• Tidak ada hasil yang ditemukan

BAHAN AJAR METODE NUMERIK D6114006 JURUSAN ILMU KOMPUTER FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI SEMARANG

N/A
N/A
Protected

Academic year: 2017

Membagikan "BAHAN AJAR METODE NUMERIK D6114006 JURUSAN ILMU KOMPUTER FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI SEMARANG"

Copied!
49
0
0

Teks penuh

(1)

BAHAN AJAR

METODE NUMERIK

D6114006

Disusun Oleh:

Zaenal Abidin, S.Si., M.Cs.

JURUSAN ILMU KOMPUTER

(2)

2

BAB 1

PENGANTAR METODE NUMERIK

Metode Numerik Secara Umum

 Model matematika  fisika, kimia, ekonomi, teknik, dsb

 Seringkali model matematika  tidak ideal / rumit

 Model matematika rumit  tidak dapat diselesaikan dengan Metode Analitik untuk mendapatkan solusi eksak.

Metode analitik  metode penyelesaian model matematika dengan rumus-rumus

aljabar yang sudah baku (lazim).

Contoh ilustrasi :

1. Tentukan akar-akar persamaan polinom:

2. Tentukan harga x yang memnuhi persamaan:

 Soal (1) tidak terdapat rumus aljabar untuk menghitung akar polinom.

 Solusi untuk (1) memanipulasi polinom, misalnya memfaktorkan (atau menguraikan) polinom menjadi perkalian beberapa suku.

 Kendala: semakin tinggi derajat polinom, semakin sukar memfaktorkannya.

 Soal (2) masih sejenis dengan soal (1) yaitu menentukan nilai x yang memenuhi kedua persamaan.

Metode Analitik VS Metode Numerik

 Metode analitik  memberi solusi eksak, yaitu solusi yang memiliki galat (error) sama dengan nol.

 Metode analitik hanya dapat digunakan pada kasus-kasus tertentu.

 Nilai praktis penyelesaian metode analitik, terbatas.

 Metode Numerik teknik yang digunakan untuk memformulasikan persoalan matematik sehingga dapat dipecahkan dengan operasi perhitungan/aritmatika biasa.

(3)

3

Perbedaan antara metode numeriK dan metode analitik adalah :

Metode Numerik Metode Analitik

Solusi selalu berbentuk angka Solusi dalam bentuk fungsi matematika

Solusi berupa hampiran atau pendekatan Solusi eksak

Terdapat galat (error) Tidak ada galat (galat=0)

Metode Numerik dalam Bidang Rekayasa

 Dalam bidang rekayasa, kebutuhan menemukan solusi persoalan secara praktis adalah jelas.

 Masih banyak cara penyelesaian persoalan matematis yang dirasa terlalu sulit atau dalam bentuk kurang kongkrit.

 Penyelesaian analitik, kurang berguna bagi rekayasawan.

 Banyak persoalan matematika dalam bidang rekayasa yang hanya dapat dipecahkan secara hampiran.

Contoh kasus :

Sebuah bola logam dipanaskan sampai pada suhu 100oC. Kemudian, pada saat t = 0, bola dimasukkan ke dalam air yang bersuhu 30oC. Setelah 3 menit, suhu bola berkurang menjadi 70oC. Tentukan suhu bola setelah 22,78 menit. Diketahui tetapan pendingin bola logam itu

adalah 0,1865.

Jawab:

Dengan menggunakan Hukum Pendingin Newton

k = tetapan pendingan bola logam = 0,1865

Untuk menentukan suhu bola pada t = 22,78 menit, persamaan differensial harus diselesaikan agar suhu T sebagai fungsi dari waktu t ditemukan.

Persamaan differensial  metode kalkulus diferensial (cari sendiri???). Solusi umumnya adalah:

T(t)=ce-kt + 30

(4)

4 T(t)=70e-0,1865t+30

Dengan memasukkan t=22,78 ke dalam persamaan T, diperoleh T= 31oC.

Bagi rekayasawan, solusi persamaan differensial yang berbentuk fungsi kontinu, tidak terlalu penting. Dalam praktik di lapangan, rekayasawan hanya ingin mengetahui berapa suhu bola logam setelah t tertentu. Rekayasawan cukup memodelkan sistem ke dalam persamaan differensial, lalu solusi untuk t dicari secara numerik.

Apakah Metode Numerik Hanya untuk Persoalan Matematika Rumit Saja?

Metode numerik berlaku umum, yakni dapat diterapkan untuk menyelesaikan persoalan matematika sederhana (yang juga dapat diselesaikan dengan metode analitik), maupun persoalan matematika yang rumit.

Peranan Komputer dalam Metode Numerik

 Perhitungan dengan metode numerik adalah berupa operasi aritmatika. Dalam operasinya, terkadang butuh suatu pengulangan, sehingga perhitungan manual terkesan menjemukan.

 Komputer berperan mempercepat proses perhitungan tanpa membuat kesalahan.

Penggunaan komputer dalam metode numerik antara lain untuk membuat program.

 Langkah-langkah metode numerik diformulasikan menjadi program komputer yang dapat membantu mencari alternatif solusi, akibat perubahan beberapa parameter serta dapat meningkatkan tingkat ketelitian dengan mengubah-ubah nilai parameter.

 Jelas bahwa kecepatan tinggi, kehandalan, dan flesibikitas komputer memberikan akses untuk menyelesaikan masalah-masalah di dunia nyata.

 Contoh: solusi sistem persamaan linier yang besar menjadi lebih mudah dan cepat diselesaikan dengan komputer.

Alasan Mempelajari Metode Numerik

 Sebagai alat bantu pemecahan masalah matematika yang sangat ampuh, seperti mampu menangani sistem persamaan linear, ketidaklinearan dan geometri yang rumit, yang

dalam masalah rekayasa tidak mungkin dipecahkan secara analitis.

 Mengetahui secara singkat dan jelas teori matematika yang mendasari paket program.

(5)

5

 Metode numerik cocok untuk menggambarkan ketangguhan dan keterbatasan komputer dalam menangani masalah rekayasa yang tidak dapat ditangani secara analitis.

 Menangani galat suatu nilai hampirandari masalah rekayasa yang merupakan bagian dari paket program yang berskala besar.

 Menyediakan sarana memperkuat pengetahuan matematika, karena salah satu

kegunaannya adalah menyederhanakan matematika yang lebih tinggi menjadi operasi-operasi matematika yang mendasar.

Tahap Pemecahan Secara Numeris

 Pemodelan

 Penyederhanan Model

 Formulasi Numerik

o menentukan metode numerik yang akan dipakai, bersama dengan analisis error awal.

o Pertimbangan pemilihan metode

 Apakah metode tersebut teliti?

 Apakah metode mudah diprogram, dan waktu pelaksanaannya cepat?

 Apakah metode tersebut peka terhadap ukuran data. o Menyusun algoritma dari metode numerik yang dipilih.

 Pemrograman (translate algoritma  program komputer)

 Operasional  pengujian program dengan data uji

 Evaluasi  intepretasi output, penaksiran kualitas solusi numerik, pengambilan keputusan untuk menjalankan program guna memperoleh hasil yang lebih baik.

Peran Ahli Informatika dalam Metode Numerik

 Tahap 1, dan 2 melibatkan para pakar di bidang persoalan yang bersangkutan.

 Dimana peran orang informatika?

 Infromataikawan berperan dalam tahap 3, 4, dan 5.

 Agar lebih memahami dan menghayati persoalan, sebaiknya orang informatika juga ikut dilibatkan dalam memodelkan.

(6)

6

Log(x)→natural logaritmic(ln(x))

Misal: f(x)ex,a 0

Selesaikan !

(7)
(8)

8 12.

1−�2

�+1

� =

=

� −�+ �� =

�( −� )

�� �+ −�

(�+ )

�� ( −�)

(�+ )

= −� )

− � �+ − −�

�+

= −�

− � − � − ( −� )

�+

= − � − �−

� �+

− − � = − � − �− −� −�

�+

=− � − �− + �

−� (�+ )² =

− �− −�²(�+ )²

= − (�+ )

− �+ −�²= − (�+ ) −�²

13.

3 1−�2

� =

=� ��� −� �(�� −� �( −� ) �(�� −� � −� ��

= 3��� − � � � − � − �

(9)

9

BAB 2

DERET TAYLOR DAN ANALISIS GALAT

Polinomial Taylor

Umumnya fungsi f(x) yang ada di matematika tidak dapat dikerjakan secara eksak dengan cara yang sederhana.Sebagai contoh untuk menentukan nilai f(x) = cos(x) , � atau

� tanpa menggunakan alat bantu adalah hal yang sangat susah.Salah satu cara yang digunakan untuk mencari nilai f(x) adalah dengan menggunakan fungsi pendekatan yaitu

polinomial. Diantara polinomial-polinomial yang banyak digunakan adalah polinomial taylor. Rumus umum dari polinomial taylor adalah sbb:

Pn(x) = f(a) + (x−a) f′(a) +(�− )2

2! f′′(a)+. ..

+(�− ) !

( )

= �−

!

=0

dengan 0 =

Contoh 1 :

Misalkan � = � = 0

maka � = �, (0) = 1,∀j 0

� � = 0 + � −0 ′ 0 + � −0

2

2!

′′ + + � −0

!

0

= 1 +� .1 + �2

2! .1 + +

� ! .1

= 1 +�+�2

2! + +

� !

Kasus khusus bila fungsi polinomial taylor diperluas disekitar a=0 maka dinamakan deret

Maclaurin. Contoh 2 :

Diketahui � = sin � dan = 0

Carilah deret Maclaurin dari fungsi f tersebut ! Penyelesaian :

′ � = cos � ′′′ � =−cos⁡(�) � = cos⁡(�)

(10)

10

Latihan Soal

Carilah deret Maclaurin dari

(11)

11

Galat Pada Polinomial Taylor

Diasumsikan bahwa (�) mempunyai n+1 turunan kontinu pada interval ,

misalkan titik berada pada interval tersebut maka � (�) disebut remainder atau galat atau sisa/residu.

Dirumuskan :

� � = � − � (�)

Dengan adalah sebuah titik yang berada diantara a dan x.

(12)

12

Deret Taylor yang dipotong sampai orde ke-n disebut deret taylor terpotong. Deret Taylor yang dipotong sampai suku ke-n bisa dituliskan :

� =� � +� (�)

Diketahui :

� = sin� , hampirilah deret taylor orde 4 di a=1.

Penyelesaian :

� � = sin 1 + � −1 cos 1 + �−1 2

Deret taylor terpotong di daerah a = 0 disebut deret Maclaurin terpotong. Contoh :

Didalam metode numerik selalu digunakan nilai hampiran untuk mencari nilai atau solusi numerik. Nnilai hampiran inilah yang memunculkan galat atau error.

Error atau galat terjadi karena beberapa sebab : 1. dari pengamatan

2. dari pengabaian sesuatu 3. dari alat yang digunakan

4. dari metode numeris yang digunakan Galat didefinisikan sebagai :

(13)

13 Keterangan:

� : dibaca epsilon : galat/error : nilai sejati(true value)

: nilai hampiran (approximation value)

Galat Relatif yaitu ukuran galat terhadap nilai sejatinya.

�� = � atau �� = � 100% Keterangan :

�� : galat relatif

� : galat : nilai sejati Contoh :

Dipunyai nilai π = 3,14159265... Nilai hampiran = 22/7 = 3,1428571... Sehingga galatnya adalah :

ε = 3,14159265 - 3,1428571 = - 0,00126

ε = �

= −0,00126 3,14159265

= -0,000402

Galat relatif hampiran yaitu : ukuran galat terhadap nilai hampirannya.

εRA = �

Macam-macam galat dalam penghitungan numerik :

1. Galat Pemotongan (Truncation Error)

(14)

14 contoh :

cos(x) = 1- �

2

2! + �4

4! - �6

6! + �8

8! - �10

10!

Nilai hampiran galat pemotongan pemotongan

2. Galat Pembulatan

Galat yang ditimbulkan dari keterbatasan komputer dalam menyajikan bilangan real. contoh :

1

6 = 0,1666...

Komputer tidak dapat menyatakan secara tepat jumlah dari digit 6. Komputer hanya mampu mempresentasikan sejumlah digit atau bit (1 byte = 8 bit)

3. Galat total

Atau galat akhir pada solusi numerik. Merupakan jumlah galat pemotongan dan galat

pembulatan. Contoh :

cos(0,5) ≈ 1- 0,52 2! +

0,54

4! ≈ 0,877604...

galat pemotongan galat pembulatan

contoh :

1. Hitunglah error, relative error, dan digit yang signifikan dibawah ini dengan perkiraan

� = ��

a) Xt = 28,254, XA= 28,271 εR = � = −

17

28,254 = -0,000601684717

Jawab :

ε = a-â

= 28,354-28,271 = -17

b) Xt = 0,028254, XA = 0,028271 εR = � =−

0,000017

0,028254 = -0,0006016847 Jawab :

ε = a-â

(15)

15 = -,000017

c) Xt = e, XA = 19

7 εR=

= 0,003996113714 3

2,178281828 = 0,0014700880803 Jawab :

ε = a-â

= 2,178281828 – 2,7142857142857 = 0,0039961137143

d) Xt = 2, XA = 1,414 εR = � =

0,0002135623731

1,4142135623731 = 0,0001510114022 Jawab :

ε = a-â

= 1,4142135623731 – 1,414 = 0,0002135623731

Bilangan Titik Kambang

Format bilangan real di komputer berbeda-beda bergantung pada perangkat keras dan penerjemah bahasa pemrograman. Bilangan real di dalam komputer umumnya disajikan dalam format bilangan titik kambang

= ± � ᴾ

Keterangan: m = mantis (rill)

B = basis sistem bilangan yang di pakai (2, 8, 10, dst) P = pangkat (berupa bilangan bulat)

Contoh:

Bilangan rill 245,7654 dinyatakan sebagai 0,2457654 x 103 atau bisa juga ditulis

0,2457654E03

Bilangan Titik Kambang Ternormalisasi

Represensitatif bilangan titik kambang bisa beragam sebagai contoh kita dapat menuliskan sebagai

(16)

16

Misalnya 245,7654 dapat dituliskan sebagai 0,2457654 x 103 atau 2,457654 x 102 atau 0,02457654 x 104 dst.

Agar bilangan titik kambang dapat disajikan seragam, maka digit pertama mantis tidak boleh

“0”. Bilangan titik kambang yang di normalisasi ditulis sebagai:

= ± � ᴾ= ±0 1, 2, 3… ᴾ

Dimana d1, d2 ,d3 ... dn adalah digit matriks terhadap syarat 1 ≤ d1 ≤ b-1, dan 0 ≤ dk ≤ b-1 untuk k>1

 Pada syarat desimal: 1 ≤ d ≤ 9 dan 0 ≤ dx≤ 9

 Pada sistem biner: d = 1 dan 0 ≤ dx≤ 1 Contoh:

1. 0,0563 x 10-3 dinormalisasi menjadi 0,563 x 10-4

(17)

17

BAB 3

PENYELESAIAN PERSAMAAN NON LINIER

Dalam matematika terapan kita sering mencari penyelesaian persamaan untuk f(x)=0, yakni bilangan-bilangan x=1 sedemikian hingga f(x)=0 sehingga f(r)=0; f adalah fungsi tak linier dan r yang memenuhi disebut akar persamaan atau titik 0 fungsi tersebut.

1. Persamaan Aljabar Contoh:

1) Persamaan Polinom Berordo > 2

�ⁿ+ 1�ⁿ−1+ + �2+ �+ = 0

Dengan ≠0, > 0

2) Persamaan Rasional

� = ��

� − � − �′(�+�)

Dengan P, R, T, A, v konstanta

2. Persamaan Transenden, adalah persamaan yang mengandung fungsi-fungsi

trigonometri algoritma atau eksponen.

Contoh:

1) e-x + sin(x) = 0 2) hx – 2 = 0

3. Persamaan Campuran, mengandung baik persamaan polinom maupun persamaan transenden.

Contoh:

1) x2 sin x + 3 = 0 2) x3 + ln x = 0

Dari contoh di atas tentukan bahwa rumus-rumus yang memberikan nilai eksak dari penyelesaian secara eksplisit hanya akan ada untuk kasus-kasus yang sederhana. Dalam banyak hal kita harus menggunakan metode-metode hampiran khususnya metode-metode iterasi.

(18)

18

memuat (x0) dan rentan g terletak dalam selang tersebut,jadi secara ebruntun kita menghitung.

Dari runtunan di atas diinginkan bahwa hampiran tersebut membentuk suatu barisan yang konvergen. Metode iterasi secara khas cocok untuk komputer karena metode ini melibatkan suatu proses. Ada 4 metode dasar untuk memecahkan persamaan non linier yang dikelompokan atas metode terbuka(selalu konvergen) dan metode-metode terututup(tidak selalu konvergen).

Keempat metode ini adalah:

1) Metode Bagi Dua ( Bisection Method) 2) Metode Posisis Palsu ( Regula Falsi)

3) Metode Newton-rhapson

4) Metode secant

1. Metode Biseksi (Metode Bagi Dua)

Pencarian lokasi akar

( i ) Grafik Tunggal ( ii ) Grafik Ganda

(iii) Tabulasi

F(x)=x ln (x) 1

x f(x)

0,5 -1,34

1 -1

1,5 -0,39

2 0,38

2,5 1,29

a[ ]b akar y

x

akar

x y

f2

(19)

19

Untuk mencari akar persamaan linier dengan menggunakan metode bagi dua yaitu harus dilakukan pertama kali adalah memperkirakan sebuah selang yang didalamnya mengandung solusi akar.

Langkah Algoritma

Misalnya: f(x) kontinu pada interval (a, b) Algoritma:

1. Definisikan c = + 2

2. Jika | b –c | ≤ Ɛ, maka c akar persamaan selesai

3. Jika f(b) f(c) ≤ 0 maka a = c lainnya b = c

Contoh:

Carilah akar persamaan dari x = e dengan Ɛ = 0,001

Penyelesaian: f(x) = e-x– x

Ambil sembarang selang (-1, 1) f(-1) = e + 1 = 3,718

f(1) = e-1– 1 = 0,632 f = x6– x – 1 = 0

diambil selang (1, 2) f(1) = 16– 1 – 1 = -1 f(2) = 26– 2 – 1 = 61

n a b c b - c f(c)

1 -1 1 0 1 0

2 0 1 0,5 0,5 0,1065

3 0,5 1 0,75 0,25 -0,2776

4 0,5 0,75 0,75 0,75 -0,897

Untuk menentukan jumlah literasi untuk mencari akar-akar ln (

− Ɛ )

ln (2)

(20)

20

Ɛ = 0,001 pada selang (1, 2), banyak iterasi yang diperlukan untuk mencari akar adalah

ln ( −

0,001)

ln ( )

n ≥ 9,97 ≈ 10 iterasi.

2. Metode Regula-Falsi (Metode Posisi Palsu)

Meskipun metode dibagi 2 ( Bisection ) selalu berhasil dalam menemukan akar tetapi kecepatan konvergensinya sangat lambat. Kecepatan konvergensinya dapat di tingkatkan bila nilai f(a) dan f(b) juga diperhitun gkan. Metode yang memanfaatkan nilai f(a) dan f(b) disebut metode Regulasi-Falsi. Atau metode posisi palsu ( False Position Method). Dengan metode Regulasi-Falsi dibuat garis lurus yang menghubungkan titik ( a, f(a) ) dan ( b, f(b) ). Perpotongan garis tersebut dengan sumbu x merupakan taksiran akar yang diperbaiki. Garis lurus tersebut seolah-olah berlaku menggantikan kurva f(x) dan memberikan posisi palsu dari akar.

y ,

� = � (x)

− − =

−0

− = ( − )

− ( ) (c,0)

= − ( − )

− ( ) a c

b x

A

,

Algoritma

Misalkan dipunyai sebuah interfal [a, b] yang memenuhi ( ) < 0 dan sebuah toleransi galat

� maka Regulasi-Falsi dapat dicari dengan langkah-langkah sebagai berikut :

1. Definisikan = − −

2. Jika − � maka c adalah akar dan proses selesai.

(21)

21 Contoh

Diketahui : � =�6 − � −1 = 0 dengan � = 0,001 pada selang 1,2

Iterasi a B c f(a) f(b) f(c) b-c

1 1 2 1,02 -1 61 0,89 0,98

2 1,02 2 1,04 -0,94 61 -0,77 0,96

3 1,04 2 1,06 -0,77 61 -0,64 0,94

4 1,06 2 1,07 -0,64 61 -0,56 0,93

5 1,07 2 1,08 -0,56 61 -0,49 0,92

6 1,08 2 1,09 -0,49 61 0,91

7 1,09 2

dst

e

2

2

2 0,983870967

1,016129032

Metode Terbuka

Metode Terbuka dibagi menjadi 3 yaitu:

1. Metode Iterasi Titik Tetap 2. Metode Newton – Rhapson 3. Metode Secant

1. Metode Iterasi Titik Tetap

Metode iterasi titik tetap disebut juga metode iterasi sederhana, metode langsung, atau metode substitusi beruntun.

Jika dipunyai persamaan secara aljabar dapat dibentuk menjadi . Maka

(22)

22

Selanjutnya membuat nilai awal , kemudian menghitung nilai sedemikian

hingga

konvergen ke akar sejati agar memenuhi dan .

Iterasi akan berhenti jika :

< atau < δ

dengan ℇ dan δ telah ditetapkan sebelumnya

Contoh :

Carilah akar persamaan gunakan metode iteresi titik tetap dengan

ℇ=0,000001 Penyelesaian : Diket :

Ditanya : akar persamaan ?

(i).

prosedur iterasi yang bersesuaian

Untuk mencari

(23)

23 =3,31662479

:

=0,68337

r

0 4 -

1 3,316625 0,683375

2 3.103748 0,212877

3 3.034385 0,069362

4 3,011440 0,022945

5 3,00,3811 0,007629

6 3, 001270 0,002541

7 3, 000423 0,000847

8 3, 000141 0,000282

9 3, 000047 0,000094

10 3,000016 0,000031

11 3,000005 0,000010

12 3,000002 0,000003

13 3,000001 0,000001

14 3,000000 0,000000

Hampiran akar = 3 (konvergen monoton) (ii).

(24)

24 Tebakan awal

r

0 4.000000 -

1 1.500000 2,500000

2 -6.000000 7,500000

3 -0,375000 5,625000

4 -1,263158 0,888158

5 -0,919355 0,343803

6 -1,027624 0,108269

7 -0,990876 0,036748

8 -1,003051 0,012175

9 -0,998984 0,004066

10 -1,000339 0,001355

11 -0,999887 0,000452

12 -0,000038 0,000151

13 -0,999987 0,000050

14 -1,000004 0,000017

15 -0,999999 0,000006

16 -1,000000 0,000002

17 -1,000000 0,000001

Hampiran akar = -1,00000 (konvergen berosilasi) (iii).

→ prosedur iterasi yang bersesuaian

r

0 4,000000 -

(25)

25

2 19.625000 13.125000

3 191.070313 171.445312

4 18252.432159 18061.361847

…..dst…..

Notasi divergen (nilai semakin membesar)

Teorema Kekonvergenan

Misalkan adalah solusi dari dan andaikan mempunyai turunan kontinue

dalam selang yang memuat

Maka jika dalam selang tersebut , proses iterasi yang didefinisikan

akan konvergen ke Sebaliknya jika dalam selang tersebut ,

maka iterasi akan divergen dari

Jika terdapat selang dengan sebagai titik tetap, maka berlaku :

(i) . → Iterasi konvergen monoton.

(ii). → Iterasi konvergen berosilasi.

(iii). → Iterasi divergen monoton.

(iv). → Iterasi divergen berosilasi.

Contoh :

(26)

26

Karena maka iterasi konvergen monoton

b. Tentukan selang agar konvergen ?

Penyelesaian :

Syarat konvergen

Untuk ( tidak mungkin)

Untuk

(27)

27

2. Metode Newton-Rhapson

Y

Akar terjadi ketika grafik memotong sumbu x,estimasi untuk  digunakan garis singgung

yang menyinggung garfik y f(x)di x0. Gradien garis singgung dapat dicari dengan

turunan pertama fungsi f(x). Dari gambar tersebut gradien garis singgungnya adalah:

Gradien garis singgung (xo,f(xo))dan (x1,0)

Secara umum,bentuk rumus (*) bisa digeneralisasi menjadi:

0

Formula atau rumus (**) digunakan untuk prosedur iterasi metode Newton-Rhapson. Iterasi Newton-Rhapson akan berhenti pada kondisi:

dengandan  adalah toleransi galat yang diinginkan.

Catatan:

1. Jika f'(xn)0, ulangi kembali hitungan iterasi dengan x0yang lain.

2. Jika persamaan f(x)0 memiliki lebih dari satu akar pemilihan x0yang

(28)

28

3. Dapat terjadi iterasi konvergen keakar yang berbeda dari yang diharapkan. Contoh:

Carilah akar dari f(x)x6 x1 dengan menggunakan metode Newton-Rhapson.

Untuk menyelesaikan soal diatas maka terlebih dahulu mencari selang yang

mengandung akar. Batas atas dan batas bawah selang sebaiknya menghasilkan nilai dengan perubahan tanda ketika dimasukkan kedalam fungsi tersebut. Selanjutnya,pilih satu nilai didalam selang tersebut.

)

Jadi akar dari persamaan diatas adalah 1,134724 Tentukan hampiran akar untuk persamaan berikut:

1. f(x)x3x3 Dengan tebakan awal x0 (1,1)

Jadi akar persamaannya adalah=1,213412

(29)

29

n xn f(xn) f'(xn) xn-xn-1

0 3 14 79

1 2.822785 1.353001 64.06474 -0.17722

2 2.801666 0.01745 62.4168 -0.02112

3 2.801386 3.02E-06 62.39517 -0.00028

4 2.801386 9.24E-14 62.39516 -4.8E-08

5 2.801386 0 62.39516 0

6 2.801386 0 62.39516 0

Jadi akar persamaannya adalah=2,801386

Kriteria Konvergen Newton Raphson.

Untuk memperoleh iterasi konvergen maka harus memenuhi harga mutlak g’(x) < 1 Karena metode Newton Raphson adalah metode terbuka maka dapat dirumuskan

g(x) maka turunan pertama g(x)adalah :

g‟(x)=1

=

g‟(x)=

karena syarat konvergensi g‟(x) < 1

maka <1

Dengan syarat f‟(x) 0

(30)

30

Prosedur iterasi Newton Rhapson memerlukan perhitungan turunan fungsi,sayangnya,tidak semua fungsi mudah dicari turunanya terutama fungsi yang bentukya rumit.Turunan fungsi dapat dihilangkan dengan cara menggantinya dengan bentuk lain yang ekivalen.modifikasi metode Newton Rhapson dinamakan metode secant.

Diamsumsikan terdapat 2 nilai tebakan awal yaitu dan x1. 2 titik (x0,f(x0)) dan (x1 ,f(x1))

pada kurva y =f(x) dibuat garis lurus,yang disebut garis secant.formmula untuk metode secant dapat dicari dengan menggunakan metode Newton Rapshon dengan menyamakan

gradient yang ditentukan oleh :

{(x0,f(x0));(x1,f(x1))} dan {(x1,f(x1)),(x2,0)}

F(X1)-f(x0) = 0-f(x1) X1-x0 x2-x1

X2-x1

X2=x1- f(x1)(x1-x0)

f(x1)-f(x0) „‟‟‟‟‟‟(*)

secara umum formula( *) dapat digeneralisasi menjadi: xn+1 = xn-f(xn)(xn-xn-1)

(31)

31 akar persamaan f(x)=x6–x -1 dengan x0=2,x1=1

n xn f(xn) Xn-xn-1

0 2 61

1 1 -1 -1

2 1,016129 -0,91537 0,06129

3 1,190578 0,657466 0,174449

4 1,117656 -0,16849 -0,07291

(32)

32

BAB 4

SOLUSI SISTEM PERSAMAAN LINIER

a. Metode Iterasi Jacobi

Tinjau kembali sistem persamaan linier

11�1+ 12�2+ 13�3+ + 1 � = 1

Maka lelalaran pertamanya adalah :

�1

Lelaran kedua

(33)

33 Secara umum :

�( +1)

= − �

( ) =1, ≠

= 0,1,2…

b. Metode Iterasi Gauss-Seidel

Lelaran pertama :

�1 (1)

= 1− 12�2

(0)

− 13�3 (0)

11

�2 (1)

= 2− 21�1

(1)

− 23�3 (0)

22

�3 (1)

= − 31�1

(1)

− 32�2 (1)

Jadi hasil yang telah diperoleh langsung digunakan pada perhitungan berikutnya.

C. Latihan

Tentukan solusi SPL

(34)

34

BAB 5

INTERPOLASI

a. Pencocokan Kurva

Pencocokan Kurva adalah sebuah metode yang mencocokkan titik data dengan sebuah kurva (curve fitting) fungsi.

Pencocokan kurva dibedakan menjadi dua metode:

1. Regresi

 Data memuat galat yang cukup berarti

 Kurva cocokan mewakili kecenderungan titik data (tidak perlu melalui semua titik) sehingga selisih antara titik data dan titik hampiran sekecil mungkin

2. Interpolasi

 Data dengan ketelitian tinggi

(35)

35

Interpolasi

• Tujuan: Mencari nilai di antara beberapa titik data yang telah diketahui nilainya

• Fungsi cocokan berupa polinom: Interpolasi Polinom

• Polinom berbentuk:

b. Interpolasi dengan Polinom Linear dan Kuadrat

Interpolasi dengan Polinom Linear

• Diketahui data: (x0,y0), (x1,y1)

• Polinom yang menginterpolasi:

Interpolasi dengan Polinom Kuadrat

• Diketahui data: (x0,y0), (x1,y1), (x2,y2)

• Polinom yang menginterpolasi:

P2(x)=a0 + a1x + a2x2…………(*)

a0 dan a1 telah diketahui dari polinom linear

Menentukan a2 : Substitusi (xi,yi) ke (*)

0 1 1

1

)

(x a x a x a x a

P n n

n n

n     

(36)

36 a0 + a1x0 + a2x02 = y0 (1)

a0 + a1x1 + a2x12 = y1 (2)

a0 + a1x2 + a2x22 = y1 (3)

Dengan cara eliminasi diperoleh:

c. Interpolasi dengan polinom Newton

a0=y0 ,a1=f[x1,x0], a2=f[x2,x1,x0],……

an=f[xn,xn-1,…,x1,x0]

Contoh:

Nilai Viskositas air  dapat ditentukan dengan menggunakan tabel berikut ini:

T(ºC) (10-3 Ns/m2)

0 1,792

10 1,308

30 0,801

50 0,549

70 0,406

90 0,317

100 0,284

(37)

37 Jawab:

Nilai  untuk T=400

• Jika digunakan titik [30,50,70]: P2(40)=0.6613750000

• Jika digunakan titik [10,30,50]: 0.643125000

• Jika digunakan titik [0,10,30,50]: P3(40)=0.67010000

• Jika digunakan titik [10,30,50,70]: P3(40)=0.652250001

Polinom Lagrange

Polinom linear:

Dapat disusun kembali menjadi:

Polinom kuadrat dapat pula disusun menjadi:

Atau:

Dengan memakai fungsi Lagrange

Dimana syarat interpolasi harus dipenuhi

(38)

38

d. Interpolasi Dengan Polinom Newton Gregory

Polinom Newton Gregory Maju

Diketahui titik-titik berjarak sama: x0, x1= x0+h, x2= x0+2h,…

Didefinisikan:

Sehingga

Misal nilai yang akan diinterpolasi: x = x0+sh

1. Polinom Newton Gregory Maju:

2. Polinom Newton Gregory Mundur

Diketahui titik-titik berjarak sama: x0, x-1= x0-h, x-2= x0 -2h,…

(39)

39 Polinom Newton dapat ditulis:

Misal nilai yang akan diinterpolasi: x = x0+sh

Diperoleh Polinom Newton Gregory Mundur:

C. Latihan

1. Sejumlah uang didepositokan dengan tingkat bunga tertentu. Tabel berikut menguraikan

perkiraaan uang deposito pada masa yang akan datang, berupa nilai uang pada 20 tahun mendatang dibandingkan dengan nilai sekarang.

Tingkat suku bunga F/P (n = 20 tahun)

15 16,366

20 38,337

25 86,736

30 190,050

Jika Rp. 100.000.000,- didepositokan sekarang dengan suku bunga 23,6%, berapa nilai uang tersebut pada 20 tahun yang akan datang. Gunakan interpolasi Newton Lagrange dan Newton maju, Kemudian bandingkan hasil perhitungan ketiga metode tersebut.

2. Misal diberikan sekumpulan titik data. Bila di dalam tabel selisih maju ditemukan k

bernilai hampir konstan (0) maka polinom yang tepat menginterpolasi titik-titik itu

(40)

40

x 0.1 0.3 0.5 0.7 0.9 1.1 1.3

f(x) 0.003 0.067 0.148 0.248 0.370 0.518 0.697

a. Berapa derajat polinom yang terbaik untuk menginterpolasi ketujuh titik data di atas? b. Dengan derajat terbaik dari jawaban a) tentukan nilaiu fungsi di x = 0.58 dengan polinom interpolasi Newton Gregory maju

3. You are given some data: (0,f(0)), (h,f(h)), (2h,f(2h)) and (3h,f(3h)). Find (52) 3

h

P with

Lagrange polynomial

4. Jika sejumlah uang didepositokan dengan suatu kurs bunga tertentu maka tabel di bawah ini dapat digunakan untuk menentukan jumlah uang yang terakumulasi setelah 20 tahun

Kurs bunga (%) 15 20 25 30 35

F/P 20,1114 20,4445 20,7777 21,222 21,8884

F/P adalah perbandingan dari keuntungan nanti terhadap nilai sekarang. Misalnya jika p = 1.000.000 didepositokan, maka setelah 20 tahun dengan bunga 32% jumlah uangnya menjadi: F = (F/P).P = 20,4445 x 1.000.000 = 20.444.500.

a. Tentukan derajat polinom yang terbaik untuk menginterpolasi ke-enam titik di atas b. Dengan derajat terbaik pada jawaban a), tentukan jumlah uang setelah 20 tahun dari

Rp.30.000.000 yang didepositokan dengan bunga 32%. (Gunakan polinom interpolasi

Newton Gregory maju)

5. Sebuah daerah dijangkiti oleh epidemi demam berdarah. Misal f(t) menyatakan banyaknya orang yang terjangkiti demam berdarah setelah t minggu. Seorang petugas mencatat data sebagai berikut

t (minggu) 1 2 4 5 7

f(t) 3 8 15 25 40

a. Tentukan fungsi yang menghampiri data di atas dengan polinom Lagrange

b. Gunakan hasil pada a) untuk menaksir banyak orang yang terjangkiti demam berdarah setelah 6 minggu

(41)

41

6. Buktikan bahwa: 40

4

0 1 2 3 4

!. 4 ] , , , , [

h f x

x x x x

(42)

42

BAB 6

INTEGRASI NUMERIK

Integral:

Jika f(x)>0, tafsiran geometrik: luas daerah

Jika fungsi primitif F(x) yaitu diketahui , maka

Jika tidak diketahui maka diselesaikan dengan Pengintegralan Numerik

a. Metode Newton-Cotes

Ide: Penggantian fungi yang rumit atau data yang ditabulasikan ke fungsi aproksimasi yang

mudah diintegrasikan

Jika fungsi aproksimasi adalah polinomial berorde n, maka metode ini disebut metode

integrasi Newton-Cotes

Kaidah Segiempat

Disini aproksimasi f (x) dengan suatu fungsi tangga (fungsi

(43)

43 konstan sepotong-potong)

Kaidah Trapesium

Disini aproksimasi f (x) dengan suatu fungsi linier sepotong-potong

(44)

44 Kesalahan:

b). Banyak pias

Kesalahan:

Kaidah Simpson 1/3

Disini aproksimasi f (x) dengan suatu fungsi kuadratik sepotong-potong

(45)

45 b) Banyak Pias:

Kesalahan:

b. Metode kuadratur Gauss

 Rumusan yang paling akurat untuk integrasi numerik

 Tinjauan Gauss dalam perhitungan integral

 F(x) dx berdasarkan nilai f(x) dalam sub interval yang tidak berjarak sama, melainkan simetris terhadap titik tengah interval

I = f(x) dx

= (a-b) [R1 (U1 ) + R2 (u2) + … + Rn (Un)]

U1,U2,…,Un adalah titik dalam interval [-1/2,1/2]

(U) = f(x) = f[(b-a)u + ]

X = (b-a)u +

(Tersedia tabel nilai numerik parameter U dan R)

Latihan

Tentkan luas daerah di bawah kurva f(x) = x2, antara x = 0 sampai x = 4, dengan kaidah segiempat dan trapesium dan simpson 1/3

(46)

46 a). Dengan kaidah segiempat

 Interval (0, 4) dibagi menjadi 4 bagian sama panjang, n = 4  h = (4 - 0)/4 = 1

 Luas persegi panjang  P1 = 1 * f(1) = 1 * 1 = 1

P2 = 1 * f(2) = 1 * 4 = 4

P3 = 1 * f(3) = 1 * 9 = 9

P4 = 1 * f(4) = 1 * 16 = 16

Luas Total = 30

Penyimpangannya = 30 – 21.33 = 8.66

 Jika interval (0, 4) dibagi menjadi 8 sub-interval, n = 8  h = (4 - 0)/8 = 0.5

 Luas persegi panjang  P1 = 1 * f(0.5) = 1 * 1 = 0.125

P2 = 1 * f(1.0) = 1 * 4 = 1

P3 = 1 * f(1.5) = 1 * 9 = 1.125

P4 = 1 * f(2.0) = 1 * 16 = 2

P5 = 1 * f(2.5) = 1 * 4 = 3.125

P6 = 1 * f(3.0) = 1 * 9 = 4.5

P7 = 1 * f(3.5) = 1 * 16 = 6.125

P8 = 1 * f(4.0) = 1 * 16 = 8

Luas Total = 26

Penyimpangannya = 26 – 21.33 = 4.67

 Jika banyaknya sub-interval diperbanyak lagi, misal n = 40, diperoleh L = 22.14, dan untuk n = 100 diperoleh L = 21.6544

 Jika diambil tinggi adalah nilai fungsi pada ujung kiri sub-interval Luas  P1 = 0.5 * f(0.0) = 0.5 * 0 = 0

P2 = 0.5 * f(0.5) = 0.5 * 0.25 = 0.125 P3 = 0.5 * f(1.0) = 0.5 * 1 = 1

P4 = 0.5 * f(1.5) = 0.5 * 2.25 = 1.125

P5 = 0.5 * f(2.0) = 0.5 * 4 = 2

P6 = 0.5 * f(2.5) = 0.5 * 6.25 = 3.125

P7 = 0.5 * f(3.0) = 0.5 * 9 = 4.5

P8 = 0.5 * f(3.5) = 0.5 * 12.25 = 6.125

Luas Total = 18

(47)

47

Perhatikan bahwa hasil terakhir ini adalah yang terbaik.

b). Dengan kaidah trapesium

 Interval (0, 4) dibagi menjadi 4 sub-interval, n = 4  h = (4 - 0)/4 = 1

 Luas total

D. Lembar kegiatan:

 Soal tes formatif dikerjakan oleh tiap mahasiswa untuk tugas rumah dan dikumpulakan pada pertemuan berikutnya

E. Tes Formatif

1. Volume suatu daerah yang dibatasi oleh grafik f(x), a≤x≤b yang diputar terhadap

sumbu x dapat ditentukan dengan rumus v f x dx

b

diputar terhadap sumbu x dengan metode Kuadratur Gauss 2 titik

(48)

48

2. The region D is bounded by curve f(x)(cosxsinx)2, 

  

 

  

2 3 , 2

3

x .

The volume of the solid generated by revolving about X-axis the region D is given by

  b a

dx x f

V  ( )2 ,  

2 3 ,

2 3

 

 b

a . Find the volume V with 2 point-Gauss

Legendre method

3. Hitunglah 

5 . 2

5 . 1

2 2

) cos(x

x dt dengan aturan Gauss Legendre 3 titik

4. Tentukan n sehingga

xdx

1

0

)

sin( jika diselesaikan dengan metode Simpson 1/3

(49)

49

DAFTAR PUSTAKA

Chapra, S. C. and Canale, R. P. 1991. Metode Numerik untuk Teknik. Penerbit Universitas Indonesia, Jakarta.

Conte, S. D. and de Boor, C. 1993. Dasar-Dasar Analisis Numerik, Penerbit Erlangga, Jakarta.

Hanselman, D. and Littlefield, B. 1997. Matlab Bahasa Komputasi Teknis. Penerbit Andi, Yogyakarta.

Atkinson, K.E, 1989. An Introduction to Numerical Analysis, 2nd Edition. Wiley. New York.

Munir, R. 2003. Metode Numerik. Penerbit Informatika: Bandung.

Referensi

Dokumen terkait

Penjadwalan produksi flowshop yang diterapkan untuk produksi sepatu menggunakan algoritma Artificial Immune System dan algoritma Differential Evolution Plus

Karena tidak semua model matematika yang diformulasikan dari masalah dalam IPTEK dapat diselesaikan secara analitik, mengakibatkan komputasi sain ( computational science )

Penelitian dari Dewi et al., (2017) menyatakan bahwa indikator keterampilan proses sains pada level tinggi dapat dilihat dari bagaimana peserta didik sudah

Setelah mengikuti proses pembelajaran, peserta didik diharapkan dapat: 1) menganalisis zat makanan yang diperlukan tubuh manusia sehari-hari dari berbagai

Struktur data non linear adalah struktur data yang tidak linear, yaitu antara lain yang akan dibahas dalam bab ini adalah matriks, menggunakan array 2 dimensi, dan

Kegiatan praktikum mengangkat persoalan persoalan elementer aktivitas fisiologi tumbuhan agar mahasiswa dapat memiliki keterampilan memecahkan masalah dan memiliki

Tetapi bukan hanya itu saja, mengingat kemampuan yang dimiliki SVG dan SVG Tiny yang mampu diimplementasiakan pada mobile device dan dapat mempresentasikan data

Judul dari bab ini disesuaikan dengan kegiatan penelitian dan metodologi yang telah dilakukan, maka dari itu judulnya dapat diganti Metode Penelitian atau Bahan dan Metode,