• Tidak ada hasil yang ditemukan

PENGARUH PERBEDAAN DURASI PAPARAN ASAP PEMBAKARAN BAHAN ORGANIK TERHADAP GAMBARAN HISTOPATOLOGI PARENKIM PARU TIKUS PUTIH (Rattus novergicus) JANTAN GALUR Sprague dawley

N/A
N/A
Protected

Academic year: 2017

Membagikan "PENGARUH PERBEDAAN DURASI PAPARAN ASAP PEMBAKARAN BAHAN ORGANIK TERHADAP GAMBARAN HISTOPATOLOGI PARENKIM PARU TIKUS PUTIH (Rattus novergicus) JANTAN GALUR Sprague dawley"

Copied!
76
0
0

Teks penuh

(1)

ABSTRACT

EFFECT OF SMOKE EXPOSURE DURATION TO LUNG PARENCHYMAL IN MALE RATS SPRAGUE DAWLEY STRAIN

By

TIARA ANGGRAINI

There are much organic material in the nature especially in the forest. In Indonesia, forest fire is not a new phenomenon because the frequency and prevalency are increasing every year. Smoke of the forest fires contain some of the free radical substances such as carbon monoxide, particulate matter, nitrogen dioxide, sulfur dioxide and volatile organic compounds that influence to many organs such as heart, blood, nerve, eyes and lung. In lung, it damages lung parenchym. The purpose of this study is to determine effect of different duration from organic material by smoke exposure duration to lung parenchymal histopathology in male rats Sprague dawley strain. In this study, 25 male rats about 8–10 weeks are divided randomly into 5 groups and treated for 7 days. K(–) is not given any exposure, P1, P2, P3 and P4 are exposure by smoke in 1 hour/day, 2 hours/day, 3 hours/day, 4 hours/day. The result showed that the average score of parenchymal lung damage are K(–): 0, P1: 2.6, P2: 4.6, P3: 6.6, P4: 8.0. With Kruskal Wallis test, there is a significant difference with p=0.00 (p<0.05). There is an effect of different duration from organic material by smoke burning exposure to lung parenchymal histopathology in male rats Sprague dawley strain.

(2)

ABSTRAK

PENGARUH PERBEDAAN DURASI PAPARAN ASAP PEMBAKARAN BAHAN ORGANIK TERHADAP GAMBARAN HISTOPATOLOGI PARENKIM PARU TIKUS PUTIH (Rattus novergicus) JANTAN GALUR

Sprague dawley

Oleh

TIARA ANGGRAINI

Bahan organik terdapat banyak di alam khususnya hutan. Kebakaran hutan di Indonesia bukan suatu fenomena baru karena frekuensi dan prevalensi terjadinya semakin meningkat setiap tahun. Asap yang dihasilkan dari kebakaran hutan mengandung beberapa zat yang bersifat radikal bebas seperti karbon monoksida, materi partikulat, nitrogen dioksida, sulfur dioksida dan volatile organic compounds yang apabila terpapar dapat berpengaruh pada beberapa organ tubuh seperti jantung, darah, saraf, mata dan paru. Pada organ paru dapat menyebabkan kerusakan pada parenkim paru. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh perbedaan durasi paparan asap pembakaran bahan organik terhadap gambaran hisopatologi parenkim paru tikus putih (Rattus novergicus) jantan galur Sprague dawley. Pada penelitian ini, 25 ekor tikus putih berumur 8– 10 minggu dibagi menjadi 5 kelompok secara acak dan diberi perlakuan selama 7 hari. K(–) tidak diberi paparan, P1 dipapar asap selama 1 jam/hari, P2 diapapar asap selama 2 jam/hari, P3 dipapar asap selama 3 jam/hari dan P4 dipapar asap selama 4 jam/hari. Hasil penelitian menunjukkan bahwa rerata skoring kerusakan parenkim paru pada K(–): 0, P1: 2,6, P2: 4,6, P3: 6,6 dan P4: 8,0. Data yang diperoleh diuji dengan Uji Kruskal Wallis didapatkan perbedaan bermakna dengan nilai p=0,000 (p<0,05). Terdapat pengaruh perbedaan durasi paparan asap pembakaran bahan organik terhadap gambaran histopatologi parenkim paru tikus putih (Rattus novergicus) jantan galur Sprague dawley.

(3)
(4)
(5)
(6)
(7)

RIWAYAT HIDUP

Penulis dilahirkan di Baturaja, Sumatera Selatan pada tanggal 9 Juli 1993, sebagai anak kedua dari tiga bersaudara, dari Bapak Letda Suyono dan Ibu Aryati, S.PdI.

Pendidikan penulis dimulai dari pendidikan TK Aisyiah Bustanul Alfath diselesaikan pada tahun 1998, Sekolah Dasar diselesaikan di SDN 8 OKU pada tahun 2004, Sekolah Menengah Pertama diselesaikan di SMPN 2 OKU pada tahun 2007 dan Sekolah Menengah Atas diselesaikan di SMA Plus N 17 Palembang pada tahun 2010.

(8)

Fabiayyi ala irobbikuma

tukadziban

“ I

was not born to

suffer, failed and die.

I will fight and

(9)

Dengan Bismillah aku

memulainya, dengan

Alhamdulillah aku

mengakhirinya.

Untuk orang tersayang

yang selalu memberikan

do’a, dukungan,

semangat, masukan,

motivasi, ketulusan,

kasih sayang dengan

segala keikhlasan dan

kesabaran.

Ku persembahkan karya

ini untuk mu....

Bunda, Ayah, Acek dan

Adik beserta keluarga

besar Yasih (Alm.) dan

(10)

SANWACANA

Alhamdulillahirobbil’alamin, puji syukur penulis haturkan kepada Allah SWT

yang senantiasa mencurahkan segala nikmat-Nya sehingga skripsi ini dapat terselesaikan. Shalawat serta salam senantiasa terhaturkan kepada junjungan kita, Rasulullah SAW.

Skripsi dengan judul “Pengaruh Perbedaan Durasi Paparan Asap Pembakaran

Bahan Organik Terhadap Gambaran Histopatologi Parenkim Paru Tikus Putih

(Rattus novergicus) Jantan Galur Sprague dawley” merupakan salah satu syarat

untuk memperoleh gelar Sarjana Kedokteran di Universitas Lampung.

Dalam kesempatan ini penulis mengucapkan terima kasih yang sebesar-besarnya kepada:

1. Bapak Prof. Dr. Ir. Sugeng P. Harianto, M.S., selaku Rektor Universitas Lampung;

2. Bapak Dr. Sutyarso, M. Biomed., selaku Dekan Fakultas Kedoketran Universitas Lampung;

(11)

4. dr. Indri Windarti, Sp.PA., selaku Pembimbing Kedua atas kesediaan memberikan bimbingan, saran, dan kritik dalam proses pelaksanaan program kreatifitas mahasiswa dan penyelesaian skripsi ini;

5. dr. Susianti, M.Sc., selaku Penguji Utama. Terima kasih atas waktu, ilmu serta saran-saran yang telah diberikan;

6. dr. Susianti, M.Sc dan dr. Handayani Dwi Utami, Sp.F selaku Pembimbing Akademik atas segala do’a, motivasi, perhatian, kesabaran dan bantuan dalam

membimbing penulis selama ini;

7. Mbak Lisa Kurniasari dan Mbak Lutfianawati yang sudah memudahkan jalan saya bertemu dr. Muhartono untuk bimbingan penelitian;

8. Mas Bayu selaku Asisten Laboratorium yang sudah sangat membantu dalam pelaksanaan penelitian;

9. Seluruh staf dosen dan staf karyawan FK Unila;

10. Terima kasih yang sedalam-dalamnya kepada Ibunda tercinta guru sepanjang hidupku (Aryati S.PdI), atas kiriman do’anya setiap saat dan setiap sholat,

(12)

12. Terima kasih kepada saudara seiman dan seperjuangan: Diah Septia Liantari, Ferina Dwi Marinda, Sakinah dan Yolanda Fratiwi yang telah membantu, menemani, berbagi dalam banyak hal dan lain-lain disaat suka dan duka; 13. Terima kasih kepada sahabat seperjuangan dan satu tim penelitian skripsi

Fadia Nadila dan Rizky Bayu Ajie atas kebersamaan, keluh kesah, canda tawa, bantuan, serta kerjasamanya sebelum, selama, dan setelah penelitian ini; 14. Terima kasih kepada sahabat, saudara seperjuangan, dan teman dekat: I Gede Eka Widayana, Felicya Rosari, Ririn Rahayu, Robby Pardiansyah, Wayan Ferly Aryana, Agatha Rhana, Putu Filla, Pradila Desty Sari, Bela Riski Dinanti, Diah Anis Naomi, Rifka Humaida, Desta Eko Indrawan, Gulbuddin Hikmatyar, Asih Sulistyani, Selvia Farahdina yang telah membantu, menemani, berbagi dalam banyak hal dan lain-lain disaat suka dan duka; 15. Terima kasih kepada sahabat yang nun jauh di sana Aisyah Luthfi, Feri

Damayanti, Lisa Oktaria, Vekky Ariani, Fitriyana, Debby Prima, Robiokta Alfimona, Ayumas Widya Sari, Juwita Dwinda Sari, Tetha Deliana Putri, Nadia Anggraini, Nurul Ramadhani Umareta dan Nopriansyah Kenamon yang meskipun terpisahkan oleh jarak tetap selalu memberi semangat, masukan, dukungan, dan berbagi dalam banyak hal;

(13)

17. Terima kasih kepada teman kelompok KKN: Fadia Nadila, Karina Widya Pratiwi, Trio Utomo dan Tiwi Metasari atas canda, tawa, dukungan, dan masukan yang diberikan;

18. Terima kasih kepada keluarga mahasiswa dalam FSI Ibnu Sina FK Unila dan DPM FK Unila;

19. Terima kasih kepada seluruh keluarga mahasiswa angkatan 2011 “Chitose” yang tidak bisa disebutkan satu persatu atas canda, tawa, masalah, bahagia, kemudahan, konflik dan lain-lain. selama 3,5 tahun, semoga semua cerita itu dapat menjadi warna tersendiri dan dapat memberikan makna atas kebersamaan yang terjalin baik sekarang maupun kedepan nanti;

20. Kakak-kakak dan adik-adik tingkat (angkatan 2002–2014), yang sudah memberikan semangat kebersamaan dalam satu kedokteran.

Penulis menyadari skripsi ini masih memiliki banyak kekurangan dan jauh dari kesempurnaan. Namun, penulis berharap skripsi ini dapat memberikan manfaat dan pengetahuan baru kepada setiap orang yang membacanya. Semoga segala perhatian, kebaikan dan keikhlasan yang diberikan selama ini mendapat balasan dari Allah SWT. Terima kasih.

Bandar Lampung, Desember 2014 Penulis

(14)

DAFTAR ISI

Halaman

DAFTAR ISI ... i

DAFTAR TABEL ... iii

DAFTAR GAMBAR ... iv

DAFTAR LAMPIRAN ... v

BAB I PENDAHULUAN 1.1 Latar Belakang ... 1

1.2 Perumusan Masalah ... 2

1.3 Tujuan Penelitian ... 3

1.4 Manfaat Penelitian ... 3

1.5 Kerangka Teori... 4

1.6 Kerangka Konsep ... 7

1.7 Hipotesis ... 7

BAB II TINJAUAN PUSTAKA 2.1 Kebakaran Hutan ... 8

2.2 Asap Kebakaran Hutan ... 10

2.2.1 Karbon Monoksida ... 11

2.2.2 Sulfur Dioksida ... 17

(15)

2.2.4 Materi Partikulat ... 19

2.2.5 Volatile Organic Compounds ... 20

2.2.6 Kerusakan Paru ... 21

2.3 Paru ... 23

2.3.1 Anatomi Paru ... 23

2.3.2 Fisiologi Paru ... 25

2.3.3 Histologi Paru ... 26

2.3.3.1 Bronkiolus Respiratorius ... 27

2.3.3.2 Duktus Alveolaris ... 28

2.3.3.3 Dinding Alveolus dan Sel Alveolus ... 28

2.3.3.4 Mekanisme Pertahanan Paru ... 29

2.3.4 Patologi Paru ... 30

2.4 Tikus Putih (Rattus novergicus) Galur Sprague dawley ... 31

2.4.1 Klasifikasi ... 32

2.4.2 Jenis ... 32

BAB III METODE PENELITIAN 3.1 Desain Penelitian ... 34

3.2 Tempat dan Waktu Penelitian ... 34

3.3 Populasi dan Sampel ... 35

3.4 Bahan dan Alat Penelitian ... 36

3.4.1 Bahan Penelitian ... 36

3.4.2 Alat Penelitian ... 37

3.5 Prosedur Penelitian... 37

(16)

3.9 Ethical Clearance... 49

BAB IV HASIL DAN PEMBAHASAN 4.1 Hasil Penelitian ... 50

4.1.1 Tingkat Kerusakan Parenkim Paru Tikus ... 50

4.1.2 Gambaran Histopatologi Paru Tikus ... 54

4.2 Pembahasan ... 59

BAB V KESIMPULAN DAN SARAN 5.1 Kesimpulan ... 62

5.2 Saran ... 63 DAFTAR PUSTAKA

(17)

DAFTAR TABEL

Tabel Halaman

1. Tanda dan Gejala Klinis Keracunan CO ... 15

2. Definisi Operasional... 47

3. Hasil Pengamatan Kerusakan Parenkim Paru Tikus ... 51

(18)

DAFTAR GAMBAR

Gambar Halaman

1. Kerangka Teori... 6

2. Kerangka Konsep ... 7

3. Jumlah Hotspot Berdasarkan Provinsi Periode 19972006 ... 9

4. Luas Areal Hutan Indonesia yang Terbakar Dalam Kurun Tahun 19972006 ... 9

5. Anatomi Paru ... 24

6. Histologi Saluran Pernapasan ... 27

7. Dinding Alveolus dan Sel Alveolus ... 28

8. Diagram Alur Penelitian ... 45

9. Gambaran Histopatologi Paru Tikus Kelompok K(–) ... 54

10. Gambaran Histopatologi Paru Tikus Kelompok P1 ... 55

11. Gambaran Histopatologi Paru Tikus Kelompok P2 ... 56

12. Gambaran Histopatologi Paru Tikus Kelompok P3 ... 57

(19)

DAFTAR LAMPIRAN

Lampiran Halaman

(20)

BAB I PENDAHULUAN

1.1 Latar Belakang

Kebakaran hutan di Indonesia telah terjadi sejak tahun 1982. Hingga saat ini kebakaran telah menghanguskan lebih dari 165.000 hektar hutan di beberapa provinsi antara lain Sumatera Utara, Riau, Jambi, Bengkulu, Kalimantan, Maluku dan Papua (Faisal et al., 2012). Meskipun bukan fenomena baru, frekuensi dan prevalensi terjadinya kebakaran hutan semakin meningkat setiap tahun sehingga menjadi masalah utama di Indonesia karena asap yang dihasilkan dari kebakaran tersebut meluas hingga ke beberapa bagian provinsi di Indonesia serta negara tetangga seperti Malaysia dan Singapura (Harrison, 2009).

(21)

2

Dampak yang ditimbulkan dari paparan asap kebakaran hutan dapat menyebabkan gangguan pada kesehatan seperti gangguan pada sistem kardiologi, hematologi, neurologi, oftalmologi dan respirologi (Naeher et al., 2007).

Kelainan yang muncul pada sistem respirologi antara lain cedera termal pada saluran napas bagian atas yang melibatkan mulut, orofaring dan laring serta cedera parenkim pada saluran napas bawah yang disebabkan oleh bahan kimia dan partikel yang berasal dari asap (Antonio, 2013). Cedera parenkim secara histologis dapat berupa emfisema paru yang ditandai dengan pelebaran dari alveolus dan duktus alveolus, selain itu juga dapat terjadi destruksi dari septum intra alveolar dan infiltrat radang berupa neutrofil (Renne et al., 2003).

Dari uraian diatas, penulis tertarik untuk meneliti lebih lanjut sejauh mana kerusakan yang terjadi pada parenkim paru akibat paparan asap pembakaran bahan organik.

1.2 Perumusan Masalah

(22)

1.3 Tujuan Penelitian

Mengetahui pengaruh perbedaan durasi paparan asap pembakaran bahan organik terhadap gambaran histopatologi parenkim paru tikus putih (Rattus novergicus) jantan galur Sprague dawley.

1.4 Manfaat Penelitian

Manfaat Teoritis

Hasil penelitian ini dapat digunakan sebagai pengembangan ilmu kedokteran khususnya di bidang Patologi Anatomi.

Manfaat Praktis

1. Bagi peneliti dapat mengembangkan ide dan menambah pengetahuan tentang saluran pernafasan khususnya di bidang Patologi Anatomi.

2. Bagi pembaca dan masyarakat dapat mengetahui bahaya dan dampak dari asap pembakaran bahan organik terhadap parenkim paru pada saluran pernafasan.

3. Bagi peneliti lain agar dapat meneruskan penelitian yang berkaitan dengan saluran pernafasan.

(23)

4

1.5 Kerangka Teori

Asap yang ditimbulkan dari kebakaran hutan sejumlah besar mengandung CO, PM, NO2, dan VOCs yang dilepaskan ke atmosfer (CDC, 2014). Selain itu juga terdapat komponen gas lain seperti SO2 dan O3 (Perwitasari, 2012).

Inhalasi berlebih dari gas yang dihasilkan oleh asap kebakaran hutan dapat

menyebabkan gangguan kesehatan terutama pada organ. Salah satu ogan yang

dapat mengalami kerusakan yaitu paru karena partikel berbagai macam gas

tersebut yang sukar larut akan terinhalasi kedalam paru dan mengendap

terlebih dahulu dibeberapa bagian paru (Sudoyo et al., 2009).

Di zona pernapasan yaitu alveolus, yang merupakan bagian paling superfisial yang efektif untuk transfer gas, difusi ke dalam interstitium paru akan lengkap. Karena massa total jaringan paru-paru agak kecil dibandingkan dengan kompartemen gas lainnya, jumlah yang relatif kecil dari gas tersebut akan didistribusikan dalam struktur paru-paru terutama alveolus (WHO, 2004).

(24)

Berdifusi nya gas dari asap kebakaran hutan dalam jumlah berlebih akan menyebabkan peningkatan sintesis IL–8, suatu zat penarik dan pengaktif neutrofil yang poten, oleh makrofag paru. Pengeluaran senyawa serupa seperti IL–1 dan TNFα menyebabkan skuesterasi dan pengaktifan neutrofil. Neutrofil yang aktif akan mengeluarkan beragam produk seperti oksidan, protease, platelet activating factor dan leukotrein yang menyebabkan gangguan pada mikrosirkulasi paru sehingga terjadi peningkatan permiabilitas alveolar-capillary barrier. Sehingga menyebabkan kerusakan pada alveolus paru (Kumar et al., 2007).

(25)

6

Gambar 1. Kerangka Teori Terjadinya Emfisema, Destruksi Septum Alveolar & Infiltrat Radang Pada Paru Akibat Asap Kebakaran Hutan

(26)

1.6 Kerangka Konsep

Kerangka konsep penelitian tentang pengaruh perbedaan durasi paparan asap pembakaran bahan organik terhadap gambaran histopatologi parenkim paru tikus putih (Rattus novergicus) jantan galur Sprague dawley, disajikan pada gambar 2.

Gambar 2. Kerangka Konsep Penelitian

1.7 Hipotesis

Terdapat pengaruh perbedaan durasi paparan asap pembakaran bahan organik terhadap gambaran histopatologi parenkim paru tikus putih (Rattus novergicus) jantan galur Sprague dawley

(27)

8

BAB II

TINJAUAN PUSTAKA

2.1 Kebakaran Hutan

Hutan merupakan lahan dengan luas minimum 0,05–1,0 hektar yang terdiri dari 10–30% pohon dengan ketinggian minimum 2–5 meter. Hutan mempunyai permasalah yang cukup banyak, salah satu permasalahan hutan yang paling besar adalah kebakaran hutan. Kebakaran hutan adalah keadaan api yang tidak terkontrol di kawasan hutan yang menyebabkan terbakarnya vegetasi hutan seperti pohon, gambut dan rumput (FAO, 2006).

(28)

Gambar 3. Jumlah hotspot berdasarkan provinsi dalam kurun waktu 1997–2006 (Sumber: Rahmayanti, 2007).

Gambar 4. Luas areal hutan Indonesia yang terbakar dalam kurun tahun 1997–2006 (Sumber: Rahmayanti, 2007).

(29)

10

sama dengan kebakaran yang terjadi pada tahun 2008. Terjadinya kebakaran yang selalu berulang setiap tahunnya dalam kurun tahun 1997–2006 menunjukkan bahwa kebakaran hutan adalah kejadian tahunan yang tidak pernah berhenti. Jumlah total areal hutan yang terbakar kurun waktu tersebut adalah sekitar 1,43 juta hektar (Rahmayanti, 2007).

Di beberapa daerah, orang membakar habis suatu lahan perhutanan agar menjadi subur dengan cara lebih mudah dan murah. Hal tersebut merupakan salah satu penyebab yang paling sering mengakibatkan terjadinya kebakaran hutan. Selain itu juga terdapat penyebab alami yang dapat menyebabkan kebakaran hutan antara lain petir, erupsi vulkanik dan percikan api dari reruntuhan batu. Di Amerika, Kanada dan Cina Utara petir menjadi penyebab utama, sedangkan di negara lain seperti Meksiko, Amerika Tengah, Afrika, Asia Tenggara, Fiji, Selandia Baru dan Indonesia kesalahan manusia menjadi penyebab utama terjadinya kebakaran hutan (Faisal et al., 2012).

2.2 Asap Kebakaran Hutan

(30)

selulosa, lignin, tanin, polifenol, minyak, lemak, resin, lilin dan tepung (Faisal et al., 2012).

Asap yang dihasilkan dari kebakaran hutan sejumlah besar mengandung CO, PM, NO2 dan VOCs seperti benzene, formaldehid dan akrelein yang dilepaskan ke atmosfer (CDC, 2014). Selain itu juga terdapat komponen gas seperti SO2 dan ozon O3 yang dihasilkan dari asap kebakaran hutan (Perwitasari, 2012).

2.2.1 Karbon monoksida

Gas CO dihasilkan dari penggabungan antara karbon dan oksigen sebagai hasil dari pembakaran tidak sempurna. CO dapat dihasilkan secara buatan misalnya dari knalpot kendaraan bermotor dan secara alami dilepaskan dari pembakaran kayu dan hutan. Total emisi CO pertahun diperkirakan mencapai 2600 juta ton (WHO, 2004). CO merupakan senyawa yang tidak berbau, tidak berasa, pada suhu udara normal berbentuk gas yang tidak berwarna serta memiliki sifat potensif racun terhadap tubuh (Depkes, 2011). Satuan konsentrasi CO di udara adalah ppm atau parts per million. Gas analyzer dengan satuan persen volume digunakan untuk mengukur kadar CO dimana 1 ppm setara dengan 10-4 % (Anggraeni, 2009).

Berdasarkan data dari The National Institute for Occupational Safety and

(31)

12

Sehingga apabila paparan melebihi kadar dan waktu tersebut dapat

menimbulkan gangguan dan kerusakan pada sistem organ (WHO, 2004).

Mahluk hidup akan dengan mudah terpapar dengan CO yang ada di udara melalui inhalasi dan kontak pada permukaan kulit. Tetapi penyerapan CO pada kulit memiliki kontribusi yang lebih kecil dibandingkan dengan penyerapan yang melalui jalur inhalasi dikarenakan adanya tekanan parsial CO yang berbeda pada setiap organ. CO yang terinhalasi dengan cepat akan masuk hingga ke alveolus lalu berdifusi melalui pembuluh darah dan akan berikatan dengan hemoglobin membentuk karboksihemoglobin (COHb).

Ikatan COHb bersifat reversibel dan stabil. COHb dengan kadar >60% didalam

tubuh akan berakibat fatal. Tetapi jika orang yang telah mengabsorbsi CO

dipindahkan ke udara bersih dan berada dalam keadaan istirahat, maka kadar

COHb semula akan berkurang 50% dalam waktu 4,5 jam dan selanjutnya sisa

COHb akan berkurang 8–10% setiap jamnya. Sehingga dalam 6–8 jam darah

tidak lagi mengandung COHb. Selain itu eritrosit tidak mengalami kerusakan

setelah Hb dilepaskan dari ikatan COHb (ATSDR, 2012).

(32)

Setelah masuk ke saluran napas dan berdifusi melalui membran alveolus, gas CO akan masuk ke sirkulasi dan bereaksi dengan Fe dari porfirin, oleh karena itu CO bersifat kompetitif dengan O2 dalam mengikat protein heme antara lain hemoglobin, mioglobin, sitokrom oksidase yaitu sitokrom dan a3, sitokrom P–450, peroksidase dan katalase. Ikatan CO dengan Hb menjadi COHb mengakibatkan Hb menjadi inaktif sehingga kemampuan eritrosit untuk mengangkut oksigen menjadi berkurang. Selain itu adanya COHb dalam darah akan menghambat disosiasi HbO2. Dengan demikian jaringan akan mengalami hipoksia. Selain itu reaksi CO dengan sitokrom a3 yang merupakan link yang penting dalam sistem enzim pernafasan sel yang juga dapat mengakibatkan hipoksia jaringan. Konsentrasi CO dalam darah dapat dihitung menggunakan rumus Henderson dan Haggard yaitu dengan mengalikan antara lama paparan dalam jam dan konsentrasi CO di udara dalam satuan ppm. Konsentrasi CO dalam udara lingkungan dan lamanya inhalasi/paparan menentukan kecepatan timbulnya gejala-gejala atau kematian

(Anggraeni, 2009).

Menurut WHO, paparan CO dengan konsentrasi 100 mg/m3 (87,3 ppm), 60 mg/m3 (52,38 ppm), 30 mg/m3 (26,19 ppm), 10 mg/m3 (8,73 ppm) memiliki durasi batas normal paparan secara berturut-turut hanya selama 15 menit, 10

(33)

14

Pada sistem kardiologi dapat terjadi aritmia karena gangguan konduksi, fibrilasi atrium dan ventrikel dalam keadaan keracunan akut dari CO. Pada keadaan keracunan kronik umumnya berhubungan dengan manifestasi yang berat karena dengan konsentrasi yang rendah pada pasien dengan penyakit jantung koroner dapat menyebabkan terjadinya iskemik hingga infark miokardium akut (Wellenius et al., 2004).

(34)

Tabel 1. Tanda dan Gejala Klinis Keracunan CO

Derajat Kadar COHb Tanda dan Gejala

Ringan <15–20% Sakit kepala, mual, muntah,

pusing, dan penglihatan terganggu

Sedang 21–40% Kebingungan, pingsan,

chest pain, dispneu, takikardia,

Takipneu, rhabdomiolisis

Berat 41–59% Palpitasi, disritmia,

hipotensi, iskemik miokardium, cardiac arrest, respiratory arrest, edema pulmonal, kejang, koma

Fatal ≥60% Kematian

(Sumber: WHO, 2004)

(35)

16

Pada sistem respirologi, cedera inhalasi menggambarkan kerusakan yang disebabkan oleh terinhalasinya bahan iritan berupa iritan termal ataupun kimia. Secara anatomi, cedera inhalasi diklasifikasikan berdasarkan penyebab dan saluran napas yang mengalami kerusakan yaitu cedera termal yang terjadi pada saluran napas bagian atas, iritasi bahan kimia lokal yang terjadi di saluran napas bawah, dan keracunan sistemik yang di akibatkan inhalasi zat toksik yaitu CO (Dries & Endorf, 2013).

Di saluran napas atas, dalam beberapa jam setelah terkena paparan CO tetapi kerusakan yang terjadi masih minimal. Setelah 8–48 jam, akan terjadi edema, membran menjadi mukopurulen dan bronchorrhea. Dalam 48–72 jam, mukosa saluran napas terkelupas dan terbentuk trakeobronkitis membranosa. Sedangkan di saluran napas yang lebih bawah CO yang berukuran 0,5–1 µm akan terdeposit pada parenkim paru yaitu alveolus. Hal tersebut menyebabkan dilepaskannya neutrofil sebagai mediator inflamasi yang akan menyebabkan terjadinya kerusakan pada epitel dan endotel akhirnya terjadi peningkatan permiabilitas yang menyebabkan edema pada alveoli pada kurun waktu 24– 48 jam setelah paparan CO (Miller & Chang, 2003).

(36)

akan tetap berada pada alveoli yang disebut dengan infiltrat radang. CO dapat menginduksi terjadinya inflamasi pada paru tikus. Salah satu kelainan pada paru adalah emfisema, yang didefinisikan sebagai suatu pelebaran dari alveoli, duktus alveoli serta hilangnya batas antara alveoli dengan duktus alveoli yang disebut dengan septum intra alveolar. Hal tersebut terjadi karena adanya pelepasan elastase dengan mekanisme kerja menginaktifasi protein dan khususnya mendegradasi matriks. Pada inflamasi kronik terjadi fibrosis pada septum dan jaringan intersitium, infiltrasi sel radang limfosit pada perivaskular dan peribronkial, serta hiperplasia pada bronchus assosiated limfoid tissue (BALT) (Renne et al., 2003).

2.2.2 Sulfur Dioksida

Gas SO2 berasal dari pembakaran terutama bahan bakar yang dapat ditemukan pada industri, lalu lintas dan dapat pula ditemukan pada asap kebakaran hutan dengan jumlah sedikit. Gas SO2 terbukti menghasilkan Reactive Oxygen Species (ROS) didalam paru, tetapi efek yang ditimbulkan dari SO2 memerlukan konsentrasi yang tinggi. Efek yang ditimbulkan dalam waktu cepat berupa bronkokonstriksi (Olivieri & Scoditti, 2005).

(37)

18

menimbulkan respon dari sel radang neutrofil dan hipersekresi mukus pada saluran napas karena sifat dari SO2 yang bersifat iritan (Kodavanti et al., 2006).

Selain pada sistem pernapasan, SO2 dapat menimbulkan gangguan pada sistem kardiovaskular. Pada penelitian yang pernah dilakukan dengan memaparkan SO2 sebanyak 5 ppm kepada tikus betina yang sedang hamil selama 1 jam pada masa gestasi dan lima hari setelah melahirkan kemudian diamati perubahan denyut jantung dengan menggunakan elektrokardiogram. Hasil dari penelitian tersebut didapatkan peningkatan denyut jantung tikus yang dipapar SO2, hal tersebut dikarenakan mekanisme dari SO2 yang menghambat GABAergic dan mengubah neurotransmisi glisinergik ke nervus vagus yang menyebabkan terjadinya peningkatan denyut jantung (Woerman & Mendelowitz, 2013).

2.2.3 Nitrogen Dioksida

(38)

itu adanya NO2 memicu terjadinya sensitisasi pada penderita dengan alergi dan menimbulkan respon Ig A dan Ig E (Poynter, 2012).

Pada sirkulasi darah, NO2 menyebabkan aktivasi dari sitokin nuclear factor kappa beta (NF–κβ) sehingga terjadi disfungsi endotel. Selain itu adanya NO2 yang bersirkulasi akan menyebabkan pelepasan mediator pro–inflamasi seperti IL–8. Adanya hal tersebut memicu terbentuknya lesi aterosklerosis dan menjadi prekursor untuk terjadinya infark miokardium (Channell et al., 2012).

2.2.4 Materi Partikulat

Materi partikulat yang berasal dari asap kebakaran merupakan bagian penting untuk pajanan jangka pendek yaitu dalam hitungan jam atau minggu. Materi partikulat merupakan campuran partikel solid dan droplet cair atau disebut juga dengan partikel tersuspensi (Ammann et al., 2008). Ukuran dan komposisi partikel merupakan faktor penting yang dapat menimbulkan gangguan kesehatan (CDC, 2014). Partikel dalam asap kayu yang terbakar

hampir seluruhnya berukuran <1 μm, sebagian besar antara 0,15 sampai 0,4

μm (Faisal et al., 2012).

Materi partikulat dibagi menjadi:

(39)

20

b. Partikel yang berukuran kurang dari 2,5 µm disebut partikel halus, jika terinhalasi dapat mencapai paru (Gindo & Budi, 2007).

Pada sistem respirologi, partikulat meter yang masuk ke tubuh melalui inhalasi memiliki kemampuan untuk menghasilkan radikal bebas atau ROS dalam sistem biologis dan untuk mengaktifkan jalur stres oksidatif di dalam sel epitel paru. Pelepasan ROS menyebabkan inaktivasi myeloperoxidase alfa 1-antitripsin, yang merupakan enzim antiprotease paling penting didalam tubuh manusia yang berfungsi untuk mencegah proteolitik yang dapat menyebabkan kerusakan paru dan emfisema (Domej et al., 2006).

Pada sistem kardiovaskular, banyaknya partikulat meter yang bersirkulasi didalam darah menyebabkan peningkatan kadar protein C-reaktif yang merupakan penanda inflamasi sistemik dan prediktor independen dari penyakit kardiovaskular, disfungsi endotel, vasokonstriksi arteri brachialis dan memicu terjadinya infark miokardium (Pope et al., 2004).

2.2.5 Volatile Organic Compounds

(40)

Paparan dari VOCs dalam jangka pendek dapat menyebabkan iritasi pada mata, kulit, hidung dan tenggorokan. Sakit kepala, pusing, lelah dan pernafasan yang pendek mungkin dapat ditemukan pada paparan jangka pendek. Pada paparan jangka panjang dapat menyebabkan kerusakan ginjal, serta menimbulkan efek pada sistem lain seperti sistem respirasi, saraf, reproduksi, muskular, gangguan mental dan kanker (Tanyanont & Vadakan, 2012).

Pada beberapa penelitian secara in vitro didapatkan bahwa VOC dapat meningkatkan produksi dari sitokin pro–inflamasi pada sel epitel paru yang diinduksi oleh stres oksidatif. Pada penelitian dengan menggunakan sampel darah orang yang sering terpapar VOC di lingkungan kerja didapatkan peningkatan kadar IL–6 dan TNFα. Pada penelitian dengan menggunakan tikus menunjukan bahwa gas formaldehid dengan berat molekul rendah menyebabkan sensitisasi pada saluran napas yang ditandai dengan peningkatan IgE atau IL–4 (Bonisch et al., 2012).

2.2.6 Kerusakan Paru

(41)

22

serta reaktivasi gas. Gas yang mudah larut sesudah masuk saluran napas hampir lengkap diserap oleh mukosa saluran napas bagian atas saat terjadi paparan. Bagi gas yang kurang larut sesudah masuk di saluran napas atas akan diteruskan hingga ke saluran napas bawah yang pada akhirnya akan menembus alveoli. Sifat dari gas yang dihasilkan dalam asap kebakaran yang kurang larut dalam air menyebabkan gas ini tidak dapat dihilangkan di saluran napas atas. Sehingga setelah sampai di alveoli akan terjadi difusi melalui membran alveolus kapiler dan masuk ke sirkulasi (Sudoyo et al., 2009).

(42)

Meskipun paru dalam fungsinya sebagai sistem transportasi gas yang akan terus menerus dilalui oleh berbagai macam gas, tetapi sebenarnya gas yang berdifusi dan tersimpan dalam jaringan paru-paru itu sendiri sangat sedikit, kecuali pada bagian alveolus. Epitel dari zona konduktif memiliki hambatan yang signifikan untuk difusi. Oleh karena itu, difusi dan serapan gas dengan jaringan pada konsentrasi gas yang lebih tinggi akan menjadi sangat lambat. Sebagian dari gas yang dihasilkan oleh asap pembakaran akan dilarutkan dalam mukosa saluran napas. Difusi ke dalam lapisan submukosa dan interstitium akan tergantung pada konsentrasi dan durasi paparan (WHO, 2004).

2.3 Paru

2.3.1 Anatomi Paru

Paru merupakan organ yang berbentuk piramid dengan konsistensi seperti spons dan berisi udara yang terletak di rongga toraks. Paru merupakan jalinan atau susunan bronkus, bronkiolus, bronkiolus respiratorius, alveoli, sirkulasi paru, saraf dan sistem limfatik. Paru adalah alat pernafasan utama yang merupakan organ berbentuk kerucut dengan apeks diatas dan sedikit lebih tinggi dari klavikula di dalam dasar leher (Sloane, 2003).

(43)

24

spons. Paru juga kenyal dan dapat mengisut sampai sekitar sepertiga besarnya, jika kavum torak dibuka (Moore, 2009).

Gambar 5. Anatomi Paru (Sumber: Faiz & Moffat, 2011).

(44)

2.3.2 Fisiologi Paru

Sistem pernafasan terdiri atas dua paru sebagai organ utama beserta sistem saluran yang menghubungkan jaringan paru dengan lingkungan luar. Sistem respirasi secara umum dibagi menjadi dua bagian utama. Bagian konduksi yaitu saluran napas solid baik diluar maupun didalam paru yang menghantar udara keadalam paru untuk respirasi, yang terdiri dari rongga hidung, nasofaring, laring, trakea, bronkus, bronkiolus sampai bronkiolus terminalis dan bagian respiratorius adalah saluran napas di dalam paru tempat berlangsungnya respirasi atau pertukaran gas, dimulai dari bronkiolus respiratorius sampai alveolus. Udara didistribusikan ke dalam paru melalui trakea, bronkus dan bronkiolus. Trakea disebut cabang pertama saluran napas. Dan kedua bronkiolus kiri dan kanan adalah cabang kedua, masing-masing bagian sesudah itu disebut cabang tambahan. Terdapat 20–25 cabang sebelum udara akhirnya mencapai alveolus (Guyton & Hall, 2007).

Fungsi utama paru adalah untuk pertukaran gas antara udara atmosfer dan darah. Dalam menjalankan fungsinya, paru ibarat sebuah pompa mekanik yang berfungsi ganda, yakni menghisap udara atmosfer ke dalam paru atau disebut sebagai mekanisme inspirasi dan mengeluarkan udara alveolus dari dalam tubuh atau disebut dengan mekanisme ekspirasi. Untuk melakukan fungsi ventilasi, paru mempunyai beberapa komponen penting antara lain: a. Dinding dada yang terdiri dari tulang, otot dan saraf perifer.

(45)

26

c. Dua lapisan pleura yaitu pleura viseralis yang membungkus erat jaringan parenkim paru dan pleura parietalis yang menempel erat ke dinding toraks bagian dalam. Di antara kedua lapisan pleura terdapat rongga tipis yang normalnya tidak berisi apapun.

d. Beberapa reseptor yang berada di pembuluh darah arteri utama (Guyton & Hall, 2007).

2.3.3 Histologi Paru

(46)

Gambar 6. Histologi Paru (Sumber: Eroschenko, 2010).

2.3.3.1 Bronkiolus Respiratorius

(47)

28

2.3.3.2 Duktus Alveolaris

Bronkiolus respiratorius bercabang menjadi 2–11 saluran yang disebut duktus alveolaris. Saluran ini dikelilingi oleh alveolus sekitarnya. Saluran ini tampak seperti pipa kecil yang panjang dan bercabang-cabang dengan dinding yang terputus-putus karena penonjolan sepanjang dindingnya sebagai duktus alveolaris. Dinding duktus alveolaris diperkuat dengan adanya serabut kolagen elastis dan otot polos sehingga merupakan penebalan muara sakus alveolaris (Junquiera et al., 2007).

2.3.3.3 Dinding alveolus dan Sel alveolus

(48)

Gambar 7. Dinding alveolus dan sel alveolus (Sumber: Eroschenko, 2010).

2.3.3.4 Mekanisme Pertahanan Paru

(49)

30

asing kedalam paru. Partikel debu atau mikroorganisme akan diangkut oleh makrofag ke pembuluh limfe atau ke bronkiolus tempat mereka akan dibuang oleh eksalator mukosiliaris (Price & Wilson, 2005).

2.3.4 Patologi Paru

Disaluran napas, karakteristik dari partikel yang berkontribusi dalam meningkatkan toksisitas tergantung dari ukuran, densitas dan bentuk dari patikel tersebut. Partikel yang berukuran lebih dari 10 µm akan difiltrasi oleh nasofaring atau terdeposit pada laring. Partikel yang berukuran 3–10 µm akan terdeposit pada saluran napas bagian konduksi. Sedangkan partikel yang berukuran kurang dari 3 µm akan terdeposit pada saluran napas bagian bawah dan alveoli. Gas yang dihasilkan dari asap kebakaran hutan memiliki ukuran partikel 0,5–1 µm. Sebagian gas akan berdifusi melalui kapiler, sebagian lagi akan terdeposit di alveolus. Adanya akumulasi berlebih dari partikel gas tersebut di alveolus akan menyebabkan pertukaran gas yang buruk (Miller & Chang, 2003).

(50)

menyebabkan kerusakan jaringan dan berlanjut ke jenjang peradangan (Kumar et al., 2007).

Mediator yang dikeluarkan menyebabkan inflamasi yang terjadi pada mikrosirkulasi paru yang sehingga terjadi peningkatan permiabilitas alveolar-capillary barrier. Dampak dari masuknya cairan kedalam alveolus adalah atelektasis. Proses inflamasi ini menyebabkan kerusakan epitelium alveolar yang berat menyebabkan kesulitan dalam mekanisme perbaikan

paru dan menyebabkan fibrosis (Pranggono, 2011).

Secara mikroskopis, pada fase eksudatif yang terjadi pada hari ke–0 sampai

ke–7 hari ditandai dengan kongesti kapiler, nekrosis sel epitel alveolus,

edema dan perdarahan pada intersitium dan intraalveolar serta penumpukan

infiltrat radang neutrofil. Duktus alveolaris melebar dan alveolus cenderung

kolaps. Fase proliferatif terjadi pada minggu pertama sampai minggu ke–3

ditandai dengan proliferasi dan hiperplasia pneumosit tipe II, sel ini

menggantikan pneumosit tipe I yang terkelupas dan kemudian

berdiferensiasi menjadi sel epitel tipe I jika kerusakan telah selesai. Juga

terjadi ekspansi septum alveolus oleh proliferasi fibroblas dan jaringan ikat

intersitium (Kumar et al., 2007).

2.4 Tikus Putih (Rattus novergicus) Galur Sprague Dawley

(51)

32

merupakan hewan yang mewakili dari kelas mamalia, sehingga kelengkapan organ, keutuhan nutrisi, metabolisme biokimianya, sistem reproduksi, pernafasan, peredaran darah dan ekskresi menyerupai manusia. Tikus yang digunakan dalam penelitian adalah galur Spague dawley yang berjenis kelamin jantan berumur 8–10 minggu. Tikus Sprague dawley dengan jenis kelamin betina tidak digunakan karena kondisi hormonal yang sangat berfluktuasi pada saat dewasa, sehingga dikhawatirkan akan memberikan respon yang berbeda dan dapat mempengaruhi hasil dari penelitian (Kesenja, 2005).

2.4.1 Klasifikasi

Kingdom : Animalia

Filum : Chordata

Kelas : Mamalia Ordo : Rodentai Subordo : Odontoceti Familia : Muridae Genus : Rattus

Species : Rattus novergicus (Narendra, 2007).

2.4.2 Jenis

(52)
(53)

34

BAB III

METODE PENELITIAN

3.1 Desain Penelitian

Penelitian ini merupakan penelitian eksperimental dengan metode Rancangan Acak Lengkap (RAL) dan dengan pendekatan Post Test Only Control Group Design. Menggunakan 25 ekor tikus putih (Rattus norveicus) jantan galur Sprague dawley berumur 8–10 minggu yang dipilih secara acak dan dibagi 5 kelompok.

3.2 Tempat dan Waktu Penelitian

(54)

3.3 Populasi dan Sampel

Populasi yang digunakan pada penelitian ini adalah tikus putih (Rattus norvegicus) jantan galur Sparague dawley berumur 8–10 minggu yang diperoleh dari Unit Pengelola Hewan Laboratorium FKH IPB. Sampel penelitian sebanyak 25 ekor yang dipilih secara acak yang dibagi dalam 5 kelompok, sesuai dengan rumus Federer (Arkemann, 2006).

Rumus penentuan sampel untuk uji eksperimental adalah :

(n−1)(t−1)≥15

Dengam t merupakan jumlah kelompok percobaan dan n merupakan jumlah pengulangan atau jumlah sampel tiap kelompok. Penelitian ini menggunakan 5 kelompok perlakuan sehingga perhitungan sampel menjadi:

(n−1)(5−1)≥15

(n−1)4≥15

(n−1)≥15/4

(n−1)≥3,75

n≥3,75+1

n = 4,75 (dibulatkan menjadi 5)

(55)

36

Kriteria inklusi:

a) Terdapat penampakaan keadaan rambut tidak kusam, rontok, atau botak, serta bergerak aktif.

b) Memiliki berat badan 100−150 gram. c) Berjenis kelamin jantan.

d) Tikus dewasa yang berusia sekitar 8−10 minggu.

Kriteria eksklusi:

a) Terdapat penurunan berat badan lebih dari 10% setelah masa adaptasi di laboratorium.

b) Terdapat penampakan rambut kusam, rontok, botak, aktivitas kurang atau tidak aktif, keluarnya eksudat yang tidak normal dari mata, mulut, anus dan genital setelah masa adaptasi.

c) Mati selama masa pemberian perlakuan.

3.4 Bahan dan Alat Penelitian 3.4.1 Bahan Penelitian

(56)

3.4.2 Alat Penelitian

Alat penelitian yang digunakan dalam penelitian adalah:

a) Neraca analitik Metler Toledo dengan tingkat ketelitian 0,01 gram untuk menimbang berat badan tikus.

b) Tungku untuk membakar bahan organik c) Pipa

d) Kotak plastik sebagai tempat pengumpul asap e) Korek api

f) Kapas alkohol g) Minor set h) Mikroskop

3.5 Prosedur Penelitian

1. Adaptasi Tikus

(57)

38

2. Persiapan Asap

Bakar bahan organik seperti ranting, batang pohon dam kayu dibakar dengan menggunakan tungku, dengan menggunakan pipa alirkan asap yang sudah terkumpul pada alat pengumpul yang didalamnya terdapat tungku yang berisi bakaran bahan organik. Asap tersebut dialirkan melalui pipa sampai masuk ke kotak plastik yang didalamnya sudah terdapat tikus sebagai sampel percobaan.

3. Prosedur Pemberian Intervensi

Pemberian intervensi dilakukan berdasarkan kelompok perlakuan. Kelompok I (K−) sebagai kontrol negatif tidak diberi paparan asap. Kelompok II (P1) sebagai kelompok perlakuan yang akan diberi paparan asap pembakaran bahan organik selama 1 jam/hari. Kelompok III (P2) sebagai kelompok perlakuan yang akan diberi paparan asap pembakaran bahan organik selama 2 jam/hari. Kelompom IV (P3) sebagai kelompok perlakuan yang akan diberi paparan asap pembakaran bahan organik selama 3 jam/hari. Kelompok V (P4) sebagai kelompok kontrol yang akan diberi paparan asap pembakaran bahan organik selama 4 jam/hari.

(58)

panjang. Paparan asap untuk P1 diberikan selama 1 jam/hari, P2 selama 2 jam/hari, P3 selama 3 jam/hari dan P4 selama 4 jam/hari. Perlakuan tersebut dilakukan selama 7 hari, setelah itu kelompok tikus tersebut diterminasi.

4. Prosedur Pengelolaan Hewan Coba Pasca Penelitian

Sebelum dilakukan pembedahan untuk mengambil organ pada tikus, di akhir perlakuan terlebih dahulu tikus akan dianastesi dengan menggunakan ketamine-xylazine dengan dosis 75−100mg/kg+5−10mg/kg secara intraperitoneal dengan selama 10−30 menit. Setelah dianastesi, tikus diterminasi dengan cara melakukan dislokasi servikal (AVMA, 2013).

5. Prosedur Pengambilan Bagian Paru

Dilakukan pembedahan toraks, paru tikus diambil untuk pembuatan sediaan mikroskopis. Setelah itu sample paru difiksasi dengan formalin 10% selama 3 jam. Lalu sampel tersebut dibuat dalam bentuk sedian mikroskopis dengan menggunakan metode parrafin dan pewarnaan Hematoksiklin Eosin (HE).

6. Prosedur Operasional Pembuatan Slide

(59)

40

a) Fixation

1. Spesimen berupa potongan organ paru yang telah dipotong secara representatif kemudian segera difiksasi dengan formalin 10% selama 3 jam.

2. Dicuci dengan air mengalir sebanyak 3−5 kali.

b) Trimming

1. Organ dikecilkan hingga ukuran ±3 mm.

2. Potongan organ paru tersebut lalu dimasukkan ke dalam tissue cassette.

c) Dehidrasi

1. Mengeringkan air dengan meletakkan tissue cassette pada kertas tisu.

2. Dehidrasi dengan:

(60)

d) Clearing

Untuk membersihkan sisa alkohol, dilakukan clearing dengan xylol I

dan II, masing−masing selama 1 jam.

e) Impregnasi

Impregnasi dilakukan dengan menggunakan paraffin selama 1 jam dalam oven suhu 650 C.

f) Embedding

1. Sisa paraffin yang ada pada pan dibersihkan dengan memanaskan beberapa saat di atas api dan diusap dengan kapas.

2. Paraffin cair disiapkan dengan memasukkan paraffin ke dalam cangkir logam dan dimasukkan dalam oven dengan suhu diatas 580C.

3. Paraffin cair dituangkan ke dalam pan.

4. Dipindahkan satu persatu dari tissue cassette ke dasar pan dengan mengatur jarak yang satu dengan yang lainnya.

5. Pan dimasukkan ke dalam air.

6. Paraffin yang berisi potongan paru dilepaskan dari pan dengan

dimasukkan ke dalam suhu 4−60

C beberapa saat.

7. Paraffin dipotong sesuai dengan letak jaringan yang ada dengan menggunakan skalpel atau pisau hangat.

(61)

42

9. Memblok paraffin, siap dipotong dengan mikrotom.

g) Cutting

1. Pemotongan dilakukan pada ruangan dingin.

2. Sebelum memotong, blok didinginkan terlebih dahulu di lemari es.

3. Dilakukan pemotongan kasar, lalu dilanjutkan dengan

pemotongan halus dengan ketebalan 4−5 mikron. Pemotongan

dilakukan menggunakan rotary microtome dengan disposable knife.

4. Dipilih lembaran potongan yang paling baik, diapungkan pada air, dan dihilangkan kerutannya dengan cara menekan salah satu sisi lembaran jaringan tersebut dengan ujung jarum dan sisi yan lain ditarik menggunakan kuas runcing.

5. Lembaran jaringan dipindahkan ke dalam water bath suhu 600C selama beberapa detik sampai mengembang sempurna.

6. Dengan gerakan menyendok, lembaran jaringan tersebut diambil dengan slide bersih dan ditempatkan di tengah atau pada sepertiga atas atau bawah.

7. Slide yang berisi jaringan ditempatkan pada inkubator dengan suhu 370C selama 24 jam sampai jaringan melekat sempurna.

(62)

Setelah jaringan melekat sempurna pada slide, dipilih slide yang terbaik, selanjutnya secara berurutan memasukkan ke dalam zat kimia dibawah ini dengan waktu sebagai berikut.

1. Dilakukan deparafinisasi dalam: 1. Larutan xylol I selama 5 menit. 2. Larutan xylol II selama 5 menit. 3. Ethanol absolut selama 1 jam. 2. Hydrasi dalam:

a. Alkohol 96% selama 2 menit b. Alkohol 70% selama 2 menit, c. Air selama 10 menit.

3. Pulasan inti dibuat dengan menggunakan: a. Harris Hematoksilin selama 15 menit. b. Dibilas dengan air mengalir.

c.Diwarnai dengan eosin selama maksimal 1 menit. 4. Selanjutnya, didehidrasi dengan menggunakan:

a. alkohol 70% selama 2 menit. b. alkohol 96% selama 2 menit. c. alkohol absolut selama 2 menit. 5. Penjernihan dengan:

(63)

44

i) Mounting dengan entelan dan tutup dengan deck glass

Setelah pewarnaan selesai, slide ditempatkan di atas kertas tisu pada tempat datar, ditetesi dengan bahan mounting, yaitu entelan, dan ditutup dengan deck glass, cegah jangan sampai terbentuk gelembung udara.

j) Slide dibaca dengan mikroskop

(64)

Gambar 8. Diagram Alur Penelitian Timbang berat badan tikus

Dibagi menjadi lima kekelompok, masing-masing 5 ekor

K (−) P 1 P 2 P 3 P 4

Tikus melalui masa adaptasi selama 7 hari

Tikus diberi perlakuan selama 7 hari

Tidak diberi

Tikus di anastesi kemudian di euthanasia dengan melakukan cervical dislocation

dilakukan pembedahan toraks untuk mengambil organ paru tikus

Sampel paru difiksasi dengan formalin 10%

Sampel paru dikirim ke Laboratorium Patologi Anatomi Fakultas Kedokteran Universitas Lampung

Pengamatan sediaan histopatologi dengan mikroskop

(65)

46

3.6 Identifikasi Variabel Penelitian

Adapun variabel yang digunakan pada penelitian ini adalah sebagai berikut: a. Variabel Bebas adalah perbedaan durasi paparan asap pembakaran bahan

organik.

b. Variabel Terikat adalah gambaran kerusakan parenkim paru.

3.7 Definisi Operasional

Definisi operasional pada penelitian ini adalah sebagai berikut: a. Variabel bebas

Variabel bebas pada penelitian ini berupa perbedaan durasi paparan asap pembakaran bahan organik menggunakan skala kategorik.

b. Variabel terikat

(66)

Tabel 2. Definisi Operasional

Variabel Definisi operasional Skala

Durasi

Gambaran kerusakan parenkim tikus dilihat dengan melakukan pengamatan pada sediaan histopatologi menggunakan mikroskop dengan perbesaran 400x pada 5 lapang pandang dimana setiap lapang pandang diamati berupa emfisema, destruksi septum alveolar dan infiltrat sel radang yang terjadi pada alveolus.

Numerik

Gambaran kerusakan parenkim paru dilihat dari adanya emfisema, destruksi septum alveolus dan infiltrat radang dengan skor sebagai berikut: 1) Emfisema

Dengan skor sebagai berikut:

0= tidak terjadi perubahan pada struktur histologis. 1= emfisema pada <1/3 dari 5 lapang pandang.

2= emfisema pada 1/3 hingga 2/3 dari 5 lapang pandang. 3= emfisema pada >2/3 dari 5 lapang pandang.

2) Destruksi septum alveolar Dengan skor sebagai berikut:

0= tidak terjadi perubahan struktur histologis.

(67)

48

2= destruksi septum alveolar pada 1/3 hingga 2/3 dari 5 lapang pandang.

3= destruksi septum alveolar pada >2/3 dari 5 lapang pandang.

3) Infiltrasi sel radang

Dengan skor sebagai berikut:

0= tidak terjadi perubahan struktur histologis

1= infiltrasi sel radang pada <1/3 dari 5 lapang pandang

2= infiltrasi sel radang pada 1/3 hingga 2/3 dari 5 lapang pandang 3= infiltrasi sel radang pada >2/3 dari 5 lapang pandang

4) Kriteria penilaian derajat kerusakan alveolus paru

Penilaian kerusakan alveolus paru dihitung dari total kerusakan yang terjadi pada alveolus yang terdiri dari emfisema, destruksi septum alveolar dan infiltrat radang.

3.8 Analisi Data

Data yang diperoleh dari hasil pengamatan histopatologi di bawah mikroskop diuji analisis statistik menggunakan software analisis statistik. Hasil penelitian dianalisis apakah memiliki distribusi normal (p>0,05) atau tidak secara statistik dengan uji normalitas Shapiro-wilkkarena jumlah sampel ≤50.

Kemudian dilakukan uji Levene’s untuk mengetahui apakah dua atau lebih

(68)

parametrik, digunakan uji One Way ANOVA. Bila tidak memenuhi syarat uji parametrik, digunakan uji non parametrik Kruskal-Wallis. Hipotesis dianggap bermakna bila nilai p<0,05. Jika pada uji One Way ANOVA menghasilkan nilai p<0,05 maka dilanjutkan dengan melakukan analisi Post Hoc LSD, dan jika pada uji non parametrik Kruskal Wallis menghasilkan nilai p<0,05 maka akan dilanjutkan dengan melakukan analisis Post Hoc Mann-Whitney (Dahlan, 2011)

3.9 Ethical Clearance

(69)

63

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Dari penelitian yang telah dilakukan dapat disimpulkan bahwa terdapat pengaruh perbedaan durasi paparan asap pembakaran bahan organik terhadap gambaran histopatologi parenkim paru tikus. Semakin lama durasi paparan asap menyebabkan kerusakan yang semakin berat pada parenkim paru.

5.2 Saran

1. Peneliti lain disarankan untuk melakukan penelitian lebih lanjut mengenai zat aktif yang terkandung dalam asap pembakaran bahan organik yang dapat menyebabkan kerusakan pada sel atau organ, khususnya paru.

2. Peneliti lain disarankan untuk melakukan penelitian lebih lanjut mengenai pengaruh perbedaan durasi paparan asap pembakaran bahan organik terhadap kerusakan organ lain seperti kulit, saraf, otak dan lain-lain.

3. Peneliti lain disarankan untuk melihat kemungkinan terjadinya keganasan pada paru dengan melakukan paparan jangka panjang.

(70)

DAFTAR PUSTAKA

AVMA. 2013. Guidelines for the Euthanasia of Animals. Schaumburg: American Veterinary Medical Association.

Ammann H. 2008. Wildfire smoke a guide for public health officials. Tersedia dari: http://www.arb.ca.gov/. Diakses tanggal 14 september 2014.

Anggraeni NIS. 2009. Pengaruh lama paparan asap knalpot dengan kadar CO 1800 ppm terhadap gambaran histopatologi jantung pada tikus wistar [skripsi]. Semarang: Universitas Diponegoro.

Anindyajati EA. 2007. Pengaruh asap pelelehan lilin batik (malam) terhadap struktur histologis trakea dan alveoli pulmo, jumlah eritrosit serta kadar hemoglobin mencit (Mus musculus L.) [skripsi]. Surakarta: Universitas Sebelas Maret.

Antonio ACP, Castro PSC, Freire LO. 2013. Smoke inhalation injury during enclosed space fires: an update. J Bras Pneumol. 39(3):373–381.

Arkeman H, David. 2006. Efek vitamin C dan E terhadap sel goblet saluran nafas pada tikus akibat pajanan asap rokok. Universa Medicina. 25(2):61–6.

ATSDR. 2012. Toxicological profile for carbon monoxide. Georgia: Agency for Toxic Substances and Disease Registry

(71)

65

Brito MVH, Yasojiman EY, Silveiram EL, Yamaki NV, Kleber R, Teixeira C. 2013. New experimental model of exposure to environmental tobacco smoke. Acta Cirúrgica Brasileira. 28(12):815–9.

CDC. 2014. Evidence Review: Wildfire smoke and public health risk. United State: Centre for Disease Control.

Channell MM, Paffett ML, Devlin RB, Madden MC, Campen MJ. 2012. Circulating factors induce coronary endothelial cell activation following exposure to inhaled diesel exhaust and nitrogen dioxide in humans: evidence from a novel translational in vitro model. Toxicological sciences. 127(1):179–86.

Chiew AL, Buckley NA. 2014. Carbon monoxide poisoning in the 21st century. Critical care. 18(2):1–8.

Dahlan MS. 2011. Statistik untuk kedokteran dan kesehatan.Edisi ke–5. Jakarta: Salemba Empat.

Depkes. 2011. Parameter pencemaran udara dan dampaknya terhadap kesehatan. Jakarta: Depatemen Kesehatan Republik Indonesia.

Dogan OT, Elagoz S, Ozsahim SL, Epozturk K, Tuncer E, Akkurt I. 2011. Pulmonary toxicity of chronic exposure to tobacco and biomass smoke in rats. CLINICS. 66(6):1081–7.

Domej W, Paff ZF, Flogel E, Haditsch B. 2006. Chronic obstructive pulmonary disease and oxidative stress. Current Pharmaceutical Biotechnology. 7(0):1–7.

Dries DJ, Endorf FW. 2013. Inhalation injury: epidemiology, pathology, treatment strategies. Scandinavian Journal. 21(31):1–15.

D’hulst AL, Vermaelen KY, Brusselle GG, Joss GF, Pauwels RA. 2005. Time

(72)

Eroschenko VP. 2010. Atlas histologi difiore dengan korelasi fungsional. Jakarta: EGC.

Faisal F, Faisal Y, Fachrial H. 2012. Dampak asap kebakaran hutan pada pernapasan. Cermin Dunia Kedokteran. 39(1):31–4.

Faiz O, Moffat D. 2011. At a glance anatomi. Edisi ke–3. Jakarta: Erlangga.

FAO. 2006. Forests and Climate Change Working Paper 4. Rome: Food and Agriculture Organization.

Gindo AS, Budi HH. 2007. Pengukuran partikel udara ambien (TSP, PM10, PM2,5) di sekitar calon lokasi PLTN Semenanjung Lemahabang. Tersedia pada: http://www.batan.go.id/. Diakses tanggal 14 september 2014.

Guyton C, Hall E. 2007. Buku ajar fisiologi kedokteran. Jakarta: EGC.

Harrison ME, Susan E, Limin SH. 2009. The global impact of Indonesian forest fires. Biologist. 56(3):156–63.

Ismail OMS, Hameed RSA. 2013. Environmental effects of volatile organic compounds on ozone layer. Adv. Appl. Sci. Res. 4(1):264–8.

Junquiera L, Carneiro J, Kelley O. 2007. Teks dan atlas histologi dasar. Edisi ke-10. Jakarta: EGC.

Kesenja R. 2005. Pemanfaatan tepung buah pare (Momordica charantia l.) Untuk penurunan kadar glukosa darah pada tikus diabetes mellitus [skripsi]. Bogor: Institut Pertanian Bogor.

Kumar V, Cotran RS, Robbins SL. 2007. Buku ajar patologi. Edisi ke–7. Jakarta: EGC.

(73)

67

Kodavanti UP, Schladweiler MC, Ledbetter AD, Ortuno RV, Suffia M, Evansky P et al. 2006. The spontaneously hypertensive rat: an experimental model of sulfur dioxide–induced airways disease. Toxicological sciences. 94(1):193– 205.

Larasati SA. 2010. Pengaruh pemberian jus pepaya (carica papaya) terhadap kerusakan histologis alveolus paru mencit yang dipapar asap rokok [skripsi]. Surakarta: Universitas Sebelas Maret.

Lauretta M, Muhartono, Wahyuni A. 2014. The effect of phaleria macrocarpa (scheff.) Boerl. Fruit against 7,12-dimethylbenz[α]anthracene(dmba) -induced on lung histopathology appearance in rat. Medical Journal of Lampung University. 3(3): 114–23.

MacNee W. 2005. Pulmonary and systemic oxidant/antioxidant imbalance in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2:50–60.

Mahesya AP. 2014. Pengaruh pemberian minyak goreng bekas yang dimurnikan dengan buah mengkudu (morinda citrifolia) terhadap gambaran hepatosit tikus wistar jantan [skripsi]. Bandarlampung: Universitas Lampung.

Miller K, Chang A. 2003. Acute inhalation injury. Emergency Medicine Clinics of North America. 21(1):533–57.

Mohan M, Dutt TS, Ranganath R. 2012. Tobacco smoking related interstitial lung diseases. The Indian Journal of Chest Diseases & Allied Sciences. 54:243– 9.

Moore KL, Dalley AF, Agur AMR. 2009. Anatomi klinis dasar. Jakarta: Hipokrates.

Naeher LP, Brauer M, Lipsett M, Zelikoff JT, Simpson CD, Koenig JQ et al. 2007. Woodsmoke health effects: a review. Inhalation Toxicology. 19:67– 106.

(74)

Okpitasari D. 2014. The chronic obstructive pulmonary disease on passive smokers. Journal Agromedicine Unila. 1(2):180–4.

Olivieri D, Scoditti E. 2005. Impact of environmental factors on lung defences. Eur Respir Rev. 14(95):51–6,

Perwitasari D, Bambang S. 2008. Gambaran kebakaran hutan dengan kejadian penyakit ISPA dan pneumonia di Kabupaten Batang Hari Provinsi Jambi tahun 2008.Jurnal Ekologi Kesehatan. 11(2):148–58.

Petta AD. 2014. Histopathological characteristics of pulmonary emphysema in experimental model. Einstein. 12(3):382–3.

Pranggono EH. 2011. Basic and advances in the management of Acute Respiratory Distress Syndrome (ARDS). Tersedia pada: http://pustaka.unpad.ac.id/. Diakses tanggal 16 september 2014.

Pope CA, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski E et al. 2004. Cardiovascular mortality and long-term exposure to particulate air pollution. Circulation. 6(13):71–9.

Poynter ME. 2012. Airway Epithelial Regulation of Allergic Sensitization in Asthma. Pulm Pharmacol Ther. 25(6):438–46.

Price SA, Wilson LM. 2005. Patofisiologi: konsep kinis proses-proses penyakit. Edisi ke–6. Jakarta: EGC.

Putra AP. 2009. Efektivitas pemberian kedelai pada tikus putih (Rattus norvegicus) bunting dan menyusui terhadap pertumbuhan dan kinerja reproduksi anak tikus betina [skripsi]. Bogor: Institut Pertanian Bogor.

Quinn DK et al. 2009. Complications of Carbon Monoxide Poisoning: A Case Discussion and Review of the Literature. Journal of Clinical Psychiatry. 11(2):749.

(75)

69

Renne RA, Dungworth DL, Keenan CM, Morgan KT, Hahn FF, Schwartz LW. 2003. Non proliferative lesion of the respiratory tract in rats. Tersedia pada: https://www.toxpath.org/. Diakses tanggal 14 september 2014.

Ridwan E. 2013. Etika pemanfaatan hewan percobaan dalam Penelitian kesehatan. Journal Indonesia Medical Association. 63(3):112–6.

Sato A, Hirai T, Imura A, Kita N, Iwano A, Muro S, Nabeshima Y et al. 2007. Morphological mechanism of the development of pulmonary emphysema in klotho mice. PNAS. 104(7):2361–5.

Sudoyo AW, Setyohadi B, Alwi I, Simadibrata M, Setiati S. 2009. Buku ajar ilmu penyakit dalam. Edisi ke–5. Jakarta: Interna Publishing.

Sloane E. 2003. Anatomy and physiology: an easy learner. Philadelphia: Mcdraw Hill.

Tayanont W, Vadakan NV. 2012. Exposure to volatile organic compounds and health risks among residents in an area affected by a petrochemical complex in rayong, thailand. Southeast Asian J TropMed Public Health. 43(1):201– 11.

Tuder RM, Yoshida T, Arap W, Pasqualini R, Petrache I. 2006. Cellular and molecular mechanisms of alveolar destruction in emphysema. Proc Am Thorac Soc. 3:503–11.

Wellenius GA et al. 2004. Cardiac effects of carbon monoxide and ambient particles in a rat model of myocardial infarction. Toxicological sciences. 80(2):367–76.

WHO. 2004. Carbon monoxide environmental health criteria 213. 2nd ed. Geneva: World Health Organization.

Wibowo MA, Widodo MA, Purnomo BB, Aulanni’am. 2013. Ekstrak daun kesum

(76)

Gambar

Gambar
Gambar 1. Kerangka Teori Terjadinya Emfisema, Destruksi Septum Alveolar & Infiltrat Radang Pada Paru Akibat Asap Kebakaran Hutan
gambaran  parenkim paru
Gambar 3. Jumlah hotspot berdasarkan provinsi dalam kurun waktu 1997–2006 (Sumber: Rahmayanti, 2007)
+6

Referensi

Dokumen terkait

1.2.2 Apakah terdapat perbaikan gambaran histopatologi kerusakan mukosa gaster yang diinduksi aspirin pada tikus putih (Rattus novergicus) galur Sprague dawley

Skripsi berjudul ” PENGARUH MADU Bee pollen TERHADAP GAMBARAN HISTOPATOLOGI GASTER TIKUS PUTIH JANTAN GALUR Sprague dawley YANG DIINDUKSI IBUPROFEN ” ini disusun

Tujuan: Mengetahui pengaruh ekstrak etanol 96% biji jengkol (Pithecellobium jiringa) pada gambaran histopatologi dan berat gaster tikus putih (Rattus norvegicus)

Penelitian ini bertujuan untuk mengetahui pengaruh pemberian ekstrak etanol 96% biji jengkol (Pithecollobium lobatum) terhadap gambaran histopatologi jaringan ginjal,

Pada penelitian ini peningkatan dosis thymoquinone tidak dapat meningkatkan efek protektif terhadap gambaran histopatologi ginjal tikus putih (Rattus novergicus) jantan

Dosis efektif ekstrak etanol daun bawang mekah yang dapat menurunkan derajat kerusakan paru-paru akibat paparan asap rokok pada hewan uji tikus jantan galur wistar

PENGARUH LAMA PAPARAN ASAP KNALPOT DENGAN KADAR CO 1800 PPM TERHADAP GAMBARAN HISTOPATOLOGI JANTUNG PADA..

Oleh karena itu, peneliti tertarik untuk melakukan penelitian yang berjudul “Hubungan Paparan Asap Bakaran Sampah Plastik Jenis Polypropylene (PP) Terhadap Gambaran