• Tidak ada hasil yang ditemukan

Reaksi Grafting Maleat Anhidrida Pada Polipropilena Dengan Inisiator Benzoil Peroksida

N/A
N/A
Protected

Academic year: 2016

Membagikan "Reaksi Grafting Maleat Anhidrida Pada Polipropilena Dengan Inisiator Benzoil Peroksida"

Copied!
52
0
0

Teks penuh

(1)

REAKSI GRAFTING MALEAT ANHIDRIDA PADA POLIPROPILENA

DENGAN INISIATOR BENZOIL PEROKSIDA

SKRIPSI

SISKA EVRIANNI

070822024

DEPARTEMEN KIMIA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

UNIVERSITAS SUMATERA UTARA

(2)

REAKSI GRAFTING MALEAT ANHIDRIDA PADA

POLIPROPILENA DENGAN INISIATOR BENZOIL PEROKSIDA

SKRIPSI

Diajukan untuk melengkapi tugas dan memenuhi syarat mencapai gelar Sarjana Sains

SISKA EVRIANNI 070822024

DEPARTEMEN KIMIA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA UTARA

(3)
(4)

PERNYATAAN

REAKSI GRAFTING MALEAT ANHIDRIDA PADA POLIPROPILENA DENGAN INISIATOR BENZOIL PEROKSIDA

SKRIPSI

Saya mengakui bahwa skripsi ini adalah hasil kerja saya sendiri, kecuali beberapa kutipan dan ringkasan yang masing-masing disebutkan sumbernya.

Medan, April 2009

(5)

PENGHARGAAN

Puji dan syukur kehadirat Allah SWT atas karuniaNya menyertai penulis melakukan penelitian hingga selesainya penulisan skripsi ini.

Skripsi ini adalah merupakan tugas ahir bagi penulis guna melengkapi salah satu syarat untuk mencapai gelar sarjana Kimia pada Fakultas Matematika dan Ilmu Pengetahuan Alam Univeristas Sumatera Utara.

Keberhasilan dalam menyelesaikan penulisan skripsi ini tidak luput dari segala bantuan berbagai pihak. Dalam kesempatan ini setulus hati penulis menyampaikan ucapan terima kasih yang sebesar-besarnya kepada :

1. Bapak Drs. Darwin Yunus Nasution, MS selaku Dosen pembimbing I dan Ibu Dra. Yugia Muis, MSi selaku dosen pembimbing II yang telah banyak meluangkan waktunya dan memberikan pemikiran serta petunjuk dan saran selama penulis melakukan penelitian dan penyusunan skripsi ini sehingga dapat selesai.

2. Ibu Dr. Rumondang Bulan Nasution, MS dan Bapak Drs. Firman Sebayang, MS selaku Ketua dan Sekretaris Departemen Kimia yang telah mensyahkan skripsi ini. 3. Bapak dan Ibu staff pengajar Fakultas matematika dan Ilmu Pengetahuan Alam

khususnya jurusan Kimia yang telah membantu penulis selama mengikuti perkuliahan. 4. Bapak dan Ibu Staff Lab. Kimia Polimer dan Kimia Fisika FMIPA USU yang telah memberikan masukan dan saran-saran kepada penulis selama penelitian dan penulisan skripsi ini.

5. Patnerku dalam penelitian : B’moan dan B’Iwan dan B’ Edi.

6. Temen-temenku stambuk ’07 khususnya Icut, Sukma, Oni, Ema, Irus, Ayu dll yang tidak dapat disebutkan satu persatu, sukses selalu.

Semoga Allah SWT memberikan imbalan yang berlipat ganda atas kebaikan kita semua.

Ahirnya penulis menyadari kekurangan materi yang disajikan dalam skripsi ini, disebabkan keterbatasan literatur dan pengetahuan yang dimiliki penulis. Untuk itu mengharapkan masukan dan saran yang membangun. Selanjutnya penulis mempersembahkan skripsi ini kepada para pembaca semoga kiranya bermanfaat bagi penelitian selanjutnya.

Medan, April 2009

Penulis

(6)

ABSTRAK

(7)

THE REACTION OF MALEIC ANHYDRIDE AT POLYPROPYLENE WITH INITIATOR BENZOIL PEROXIDE

ABSTRACT

(8)

DAFTAR ISI

3.1. Analisa Spektrofotometri Infra Merah (IR)……… 18

Bab 3 Bahan dan Metode Penelitian 3.1. Alat dan bahan……… 19

3.2.3. Proses Grafting MA kedalam PP……….. 20

(9)

3.2.5. Pembuatan Larutan KOH 0`05 N dalam Metanol.. 21 3.2.6. Pembuatan KOH 0,05 N……… 21 3.3. Bagan Pengambilan Data

3.3.1. Proses Grafting MA pada PP dengan Radikal Bebas 22 3.3.2. Menghitunng Derajat Grafting dengan Metode Titrasi23 3.3.3. Pembuatan Film Untuk Analisa FTIR………… 24 Bab 4 Hasil dan Pembahasan

4.1. Hasil Pencampuran Polimer………. 25

4.2. Perhitungan……….. 26

4.3. Pembahasan……….. 26

4.3.1. Pengaruh Konsentrasi Maleat Anhidrida Terhadap

Derajat Grafting……… . 27

4.4. Analisa FTIR Campuran PP/MA/BPO………. 28 Bab 5 Kesimpulan dan Saran

5.1. Kesimpulan……….. 29

5.2. Saran………. 29

(10)

DAFTAR TABEL

Tabel Halaman

2.5. Karakterisasi Dari Polipropilena………... 10

2.7. Karakterisasi Maleat Anhidrida……… 12

2.9.1. Benzoil Peroksida menjadi Benzoil Oksi………. 13

4.1. Data Hasil Pencampuran Polimer………. 26

4.2. Perbandingan Konsentrasi Maleat Anhidrida terhadap Derajat Grafting……… 28

4.3. Bilangan Gelombang PP Murni……… 29

(11)

DAFTAR GAMBAR

Gambar Halaman

2.1.1.Struktur Molekul Propilena………. 5

2.1.2.Reaksi Polimerisasi dari propilena menjadi polipropilena……….. 5

2.2. Atom Karbon Terikat Secara Tetrahedral dengan Sudut 109,5 o… 6 2.3. Struktur Tiga Dimensi dari Polipropilena, (a) Isotaktik, (b) Ataktik, dan (c) Sindiotaktik……… 6

2.4. Reaksi Degradasi dengan Benzoil Peroksida……… 9

2.6. Pembentukan Maleat Anhidrida……….... 11

2.8.1.Proses Reaksi Grafting Polipropilena………... 13

(12)

DAFTAR LAMPIRAN

(13)

DAFTAR SINGKATAN

PP = Polipropilena MA = Maleat Anhidrida BPO = Benzoil Peroksida

(14)

ABSTRAK

(15)

THE REACTION OF MALEIC ANHYDRIDE AT POLYPROPYLENE WITH INITIATOR BENZOIL PEROXIDE

ABSTRACT

(16)

BAB 1

PENDAHULUAN

1.1. Latar Belakang

Dewasa ini polimer adalah merupakan bahan komersil yang sangat bermanfaat bagi keperluan manusia. Melalui reaksi polimerisasi akan menghasilkan bahan polimer baru dan kemajuan ini terus berkembang dari waktu kewaktu. Umumnya reaksi dengan monomer tertentu akan menghasilkan sifat mekanis yang sesuai dengan keperluan (Cowd MA, 1991) seperti polipropilena.

Polipropilena adalah satu polimer termoplastik yang dibuat oleh industri kimia. Polipropilena digunakan secara meluas dalam pelbagai aplikasi seperti pembungkus makanan, tekstil, bahagian-bahagian plastik, pembesar suara, komponen-komponen automotif. Kelebihan polipropilena mempunyai bobot jenis yang rendah dan murah.(Wikipedia.Org) Polipropilena lebih kuat dan lebih tahan dari polietilena, sehingga banyak dipakai untuk membuat karung, tali dan sebagainya. Karena lebih kuat, botol-botol dari polipropilena dapat dibuat lebih tipis dari polietilena (Students.itb.ac.id).

Polipropilena adalah suatu polimer yang bersifat non polar. Polipropilena ini dapat diubah sifat non polarnya menjadi polar dengan cara menggrafting gugus fungsi polar kedalam rantainya dengan adanya suatu inisiator. Nam soon lee telah menggrafting polipropilena dengan maleat anhidrida menggunakan inisitor dikumil peroksida sehingga polipropilena dapat diwarnai (Nam soon lee, 1990). M. Sclavon telah menentukan derajat grafting maleat anhidrida pada beberapa polipropilena yang tergrafting dengan maleat anhidrida komersil dengan metode titrasi dan melihat gugus fungsi maleat anhidrida yang tergrafting pada polipropilena dengan FTIR ( M.Sclavon, 1996).

(17)

seperti yang dilakukan oleh Mousa Ghaemy. Teknik yang dilakukan untuk memodifikasi polimer ialah dengan reaksi grafting antara maleat anhidrida dengan polietilena dengan cara refluks menggunakan inisiator Azoisobutyronnitrile (AIBN) dengan pelarut Xylene. (Mousa Ghaemy, 2002)

Pada penelitian ini, penulis berkeinginan memodifikasi struktur polipropilena dengan teknik pencampuran reaktif dalam internal mixer pada suhu 165 oC dengan cara grafting maleat anhidrida pada polipropilena dengan inisiator benzoil peroksida. Hasilnya dianalisis dengan FTIR untuk melihat gugus fungsi maleat anhidrida yang tergrafting pada polipropilena dan penentuan derajat grafting dengan metode titrasi. Diharapkan polipropilena yang telah tergrafting dengan maleat anhidrida dapat digunakan sebagai senyawa penghubung (coupling agent) dalam pembuatan komposit dengan serat alam.

1.2. Permasalahan

Yang menjadi permasalahan dalam penelitian ini adalah :

1. Apakah terjadi reaksi grafting antara maleat anhidrida dengan polipropilena 2. Bagaimana pengaruh konsentrasi maleat anhidrida terhadap derajat grafting

1.3. Pembatasan Permasalahan

Untuk mengetahui apakah reaksi grafting sudah terjadi dapat dilakukan dengan menghitung dengan derajat grafting dan analisis spektra FTIR hasil reaksi grafting.

1.4. Tujuan Penelitian

Penelitian ini bertujuan :

(18)

2. Untuk mengetahui apakah reaksi grafting antara maleat anhidrida dengan polipropilena dapat terjadi

1.5. Manfaat Penelitian

Adapun hasil penelitian ini diharapkan memberikan informasi reaksi grafting antara polipropilena dengan maleat anhidrida dan inisiator benzoil peroksida. Selanjutnya polipropilena yang telah dimodifikasi dapat digunakan sebagai senyawa penghubung (coupling agent) dalam pembuatan komposit polipropilena dengan serat alam.

1.6. Lokasi Penelitian

Penelitian dilakukan di Laboratorium Kimia Polimer, FMIPA USU dan perekaman spektra FTIR dilakukan di Laboratorium Bea Cukai Belawan.

1.7. Metodologi Penelitian

Penelitian ini bersifat eksperimen laboratorium, yaitu untuk memodifikasi struktur polimer PP dilakukan beberapa tahap yaitu :

Tahap I : Preparasi alat

Tahap II : Proses analisis data meliputi : a. Preparasi sampel

b. Proses grafting

(19)

Variabel-variabel yang digunakan adalah :

Variabel bebas : Konsentrasi maleat anhidrida dalam campuran PP:MA:BPO Variabel terikat : Derajat grafting

Variabel tetap :

1. Benzoil peroksida (BPO) 2 % 2. Suhu internal mixer 165 oC 3. Waktu proses grafting 60 menit

(20)

BAB 2

TINJAUAN PUSTAKA

2.1. Polipropilena

Polipropilena merupakan polimer hidrokarbon yang termasuk ke dalam polimer termoplastik yang dapat diolah pada suhu tinggi. Polipropilena berasal dari monomer propilena yang diperoleh dari pemurnian minyak bumi. Struktur molekul propilena dapat dilihat pada gambar 2.1.1 berikut :

CH2=CH-CH3

Gambar 2.1.1. Struktur Molekul propilena

Secara industri, polimerisasi polipropilena dilakukan dengan menggunakan katalis koordinasi. Proses polimerisasi ini akan menghasilkan suatu rantai liniar yang berbentuk –A-A-A-A-A- , dengan A merupakan propilena. Reaksi polimerisasi dari propilena secara umum dapat dilihat pada gambar 2.1.2. berikut :

H CH3 H CH3

n C C C C

H H H H n

Propilena Polipropilena

(21)

2.2. Struktur kristalinitas Polipropilena

Kristalinitas merupakan sifat penting yang terdapat pada polimer. Kristalinitas merupakan ikatan antara rantai molekul sehingga menghasilkan susunan molekul yang lebih teratur. Pada polimer polipropilena, rantai polimer yang terbentuk dapat tersususn membentuk daerah kristalin (molekul tersususn teratur) dan bagian lain membentuk daerah amorf (molekul tersususn secara tidak teratur). (cowd MA, 1991).

Dalam struktur polimer atom-atom karbon terikat secara tetrahedral dengan sudut antara ikatan C-C 109,5 o dan membentuk rantai zigzag planar sebagai berikut :

C 109,5 o C C C

C C C C

Gambar 2.2. Atom karbon terikat secara tetrahedral dengan sudut 109,5 o

(22)

CH3 CH3 CH3

(c) CH3 CH3

Gambar 2.3. Struktur tiga dimensi dari polipropilena, (a)isotaktik, (b) ataktik, dan (c) sindiotaktik.

Ketiga struktur polipropilena tersebut pada dasarnya secara kimia berbeda satu sama lain. Polipropilena ataktik tidak dapat berubah menjadi polipropilena sindiotaktik atau menjadi struktur lainnya tanpa memutuskan dan menyususn kembali beberapa ikatan kimia. Struktur yang lebih teratur memiliki kecenderungan yang lebih besar untuk berkristalisasi dari pada struktur yang tidak teratur. Jadi, struktur isotaktik dan sindiotaktik lebih cenderung membentuk daerah kristalin dari pada ataktik. Polipropilena berstruktur stereogular seperti isotaktik dan sindiotaktik adalah sangat kristalin, bersifat keras dan kuat. Dalam struktur polipropilena ataktik gugus metal bertindak seperti cabang-cabang rantai pendek yang muncul pada sisi rantai secara acak. Ini mengakibatkan sulitnya untuk mendapatkan daerah-daerah rantai yang sama (tersusun) sehingga mempunyai sifat kristalin rendah menyebabkan tingginya kadar oksigen pada bahan tersebut sehingga bahan polimer ini mudah terdegradasi oleh pengaruh lingkungan seperti kelembaban cuaca, radiasi sinar matahari dan lain sebagainya (Schwarts, SS, 1991).

2.3. Sifat – sifat polipropilena

Polipropilena merupakan jenis bahan baku plastik yang ringan, densitas 0,90 – 0,92, memiliki kekerasan dan kerapuhan yang paling tinggi dan bersifat kurang stabil terhadap panas dikarenakan adanya hidrogen tersier. Penggunaan bahan pengisi dan penguat memungkinkan polipropilena memiliki mutu kimia yang baik sebagai bahan polimer dan tahan terhadap pemecahan karena tekanan (stress-cracking) walaupun pada temperatur tinggi.

(23)

Polimer yang memiliki konduktivitas panas rendah seperti polipropilena (konduktivitas = 0,12 W/m) kristalinitasnya sangat rentan terhadap laju pendinginan. Misalnya dalam suatu proses pencetakan termoplastik membentuk barang jadi yang tebal dan luas, bagian tengah akan menjadi dingin lebih lambat dari pada bagian luar, yang bersentuhan langsung dengan cetakan. Akibatnya, akan terjadi perbedaan derajat kristalinitas pada permukaan dengan bagian tengahnya.

Polipropilena mempunyai tegangan (tensile) yang rendah, kekuatan benturan (impact strength) yang tinggi dan ketahan yang tinggi terhadap pelarut organik. Polipropilena juga mempunyai sifat isolator yang baik mudah diproses dan sangat tahan terhadap air karena sedikit sekali menyerap air, dan sifat kekakuan yang tinggi. Seperti polyolefin lain, polipropilena juga mempunyai ketahan yang sangat baik terhadap bahan kimia anorganik non pengoksidasi, deterjen, alcohol dan sebagainya. Tetapi polipropilena dapat terdegradasi oleh zat pengoksidasi seperti asam nitrat dan hidrogen peroksida. Sifat kristalinitasnya yang tinggi menyebabkan daya regangannya tinggi, kaku dan keras. (Almaika, S, 1983)

2.4. Degradasi Polipropilena

(24)

Degradasi Dengan Benzoil Peroksida

Polipropilena yang ditambahkan dengan benzoil peroksida akan terjadi pemutusan rantai pada polipropilena dan pembentukan ikat silang pada polipropilena. Reaksinya sebagai berikut :

2 I 2 I .

CH3 CH3

2 I . + CH CH2 .C CH2 + 2 I H

 Pemutusan Rantai

CH3 CH3 CH3

.C CH2 C CH2 + .CH CH2

 Pembentukan ikat silang

CH3 CH3

. C CH2 C CH2

+ C CH2

.C CH2 CH

CH3

(25)

2.5. Karakterisasi Polipropilena

Adapun karakterisasi dari polipropilena dapat dilihat dari tabel 2.5. berikut ini :

(26)

2.6. Maleat Anhidrida

Maleat anhidrida masih digunakan dalam penelitian polimer. Maleat anhidrida dapat dibuat dari asam maleat, seperti reaksi dibawah ini :

O O temperatur 57- 60 0C, mendidih pada 202 0C dan spesifik grafiti 1,5.g/cm3.

(27)

2.7. Karakterisasi Maleat Anhidrida

Adapun karakterisasi dari maleat anhidrida dapat dilihat dari tabel 2.7. berikut :

Tabel 2.7. karakterisasi maleat anhidrida

Beberapa jenis monomer, khususnya stirena dan metal metakrilat dan beberapa sikloalkana cincin teregang, mengalami polimerisasi oleh pemanasan tanpa hadirnya suatu inisiator radikal bebas tambahan. Akan tetapi sebahagian besar monomer memerlukan beberapa jenis inisiator. Sekarang sudah banyak tersedia inisiator-inisiator radikal bebas; mereka bisa dikelompokkan ke dalam 4 tipe utama : peroksida dan hidroperoksida, senyawa azo, inisiator redoks, dan beberapa senyawa yang membentuk radikal-radikal di bawah pengaruh cahaya (fotoinisiator). Radiasi berenergi tinggi bisa juga menimbulkan polimerisasi radikal bebas, meskipun radiasi seperti ini jarang digunakan.(Steven MP, 2001).

2.8.1. Peroksida dan Hidroperoksida

(28)

radikal-radikal pada suatu suhu dan laju yang bergantung pada strukturnya. Peroksida yang paling umum dipakai adalah benzoil peroksida, yang mengalami homolisis termal untuk membentuk radikal-radikal benzoil oksi dapat dilihat pada gambar 2.8.1 berikut ini :

O O O

C O O C 2 C O .

Benzoil Peroksida Radikal-radikal benzoiloksi

Gambar 2.8.1. Benzoil Peroksida menjadi Benzoil Oksi (Steven MP, 2001)

2.9. Pembentukan Kopolimer Grafting

Ada 3 metode umum untuk mempreparasi kopolimer-kopolimer grafting : 1. Monomer dipolimerisasi dalam hadirnya suatu polimer dengan percabangan yang terjadi dari transfer rantai. 2. Monomer dipolimerisasi dalam hadirnya polimer yang mempunyai gugus-gugus fungsional reaktif atau letak-letak yang diaktifkan, misalnya oleh radiasi. 3. Dua polimer yang memiliki gugus-gugus fungsional reaktif direaksikan bersama.

Diperlukan 3 komponen untuk berlangsungnya grafting lewat transfer rantai : polimer, monomer, inisiator. Fungsi inisiator adalah untuk mempolimerisasi monomer sehingga membantu radikal, ion atau kompleks koordinasi polimerik yang kemudian bisa menyerang polimer asal atau biasa, rasio reaktivitas monomer-monomer juga perlu dipertimbangkan untuk memastikan grafting akan terjadi. Juga perlu untuk memperhatikan frekuensi transfer untuk menetapkan jumlah grafting. Biasanya, campuran homopolimer-homopolimer terjadi bersamaan dengan kopolimer grafting.

Grafting biasanya terjadi pada letak-letak yang bisa menerima reaksi-reaksi transfer, seperti pada karbon-karbon yang bersebelahan dengan ikatan rangkap dua dalam polidiena atau karbon-karbon yang bersebelahan dengan gugus karbonil.

(29)

dengan atau tanpa photosensitizer tambahan atau dengan radiasi ionisasi, teristimewa yang terakhir. Reaksi-reaksi radikal bebas terlibat dalam semua kasus. Kesulitan utama adalah bahwa radiasi menimbulkan grafting. Hal ini sampai batas tertentu telah dihilangkan dengan praradiasi polimer sebelum penambahan monomer baru. Salah satu metode adalah mempraradiasi polimer tersebut ketika hadir udara atau oksigen untuk membentuk gugus-gugus hidroperoksida diatas kerangkanya. Penambahan monomer berikutnya dan pemanasan akan menghasilkan polimerisasi radikal pada letak-letak peroksida yang disertai dengan beberapa homopolimerisasi dan homopolimerisasi ini di inisiasi oleh radikal-radikal hidroksi yang terbentuk selama homolisis hidroperoksida. Praradiasi bisa juga dikerjakan ketika tidak ada udara untuk membentuk radikal-radikal bebas yang ditangkap dalam matriks polimer yang kental. Kemudian monomer ditambahkan. Metode ini tidak sangat efisien karena rendahnya konsentrasi radikal yang bisa ditangkap dan homopolimerisasi masih bisa terjadi melalui reaksi-reaksi transfer rantai.

Radiasi langsung monomer dan polimer sekaligus telah digunakan secara ekstensif. Karena kopolimerisasi mungkin terjadi. Monomer dan polimer harus dipilih dengan hati-hati. Pada umumnya, kombinasi terbaik adalah antara polimer yang sangat sensitif terhadap radiasi, yakni polimer yang membentuk konsentrasi radikal yang tinggi dan monomer yang tidak sangat sensitif. Homopolimerisasi bisa dikurangi dengan memberikan radiasi yang sekejap sedangkan monomer dibiarkan berdifusi melewati polimer. Grafting radiasi terhadap emulsi-emulsi polimer juga merupakan cara efektif untuk meminimumkan homopolimerisasi, karena medium reaksi tetap fluid bahkan pada tingkat konversi yang tinggi.

Metode lain dari Grafting radiasi melibatkan radiasi terhadap campuran homopolimer. Lepas dari fakta bahwa sebahagian besar polimer bersifat inkompatibel. Teknik ini pemakaiannya terbatas, karena ikat silang antara rantai-rantai polimer demikian bisa terjadi dengan kemungkinan yang sama (Steven MP, 2001).

3.0. Proses Reaksi Grafting

Berlangsungnya reaksi ini dalam ekstruder ialah :

(30)

2. Katalis Peroksida diinjeksikan kedalam ekstruder, membentuk loka aktif pada rantai utama polimer.

3. Monomer diinjeksikan kelelehan tadi, terkadang katalis dan monomernya tercampur.

4. Komponen-komponen dicampur dengan laju geser tinggi.

5. Monomer dan produk samping dikeluarkan dari campuran lelehan pada daerah pengatsiran vakum.

(31)

Propagasi : Grafting Maleat anhidrida

CH3 C

.C CH2 + C CH2 (4) .

CH3 CH3

CH2 .CH + CH2 CH (5) .

Transfer Rantai

CH3 CH3 CH2 CH + CH2 CH

CH3 CH3

CH2 CH + . C CH2 (6) H

Terminasi

CH3 CH3

(32)

CH3

CH3 CH + CH2=CH2 H

Disproporsionasi

CH3 CH3 CH2 CH .C CH2

CH3 C CH2

CH2 C CH3

Ikat Silang ( Cross Lingking)

(33)

3.1. Analisis Spektrofotometri Infra merah (IR)

Intrumen yang digunakan untuk mengukur resapan radiasi infra merah pada berbagai panjang gelombang disebut spektrofometer infra merah (Fessenden F, 1997).

Alat spektrofotometer infra merah pada dasarnya terdiri dari komponen-komponen pokok yang sama dengan alat spektrofotometer ultra lembayung dan sinar tampak, yaitu terdiri dari sumber sinar, monokromator berikut alat-alat optik seperti cermin dan lensa, sel tempat cuplikan, detektor amplifier dan alat dengan skala pembacaan atau alat perekam spektra (recorder) akan tetapi disebabkan kebanyakan bahan dalam menstransmisikan radiasi infra merah berlainan dengan sifatnya dalam menstransmisikan radiasi ultra lembayung, sinar tampak, sifat dan kemampuan komponen alat tersebut diatas berbeda untuk kedua jenis alat spektrofotometer itu.

Keuntungan pemakaian sistem berkas rangkap pada alat spektrofotometer adalah : 1. Memperkecil pengaruh penyerapan sinar infra merah oleh CO2 dan uap air dari udara. 2. Mengurangi pengaruh hamburan (scattering) sinar infra merah oleh partikel-partikel

debu yang ukurannya mendekati nilai rata-rata panjang gelombang infra merah. 3. Kalau blanko yang digunakan adalah pelarut dari cuplikan dengan sistem berkas

rangkap itu pita-pita serapan pelarut tidak akan timbul pada spektra yang direkam. 4. Sistem berkas rangkap mengurangi pengaruh ketidak stabilan pancaran sumber sinar

dan detektor.

5. Perekaman otomatis dapat dilakukan (scanning) (Noerdin D, 1985).

(34)

BAB 3

BAHAN DAN METODE PENELITIAN

3.1. Alat dan Bahan 3.1.1. alat

(35)

- Xylene P.A Merck

Ditimbang PP, MA, BPO masing-masing sesuai dengan perbandingan berikut : Sampel PP (%) MA (%) BPO (%)

(36)

3.2.4. Menghitung Derajat Grafting

PP tergrafting MA yang diperoleh dari internal mixer ditimbang 1 gram kemudian direfluks dengan 100 ml xylene. Setelah larut ditambahkan 40 ml aseton sehingga terbentuk endapan, lalu disaring dengan kertas saring yang terhubung dengan pompa vakum dan dicuci dengan methanol berulang kali. Endapan yang sudah kering ditimbang dan dicatat beratnya kemudian direfluks kembali dengan 100 ml xylene. Kemudian ditambahkan 1 tetes air dan direfluks selama 15 menit. Lalu ditambahkan indikator penofthalein 1 % kemudian dititrasi dengan KOH 0,05N dalam keadan panas. Titrasi dihentikan bila terjadi perubahan warna dari putih menjadi merah jinga dan dicatat volumenya.

3.2.5. Pembuatan Larutan KOH 0,05 N dalam Metanol

Ditimbang 2,8 g KOH dilarutkan dengan metanol. Kemudian diencerkan sampai volume 1000 ml.

3.2.6. Uji Spektroskopi FTIR

(37)

Polipropilena

PP-g-Ma 3.3. Bagan Penelitian

3.3.1. Proses Grafting MA pada PP dengan Radikal Bebas

Dimasukkan kedalam internal mixer pada suhu 165 oC dan diputar selama 5 menit

(38)

Larutan PP-g-MA

Endapan Basah

3.3.2. Menghitung Derajat Grafting dengan Metode Titrasi

1 g PP-g-MA

Direfluks dengan 100 ml xylene selama 60 menit

Ditambahkan Aseton 40 ml

Disaring dan dicuci kembali dengan methanol berulang-ulang

Dikeringkan didalam oven pada suhu 120 oC selama 6 jam Endapan kering

Direfluks dengan 100 ml xylen selama 45 menit

Ditambahkan 1 tetes air dan di refluks kembali selama 15 menit Setelah 15 menit Ditambahkan 3 tetes indikator penofthalien

Dititrasi dengan KOH 0,05 N dalam keadaan panas

Titrasi dihentikan bila terjadi perubahan warna dari putih menjadi merah jingga

(39)

3.3.3. Pembuatan Film untuk Analisis FTIR

Dimasukkan ke alat cetak tekan

Dicetak tekan selam 1 menit

pada suhu 165 oC

ANALISIS DENGAN FTIR

Dimasukkan Ke alat cetak tekan

Dicetak tekan selama 1 menit

pada suhu 165 oC

ANALISIS DENGAN FTIR POLIPROPILENA MURNI FILM Polipropilena Murni

Polipropilena Murni

(40)

BAB 4

HASIL DAN PEMBAHASAN

4.1. Hasil Pencampuran Polimer

Pada penelitian ini dilakukan pencampuran antara PP/MA/BPOda. Hasil pencampuran variasi komposisi campuran dapat dilihat pada tabel 4.1.

Grafik perbandingan derajat grafting dengan konsentrasi MA terlihat pada gambar 4.1

Derajat Grafting (MAH % ) Vs

Gambar 4.1. Grafik Perbandingan derajat grafting dengan konsentrasi MA

(41)

4.2 PERHITUNGAN

Untuk sample 1 diperoleh volume KOH = 1,5 ml dan berat endapan = 0,705 gram, maka dari rumus diatas diperoleh :

(42)

lingking. Semakin banyak jumlah maleat anhidrida tergrafting pada PP maka semakin tinggi

juga derajat graftingnya.

4.3.1. Pengaruh Konsentrasi Maleat Anhidrida Terhadap Derajat Grafting

Pengaruh konsentrasi Maleat Anhidrida terhadap derajat grafting tertera pada tabel berikut : Tabel 4.2. perbandingan Konsentrasi maleat Anhidrida terhadap derajat grafting

Pengaruh konsentrasi maleat anhidrida terhadap derajat grafting tertera pada tabel 4.2. Pada penelitian ini, penentuan derajat grafting dilakukan dengan metode titrasi. Persentase derajat grafting bertambah pada konsentrasi monomer 3 dan 9 %. Posisi maksimum ditandai pada konsentrasi maleat anhidrida 9 %. Ini menunjukkan bahwa kenaikan derajat grafting disebabkan oleh formasi ikat silang polimer dan poli (maleat anhidida) bertambah. Hasil ini didukung oleh Gaylord an Cowoker yang telah meneliti proses grafting maleat pada polietilena (Gaylor, 1989).

(43)

4.3.2. Analisis FTIR campuran PP/MA/BPO

Penerapan spektroskopi infra merah dalam penelitian polimer mencakup dua aspek yaitu aspek kualitatif dan aspek kuantitatif. Penelitian ini lebih menekankan aspek kualitatif karena berupa penentuan struktur dengan cara mengamati frekuensi-frekuensi yang khas dari gugus fungsi spektra FTIR yang didapat yaitu dengan cara membandingkan spektra polipropilena murni dengan spektra campuran PP/MA/BPO yang dapat dilihat pada lampiran.

Bilangan gelombang FTIR PP murni dapat dilihat dari tabel 4.3. Tabel 4.3. Bilangan gelombang PP Murni

Sampel Bilangan gelombang (cm -1) Gugus fungsi

2921,15 CH2

PP Murni

1375,58-1458,62 CH3

Bilangan gelombang FTIR campuran PP/MA/BPO adalah sebagai berikut : Tabel 4.4. Bilangan gelombang PP/MA/BPO

Sampel Panjang gelombang (cm -1) Gugus fungsi

2919,89 CH2

1714.43 C=O

PP-g-MA

1460.87 CH3

(44)

BAB 5

KESIMPULAN DAN SARAN

5.1. Kesimpulan

1. Konsentrasi MA yang tertinggi pada PP adalah sebesar 9 % dengan derajat grafting 5,69 %

2. Reaksi grafting antara polipropilena dengan MA dengan inisiator BPO didalam alat internal mixer pada suhu 165 oC dapat terjadi.

5.2. Saran

(45)

DAFTAR PUSTAKA

Almaika, S. And Scott, G. 1983. In Degradation and Stabilisation of Polyolefin. App. Sci. Publ. Ltd. London.

Arifin. 1996. Sintesis Kopolimer Stirena Maleat Anhidrida dan Karakterisasinya. Tesis PPS Kimia, Bandung: Institut Teknologi Bandung Press.

Bark and Alan. N.S. 1982. Analysis of Polymer System. London: Applied Science Publisher Itd.

Bettini. S.H.P. 1999. Grafting of Maleic Anhydride onto Poliropylene by Reactive Processing.

I. Effect of Maleic Anhydride and Peroxide Concentration on The Reaction. Brazil:

Sao Paulo.

Cowd. M.A. 1991. Kimia Polimer. Terjemahan Firman. Bandung: H. ITB. Fessenden. F. 1997. Kimia Organik. Edisi ketiga. Jakarta: Erlangga.

Gachter. M. 1990. Plastic Addictives Handbook. Third Edition. Munich: Hanser Publisher. Ghaemy. M. 2002. Grafting of Maleic Anhydride on Polyethylene in a Homogeneous Medium

in The Presence of Radical Initiator. Department of Chemistry. Iran:University of

Mazandaran.

Hartomo. A.J. 1993. Politeknik Pemrosesan Polimer Praktis. Yogyakarta: Andi Offset. HSDB. 1995. Hazardous Substance Data Bank National Library of Medicine. Edisi7/31/95.

Bethesda: Micromedex Inc.

Http. Wiki. Polipropilena. Ms. Wikipedia. Org. Http. Makromolekul. Student. Itb. Ac. Id.

Hummel. D.O. 1985. Infrared spectra Polymer in the Medium and Long Wavelength Region. London: John Wiley and Sons.

Lee. NS. 1990. The Graft Reaction of Polypropylene With Maleic Anhydride and Its

Dyebility. Dep of textile Ewng. Korea: Seoul Nation University.

Noerdin. D. 1985. Elusidasi Struktur Senyawa Organik dengan Cara Spektroskopi Ultra

lembayung dan Infra Merah. Bandung: Angkasa.

Schwattz. SS. 1981. Plastic Material and Processes. New york: Van Nostrand Reinhold. Sclavon. M. 1996. The Anhydride Content of Some Commercial PP-g-MA: FTIR and

Titration. Journal of Applied Polymer Science. Belgium: John Wiley and Sons.

Steven. MP. 2001. Kimia Polimer. Jakarta: PT Paradnya Paramita.

(46)

Lampiran I. Hasil FTIR PP Murni

Dari spektra FTIR diatas diperoleh korelasi gugus fungsi sebagai berikut :

Sampel Bilangan gelombang (cm -1) Gugus fungsi

2921,15 CH2

PP Murni

(47)

Lampiran II. Hasil spektra FTIR untuk PP/MA/BPO (derajat grafting tertinggi)

Dari spektra FTIR diatas diperoleh korelasi gugus fungsi sebagai berikut :

Sampel Panjang gelombang (cm -1) Gugus fungsi

2919,89 CH2

1714.43 C=O

PP-g-MA

(48)

Lampiran III : Gambar Alat dan Bahan

Neraca Analitis

(49)

Benzoil Peroksida

(50)

Hot Mixet

(51)

Tabung Leibig dan Alat Pemanas

(52)

Gelas Ukur, Xylene, Metanol

Gambar

Tabel  2.5.    Karakterisasi Dari Polipropilena……………………...
Gambar 2.1.1.Struktur Molekul Propilena……………………………………….
Gambar 2.1.2. Reaksi Polimerisasi dari propilena menjadi polipropilena
Gambar 2.4. Reaksi Degradasi dengan benzoil Peroksida
+7

Referensi

Dokumen terkait

DPA - SKPD 2.2 Rekapitulasi Dokumen Pelaksanaan Anggaran Belanja Langsung Menurut Program dan Kegiatan Satuan Kerja Perangkat Daerah. DPA - SKPD 2.2.1 Rincian Dokumen

Pengolahan data indikator merumuskan variabel percobaan, siswa yang berada pada kategori tidak terampil sebesar 36,1%, setelah diberi pelatihan dengan model inkuiri

Berdasarkan hasil penelitian ini menunjukkan bahwa: (1) latar belakang munculnya anak jalanan untuk berada di jalan karena disebabkan oleh beberapa faktor yaitu latar belakang

Produsen yang bermoral adalah produsen yang membuat label produk yang memuat informasi produk secara lengkap dan jelas, informasi yang ditulis benar dan jujur yang

Tanggapan konsumen mengenai keragaman produk pada Warung Nasi Ampera Cabang Padasuka Cicaheum Bandung dapat dikatakan baik walaupun masih ada yang perlu ditingkatkan Variasi

Internet adalah sekumpulan jaringan berbeda yang saling terhubung bersama sebagai suatu kesatuan dengan menggunakan berbagai macam protokol, salah satunya adalah

Motif-motif batik tradisional Jawa mendapatkan pengaruh dari kebudayaan lain Khusus untuk kebudayaan Cina terlihat pada motif yang tidak biasa digunakan dalam

Lebih dari itu, jika dalam al- Qur’ān terda pat ayat yang telah mansūkh (dihapus), maka sebagian ayat al- Qur’ān ada yang dibatalkan , apakah ini tidak menunjukkan bahwa