam rataan. Plot data asli pada Lampiran 4 dan plot ACF serta PACF pada Lampiran 5 menunjukkan bahwa data tidak stasioner. Berikut ini adalah gambar plot yang telah stasioner:

I ndex

Time Ser ies Plot of Differ encing Cur ah Hujan

Gambar 4.1 Plot yt Stasioner.

Gambar 4.1 menunjukkan bahwa dengan pembedaan satu kali pada musiman (D=12) telah dapat menghasilkan deret output curah hujan yang stasioneryt.

I ndex

Time Series Plot of Differencing Kelembaban Udara

Gambar 4.2 Plot xt Stasioner.

Gambar 4.2 juga menunjukkan bahwa dengan pembedaan satu kali pada musiman (D=12) telah dapat menghasilkan deret input kelembaban udara yang stasioner

.

t

(35)

22

4.3 Identifikasi Model ARIMA

Identifikasi model ARIMA dilakukan dengan memperhatikan beberapa nilai awal dan periode musiman dari korelasi diri dan korelasi diri parsialnya yang tidak nol, serta pola dari plot ACF dan plot PACFnya.

4.3.1 Kelembaban Udara

Plot ACF dan PACF dari deret input xt yang telah stasioner, dapat dilihat pada Gambar 4.3 dan 4.4.

Autocor r elation Function for Differ encing Kelembaban Udar a ( w ith 5% significance lim its for the autocor r elations)

Gambar 4.3 Plot ACF Deret Input xt.

Par tial Autocor r elation Function for Differ encing Kelembaban Udar a

( w ith 5% significance limits for the par tial autocor r elations)

Gambar 4.4 Plot PACF Deret Inputxt.

Gambar 4.3 dan 4.4 mununjukkan bahwa Plot ACF dan PACF dari deret input xt

(36)

Pengecekan dengan beberapa nilai α menghasilkan kandidat model pada Tabel 4.1.

Tabel 4.1 Nilai SBC dan AIC Kandidat Model ARIMA X Model

t

SBC AIC

ARIMA (1,0,0)(0,1,1)12 592.6676 587.3033 ARIMA (0,0,1)(1,1,0)12 603.8456 598.4813 ARIMA (1,0,1)(0,1,0)12 629.193 623.8287 ARIMA (0,0,0)(1,1,1)12 606.9392 601.5754

Tabel 4.1 menunjukkan bahwa model ARIMA (1,0,0)(0,1,1)12

) terbaik karena memiliki nilai AIC dan SBC terkecil dibandingkan dengan model ARIMA lainnya dan seluruh koefisien parameternya nyata (Lampiran 6). Selain itu, pengujian Box-Pierce menunjukkan bahwa nilai korelasi diri sisaan tidak nol untuk semua lagnya. Hal ini berarti sisaan tidak saling berkorelasi. Sehingga model ARIMA kelembaban udara yang diperoleh adalah:

t

Berikut ini merupakan Gambar Plot ACF dan PACF dari deret output yt

yang telah stasioner.

( w ith 5% significance lim its for the autocor r elations)

(37)

24

( w ith 5% significance lim its for the par tial autocor r elations)

Gambar 4.6 Plot PACF Deret Outputyt.

Gambar 4.5 dan 4.6 mununjukkan bahwa Plot ACF dan PACF dari deret output

t

y yang telah stasioner, masing-masing nyata pada lag 12.

Pengecekan dengan beberapa nilai α menghasilkan kandidat model pada Tabel 4.2.

Tabel 4.2 Nilai SBC dan AIC Kandidat Model ARIMA Yt

Model SBC AIC

ARIMA (0,0,0)(1,1,0)12 1356.536 1353.854 ARIMA (0,0,0)(0,1,1)12 1348.831 1346.149 ARIMA (1,0,0)(0,1,0)12 1391.734 1389.052 ARIMA (0,0,1)(0,1,0)12 1391.734 1389.052

Tabel 4.2 menunjukkan bahwa model ARIMA (0,0,0)(0,1,1)12

) terbaik karena memiliki nilai AIC dan SBC terkecil dibandingkan dengan model ARIMA lainnya dan seluruh koefisien parameternya nyata (Lampiran 7). Selain itu, pengujian Box-Pierce menunjukkan bahwa nilai korelasi diri sisaan tidak nol untuk semua lagnya. Hal ini berarti sisaan tidak saling berkorelasi. Sehingga model ARIMA curah hujan yang diperoleh adalah :

(38)

4.4 Prewhitening Deret Input dan Output

Tahap prewhitening dilakukan berdasarkan model ARIMA untuk data kelembaban udara (deret input). Dalam tahap ini digunakan unsur white noise

model tersebut. Dengan demikian model prewhitening untuk deret input xt

adalah :

Prewhitening deret output yt diperoleh dengan cara melakukan

transformasi yang sama dengan deret input xt, sehingga model prewhitening

untuk deret outputyt adalah :

Peubah output dan peubah input yang telah melalui proses prewhitening

untuk memperoleh αtdan βt dihitung korelasi silangnya. Korelasi silang menunjukkan hubungan antara kelembaban udara dengan curah hujan.

Dari pola korelasi silang yang dihasilkan akan digunakan untuk mengidentifikasi model fungsi transfer (b,s,r). Hasil korelasi silang antara αt dan βt dapat dilihat pada Lampiran 8.

4.6 Identifikasi Awal Model Fungsi Transfer

(39)

26 kali pada pola korelasi silangnya, sehingga nilai b=0. Selanjutnya untuk mendapatkan nilai s dilihat berapa lama nilai x t mempengaruhi y t setelah nyata yang pertama.

Berdasarkan keterangan diatas, identifikasi awal model fungsi transfer memiliki nilai b=0, s=1, dan r=1. Untuk mendapatkan model yang terbaik dilakukan pemeriksaan kandidat model lainnya. Berdasarkan Tabel 4.3, dapat diketahui model nomor 1, 2 dan 3 menunjukkan bahwa seluruh koefisien parameternya tidak nol. Nilai AIC dan SBC terkecil terdapat pada model nomor 3 dengan nilai b=0, s=1, dan r =0. Sehingga identifikasi awal dari model fungsi hasil pemodelan tersebut dapat dilihat pada Lampiran 9.

(40)

ω1 -0,33

ω2 -0,83

δ1 -0,81

δ2 -1,59

4.7 Identifikasi Model Sisaan

Model yang didapatkan dari identifikasi awal model fungsi transfer yaitu:

t t

t B x n

y =(22,79758−0,26893 ) + , sehingga untuk memperoleh nilai ntadalah:

t t

t

t y x Bx

n = −22,79758 +0,26893

Identifikasi awal model fungsi transfer menghasilkan plot ACF dan PACF sisaan (Lampiran 10). Dari plot ACF dan PACF terindikasi lag turun secara cepat mendekati nol. Akan tetapi setelah dilakukan proses pencocokan model, diperoleh bahwa model ARIMA (0,0,0)(0,0,1)12 (Lampiran 11).

t

t B a

n =(1−θ1 12)

Sehingga identifikasi awal untuk model sisaan adalah:

4.8 Pendugaan Akhir Parameter Model Fungsi Transfer

(41)

28 Nilai korelasi silang antara input dengan sisaan juga tidak berbeda nyata dengan nol (α =0,05) (Lampiran 14).

Dengan pertimbangan uji parameter, korelasi diri sisaan, dan korelasi antara deret input dan sisaan, maka ditetapkan bahwa model akhir fungsi transfer adalah

t

Model fungsi transfer ini memiliki makna bahwa curah hujan dipengaruhi oleh kelembaban udara. Interaksi pengaruh acak kelembaban udara dan curah hujan dua belas bulan sebelumnya ikut menentukan periode mendatang. Model ini menunjukkan hubungan positif antara kelembaban udara dan curah hujan.

4.9 Peramalan Model Fungsi Transfer

(42)

Tabel 4.4 Perbandingan Peramalan Model Fungsi Transfer dan Model ARIMA

Bulan Peramalan Data Aktual

Transfer ARIMA

(43)

30 Grafik hasil perbandingan peramalan model fungsi transfer dengan ARIMA dapat dilihat pada Gambar 4.7.

Gambar 4.7 Plot Hasil Transfer, ARIMA dan Aktual

Gambar 4.7 memperlihatkan juga bahwa dengan model fungsi transfer lebih mendekati data aktual dibandingkan dengan model ARIMA. Perbedaan pola ini disebabkan karena pada model ARIMA curah hujan tidak ada unsur kelembaban udara dan interaksi pengaruh acak antara curah hujan dan kelembaban udara. Selain itu, model ARIMA hanya didasarkan pada satu pengamatan dalam suatu periode tertentu. Hal ini berarti dapat dikatakan model fungsi transfer lebih tepat digunakan sebagai peramalan curah hujan dari pada model ARIMA.

0 100 200 300 400 500 600 700

Transfer

ARIMA

(44)

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Hasil akhir menunjukkan bahwa model fungsi transfer

12 1 0,63675 39602

, 0 54692 ,

20 − − + − −

= t t t t

t x x a a

y dapat menjelaskan hubungan

curah hujan dengan kelembaban udara. Berdasarkan hasil MAPE yang diperoleh, dapat diketahui bahwa hasil peramalan model fungsi transfer lebih baik dibandingkan dengan model ARIMA curah hujan, dengan nilai MAPE yang lebih kecil.

5.2 Saran

Penulis menyarankan untuk penelitian selanjutnya agar menggunakan lebih banyak lagi variable input yang merupakan faktor-faktor berpengaruh terhadap curah hujan, sehingga dapat diperoleh model yang lebih baik.

(45)

32 DAFTAR PUSTAKA

[1] Bowerman BL, Richard T.O’Connell. Forecasting and Time Series : an

applied approach. 3rd edition. California : Wadsworth. 1993.

[2] Cryer, JD.Time Series Analysis. Boston : Duxbury Press. 1986.

[3] Effendy Manan, Moh. dkk. Alat Pengukur Cuaca di stasiun Klimatologi.

Jurusan Geofisika dan Meteorologi FMIPA-IPB : Bogor.1986.

[4] Makridaskis S, SC Wheelwright, VE Megee. Metode dan Aplikasi

Peramalan. Erlangga : Jakarta.1999.

[5] Montgomery DC, LA Johnson, JS Gardiner. Forecasting and Time

SeriesAnalysis. 2nd edition. Singapore : McGraw Hill. 1990.

[6] Nasrulloh.Analisis Trend Curah Hujan Tahunan di Wilayah Bogor Jawa Barat [PKL]. UIN : Jakarta. 2009.

[7] SAS Institute Inc. SAS/ETS User’sGuide, Version 9, First Edition. Cary,

NC : SAS Institute Inc. 1988.

[8] Surtono, Bagus. Kecenderungan Peranan Statistika di Masa Depan. IPB :

Bogor. 2002.

[9] ARIMA,http://www.wahana-statistika.com/analisis/analisis-time-series/112-..., 28 Agustus 2010, Pukul 02.50 WIB.

(46)

LAMPIRAN 1. Data Curah Hujan Bulanan Tahun 1998 s.d 2008 Stasiun Klimatologi Pondok Betung (dalam mm)

Data Kelembaban Udara Bulanan Tahun 1998 s.d 2007 Stasiun Klimatologi Pondok Betung (dalam persen % )

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Januari 184,50 279,80 424,50 272,20 737,53 177,00 385,50 329,40 396,80 140,50 239,90

Februari 450,50 261,70 313,90 218,20 424,80 447,80 316,60 211,00 287,70 831,40 592,40

Maret 363,60 448,40 81,90 270,51 287,40 265,00 333,92 269,50 157,90 83,30 174,20

April 312,20 90,10 221,50 207,60 268,40 123,10 182,80 103,00 256,50 265,80 206,60

Mei 251,70 281,80 198,10 240,10 124,10 169,10 290,30 204,30 132,30 179,40 113,20

Juni 157,80 173,80 82,60 209,60 72,10 9,00 26,60 24,05 88,20 78,40 99,90

Juli 186,80 111,30 73,70 187,20 156,10 0,70 228,60 225,30 47,80 0,50 9,10

Agustus 150,90 112,50 110,60 11,10 4,00 5,20 23,00 157,30 6,20 65,40 53,10

September 156,30 67,00 37,10 98,70 16,30 231,90 27,00 143,30 0,20 128,80 68,50

Oktober 249,60 247,20 94,30 270,20 54,30 224,90 26,80 240,30 5,00 181,50 41,00

Nopember 77,30 193,00 241,10 149,20 175,80 254,50 220,80 206,70 98,90 250,80 370,20

Desember 142,90 252,00 119,70 165,70 275,20 262,30 207,20 126,40 336,00 484,80 99,70

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Januari 81,23 88,02 87,82 85,11 87,31 78,23 85,12 85,45 85,81 76,70

Februari 86,92 88,08 86,28 86,88 89,13 87,28 86,09 84,86 84,65 85,71

Maret 83,92 82,86 81,81 86,57 82,85 85,23 82,51 83,19 82,58 80,53

April 85,16 77,53 82,18 85,39 83,95 79,43 79,73 78,78 81,54 83,96

Mei 81,84 82,69 83,81 82,12 80,52 78,31 82,60 78,08 79,02 80,03

Juni 84,97 78,93 79,78 81,92 77,57 72,97 74,28 82,41 75,74 78,54

Juli 84,09 77,19 77,04 79,17 77,03 70,88 79,36 76,19 73,69 72,13

Agustus 77,80 72,06 76,89 73,98 70,81 69,76 71,15 76,18 69,24 69,47

September 76,25 69,63 73,08 78,02 70,14 72,17 71,67 74,58 65,33 69,94

Oktober 82,95 80,25 77,17 83,65 70,64 77,44 69,04 78,77 65,33 75,22

Nopember 78,46 83,22 85,08 83,44 78,12 82,09 80,05 79,76 72,06 78,08

(47)

LAMPIRAN 2. Korelasi Curah Hujan dengan Kelembaban Udara

Kelembaban_Udara Curah_Hujan Kelembaban_Udara Pearson Correlation 1 .736**

Sig. (2-tailed) .000

N 120 120

Curah_Hujan Pearson Correlation .736** 1

Sig. (2-tailed) .000

N 120 120

LAMPIRAN 3. Statistik Deskriptif

LAMPIRAN 4. Plot Data Asli Curah Hujan dan Kelembaban Udara

I ndex

Time Series Plot of Curah Hujan

I ndex

Time Series Plot of Kelembaban Udara

N Minimum Maximum Mean

Std. Deviation Kelembaban_Udara 120 65.33 89.13 795.503 542.321

Curah_Hujan 120 .20 831.40 194,02 13.741.206

(48)

LAMPIRAN 5. Plot ACF dan PACF Data Asli Curah Hujan dan Kelembaban Udara

Autocorrelation Function for Curah Hujan

(with 5% significance limits for the autocorrelations)

Lag

Partial Autocorrelation Function for Curah Hujan

(with 5% significance limits for the partial autocorrelations)

Lag

Autocorrelation Function for Kelembaban Udara

(with 5% significance limits for the autocorrelations)

Lag

Partial Autocorrelation Function for Kelembaban Udara

(with 5% significance limits for the partial autocorrelations)

LAMPIRAN 6. Pendugaan Parameter Kelembaban

(49)

LAMPIRAN 7. Pendugaan Parameter Curah Hujan

Conditional Least Squares Estimation

Standard Approx Parameter Estimate Error t Value Pr > |t| Lag

MA1,1 0.72649 0.07837 9.27 <.0001 12 Autocorrelation Check of Residuals

To Chi- Pr >

Lag Square DF ChiSq Autocorrelations

6 5.61 4 0.2304 -0.074 0.171 0.026 0.099 -0.061 0.028 12 9.36 10 0.4985 0.040 -0.015 -0.066 0.146 0.004 -0.060 18 10.95 16 0.8123 -0.025 -0.050 0.021 -0.056 0.017 0.073 24 22.83 22 0.4112 -0.220 0.152 -0.040 0.100 -0.025 0.066

Variance Estimate 15021.73 Std Error Estimate 122.5631 AIC 1346.149 SBC 1348.831 Number of Residuals 108

Autocorrelation Check of Residuals To Chi- Pr >

Lag Square DF ChiSq Autocorrelations

(50)

LAMPIRAN 8. Korelasi Silang Curah Hujan dan Kelembaban Udara Crosscorrelations

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

-10 81.432793 0.17080 | . |***. | -9 -111.700 -.23428 | *****| . | -8 20.435046 0.04286 | . |* . | -7 -22.548765 -.04729 | . *| . | -6 -7.177949 -.01505 | . | . | -5 -51.389346 -.10778 | . **| . | -4 57.530664 0.12066 | . |** . | -3 0.627990 0.00132 | . | . | -2 63.218007 0.13259 | . |***. |

-1 -67.169570 -.14088 | .***| . | 0 296.334 0.62153 | . |************ |

1 -150.665 -.31600 | ******| . | 2 88.718258 0.18608 | . |**** | 3 -45.617149 -.09568 | . **| . | 4 -11.020000 -.02311 | . | . | 5 -49.763951 -.10437 | . **| . | 6 20.450479 0.04289 | . |* . | 7 -1.166490 -.00245 | . | . | 8 34.661268 0.07270 | . |* . | 9 -55.304335 -.11599 | . **| . | 10 76.852552 0.16119 | . |***. |

LAMPIRAN 9. Pendugaan Awal Model Fungsi Transfer

Variance Estimate 12596.39 Std Error Estimate 112.2336 AIC 1279.001 SBC 1284.29

Number of Residuals 104 Conditional Least Squares Estimation Standard Approx

(51)

LAMPIRAN 10. Plot ACF dan PACF Deret Sisaan

Partial Autocorrelations

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

1 -0.00333 | . | . | 2 0.13163 | . |***. | 3 0.05642 | . |* . | 4 -0.07434 | . *| . | 5 -0.04167 | . *| . | 6 0.06609 | . |* . | 7 0.08238 | . |** . | 8 0.07077 | . |* . | 9 -0.06189 | . *| . | 10 0.04334 | . |* . |

Autocorrelation Plot of Residuals

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 Std Error

0 12596.390 1.00000 | |********************| 0

1 -41.954338 -.00333 | . | . | 0.098058

2 1658.164 0.13164 | . |***. | 0.098059

3 688.049 0.05462 | . |* . | 0.099744

4 -708.170 -.05622 | . *| . | 0.100031

5 -314.094 -.02494 | . | . | 0.100334

6 630.930 0.05009 | . |* . | 0.100394

7 784.365 0.06227 | . |* . | 0.100634

8 1056.990 0.08391 | . |** . | 0.101004

9 -365.637 -.02903 | . *| . | 0.101672

(52)

LAMPIRAN 11. Hasil Pendugaan Akhir Model Fungsi Transfer Conditional Least Squares Estimation

Standard Approx

Parameter Estimate Error t Value Pr > |t| Lag Variable Shift MA1,1 0.63675 0.09635 6.61 <.0001 12 Y 0 SCALE1 20.54692 2.74687 7.48 <.0001 0 X 0 NUM1,1 0.39602 0.12064 3.28 0.0014 1 X 0

Variance Estimate 9807.586 Std Error Estimate 99.03326

AIC 1253.95 SBC 1261.883 Number of Residuals 104

LAMPIRAN 12. Plot ACF dan PACF Sisaan Model Fungsi Transfer

Autocorrelation Plot of Residuals

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 Std Error

0 9807.586 1.00000 | |********************| 0

1 -218.877 -.02232 | . | . | 0.098058

2 563.786 0.05748 | . |* . | 0.098107

3 -49.397266 -.00504 | . | . | 0.098430

4 -636.259 -.06487 | . *| . | 0.098433

5 -416.499 -.04247 | . *| . | 0.098843

6 1029.394 0.10496 | . |** . | 0.099018

7 402.667 0.04106 | . |* . | 0.100082

8 10.001772 0.00102 | . | . | 0.100244

(53)

10 768.280 0.07834 | . |** . | 0.100879

Partial Autocorrelations

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

1 -0.02232 | . | . | 2 0.05702 | . |* . | 3 -0.00256 | . | . | 4 -0.06857 | . *| . | 5 -0.04521 | . *| . | 6 0.11202 | . |** . | 7 0.05164 | . |* . | 8 -0.01619 | . | . | 9 -0.09615 | . **| . | 10 0.09178 | . |** . |

LAMPIRAN 13. Statistik χ2 Box-Pierce Untuk Menguji Kebebasan Sisaan Model

fungsi Transfer

LAMPIRAN 14. Statistik χ2 Box-Pierce Untuk Menguji Kebebasan antara Input dan

Sisaan

Crosscorrelation Check of Residuals with Input X To Chi- Pr >

Lag Square DF ChiSq ---Crosscorrelations--- 5 5.19 4 0.2687 0.042 -0.017 0.103 -0.024 -0.145 -0.125 11 8.74 10 0.5569 -0.024 -0.061 0.117 -0.023 0.060 -0.110

Autocorrelation Check of Residuals To Chi- Pr >

(54)

Gambar

Tabel 4.3 Rekapitulasi Identifikasi Awal Model Fungsi Transfer  ................. 26
Gambar 4.1 Plot Yt
Gambar 3.1 Alur Penelitian
Gambar 4.1 Plot
+7

Referensi

Dokumen terkait

2 Penjualan barang-barang yang dapat dipakai guna jawatan Negeri, selama tidak termasuk dalam penerimaan lain-lain dari berbagai jawatan dan perusahaan-perusahaan. 3

a) oleh warga masyarakat hukum adat yang bersangkutan dengan hak penguasaan menurut ketentuan hukum adatnya yang berlaku, yang apabila dikehendaki oleh pemegang haknya dapat

Pada logam baja dilakukan pengerasan (hardening) untuk memperoleh sifat tahan aus yang tinggi, kekuatan dan fatigue limit/strength yang lebih baik, dengan suatu proses

[r]

MEDIASI PASCA PERMA NO.1 TAHUN 2016 TENTANG PROSEDUR MEDIASI DI PENGADILAN (Studi Kasus di Pengadilan Agama Semarang) ” dengan penuh kejujuran dan tanggung jawab,

Dalam rangka penerapan Undang-undang Nomor 14 Tahun 2008 dan penyediaan dan pelayanan informasi publik, PPID (Pejabat Pengelola Informasi dan Dokumentasi) BPKAD

Swimming pool , Tennis court , Public toilet, semua tempat sampah di luar gedung. Seksi ini sangat penting peranannya dalam operasional hotel karena mempunyai tugas

Tujuan dari mata kuliah ini Dengan berbekal pengetahuan tata bahasa dan penguasaan kosa kata, dan penguasaan huruf (hiragana-katakana) mahasiswa mampu