PROCEEDINGS
.-
-..
セ@"
.
-
-ICACSIS
2014
201 4 Intern ational Conference on
Advanced Computer Science and
lnforrnation Systems
October 18th and 19th 2014
Ambhara Hotel, Blok M
Jakarta, Indonesia
ISBN : 978· 979- 1421-22·5
I
)
;
i
1
-'
'
,.
II
I
f
l
l
セ ᄋ セ@ ;•\ <.it;•;1.• jエエQゥMNNZゥ|NNエQ|QセオオLオエ・a@
G
FE ·PUSTAKAAN... r, II i MNセ@ t•,.. "') 1 11 r PC.JC r A"'lA"" fU':c.c:>R
.... u: .. ·vs C• RW .. \v.& •' • r .. tp •f • • 101'' ) ' l!Ut4
f tn••' ᄉキセQ PN。Mセ Q ゥャᄚGBG@ .,..._..po« od uw." ttllpit ••w--• ᄋエ セッュ@ ' ""'P' •t1b ec id
+.IEEE
INDONESIA SECTION
ICACSIS
,•
2014 International Conference on
Advanced Computer Science and Information Systems
(Proceedings)
ISBN : 978-979 -1421-225
1
t
\
l
I
I
.
l
l
IC.\CSIS :!Ill I
plenary and invited spenkcrs.
Welcome Message from
General Chairs
On hc:half
,,r
the Organi1i11g Committee of this
ャョエ」イョ。エゥセイョ。ャ@
Conference on /\d\ anred Computer
Scicrl<.:c
anti
lnfonna1io11S)stems
2014 (
IC/\CSIS
2014). \\C
\\lllllJ like
InC:\lcnJ our \\ilrm ''ekomc
h.lall uf 1hc pn.:sen1er anJ punicipants. and in particular.
\\C\\OulJ like to express our sincere gratitude to our
This international con fcrence is organized
ィセ@the F acuh) of Computer Science, Univcrsitas
Indonesia. and is intentlcd to be the tirsl step to\i,,arJs a lop <:lass conference on Computer
Science and Information Systems. We hdieve that
エィゥセ@international conference "ill giH.:
opponunitics for sharing and exchanging original res\!arch ideas and opinions. gaining
inspiration for future research. and broadening knowledge about various fields in advanced
computer science and information s) stems. amongst members of lnJonesian research
communities. together \\ith researchers from Germany. Singapore. Thailand, France, Algeria.
Japan, Malaysia, Philippines. United Kingdom. S\\cdcn. United States and ot her countries.
This conference focuses on the tkvd opmcnl of computer science and informution
ウケセ エ 」ュウN@A long with 4 plenary and 2 invited speeches, the proceedings of this conference contains
71
papers which have been selected from a total of 132 papers from twelve different countries.
These selected papers will be presented during the cnnfercnce.
We also want to express our sincere appreciation to the members of the Program Comrniltec for
their critical review of the submitted papers, as \\ell as the Organizing Committee for the time
and energy they have devoted to editing the proceedings and arranging the logistics of holding
this conference. We would also like to give :ippreciation to the authors who have submitted their
excellent works to this conference. Last but not least. we would like to extend our gratitude to
the Ministry of Education of the Republic of Indonesia. the Rector of Un iversitas Indonesia.
Universitas Tarumanagara. l3ogor /\gricultural Institute. and the Dean of the Facult) of
Computer Science fo r their continued support towards the ICACSIS
1014
conference.
Sincerely yours.
General Chairs
IC 'AC 'SIS 21111
Welcorne Message from
The Dean of Faculty of Con1puter Science, Universitas
Indonesia
On
behalf of all the
academic
staff anJ
セエャャャィZョエウ@of
the Faculty of Computer
Sc ience. Univcrsit:.i::. lnduncsia. I \\Ould like to exlc:nd our \\armest v.elcomc lo
all
the part icipants
w
the :\mbhara
I
lotd.
Jakarta
on the occasion of the
2014
International
C
onfcrem:c on Atlvam.:ctl Computer Sc icnce and Information
S)stems
(ICJ\CSIS).Just like the previous fivc events in this series ( ICACSIS
2009. 2010, 2011. 2012,
anti
2013).
I
am
confident that
IC
/\S IS
201-t
v.
ill pla) an importanl rnle in t:ncouraging activities in n:search
and development of computer science and information technology in Indonesia. and give an
excellent opportunity to forge collaborations bcl\veen research institutions both \\ ithin the
country and with international partners. The
broad
scope
of
this event. \vhich includes both
theort:tical aspects of computer science anJ practical. applied experience
of
Jc\ eloping
information systems. provides a unique.: mccting ground for rcscarchcrs spanning tht: \\huk
spectrum of our discipline. I hope that
O\er the next t\\O da)s. some: fruitful collaborations can
be
established .
I
also hope that the special attention devoted this year
tothe
lidd
nf pervasive computing,
including
the very
t>xciting
area of
wireless sensor networks. \viii ignite the development
uf
applications in th is area to address the various needs of
I
ndoncsia ·
s
development.
I
would like to express my sincere gratitude
lothe distinguished invited speakers for thc.!ir
presence and contributions to the conferencc.
I
also thank all the program committee members
for their efforts in ensuring
a
rigorous review process to select high quality papers.
Finally.
I
sincerely hope that all the participants \\.ill benefit from the technical contents or this
conference. and wish you a very succcssful conference :-ind an enjoyable stay in Jakarta.
Sincere!)'.
Mirna Ad r ia ni, Ora, Ph.D.
Dean
of the
Faculty
of
Computer Science
Universitas Ind onesia
111
-
- -
- - --
t
I( '.\('SIS '211 l I
COMMITTEES
Honorary Chairs:
• A. Jain, I EE E Fellow, Mich igan State University,
us
T Fukuda , IEEE Fellow, Nagoya Un1vers1ty, JP
• M. Adnan1, Un1vers1tas Indonesia, JO
General Chairs:
E. K. Budiarjo, Un1versitas Indonesia, ID 0 . I Sensuse, Universitas Indonesia, ID Z. A. Has1buan, Universitas Indonesia, ID
Program Chairs:
H. B. Santoso, Un1versitas Indonesia, ID
• W. Jatm1ko, Unlversitas Indonesia, IO
• A. Buono, lnstitut Pertan1an Bogor, ID
0. E. Herwindiati, Universitas Tarumanegara, 10
Section Chairs:
K. Wastuwibowo, IEEE Indonesia Section, ID
Publication Chairs:
• A. Wibisono, Universitas Indonesia, ID
Program Committees:
A. Azurat, Universitas Indonesia, ID
p --·- - -·-- -
._ ..
Lセ ZMMᄋ N]Z@ - -- Ir
N セGᄚ@,,
,;
c :· セL@ ·:-; セセ N aNイLn@ ·1 .. • ' \ t t • , • \\V •\ ltoe
)F..-.->A.,•,1t.01f,.' I. ot•:..•.1,·.•, セLHGBBLHIr@
, .. _ . ...,/ M N[NLjイ Nᄋ セセイN」NゥN@
-, -, ...... .:,. t t l ' l l : .. セセ ヲ[ Na@
E "'"' '' ' 11\ t •> A ... NFセ G GMcNZZB@ • • セ@ ... tpb a.c •d •
',,.1-11 ... . , .. ᄋ ᄋMセ@ •••• ' . ' • .. '
A. Fanar, l・イョ「。セ。@ llmu Pengetahuan Indonesia, ID
• A. Kist1Jantoro, Institut Teknolo91 Bandung, ID
A. Purwarianti, Institut Teknologi Bandung, ID
• A. Nugroho, PTJK BPPT, ID
• A. Srivihok, Kasetsart University, TH
• A. Arifin Institut Teknologi Sepuluh Nopember, ID
• A. M. Arymurthy, Unlversitas Indonesia, ID
A. N. H1dayanto, Universitas Indonesia, ID
• B. Wijaya, Univers1tas Indonesia, ID
• B. Yuwono, Un1versitas Indonesia, ID
B. Hard1an, Univers1tas Indonesia, ID
• B. Purwandari, Urnversitas Indonesia, ID
• B. A..,Nazief, Universitas Indonesia, ID
B. H. Widjaja, Universitas Indonesia, ID Denny, Urnversitas Indonesia, ID
• O. Jana, Computer Society of India, IN
• E. Gaura, Coventry University, UK
E. Seo, Sungkyunkwan University, KR F. Gaol, IEEE I ndonesia Section, ID
I('.\( ᄋMNZ Q セ@ :2111 1
ICAC5/5 2014
f
•
H Manurung, Un1vers1tas Indonesia , ID•
H. Suhartanto, Univers1tas Indones1d, ID•
H. Sukoco, Jnst1tut Pertan1an Bogor, ID•
H. Tolle, Univcrs1tas Braw11aya, IDI Bud1, Un1vers1tas Indonesia, ID
•
I. S1tan9gang, lnst1tut Pertanian Bogor, 10»
I Was1to, Univers1tas Indonesia , ID
•
K. Sekiyama, Nagoya Un1vers1ty, JP•
L Stefanus, Univers1tas Indonesia, IDMarim1n, Inst1tut Pertanian Bogor, ID
•
M T. Suarez, De La Salle University, PH•
M. Fanany, Un1vers1tas Indonesia, I D•
M. Kyas, Freie Un1vers1tat Berltn, DEt'>
•
M. NakaJima, Nagoya University, JP..
•
M. W1dyanto, Universitas Indonesia, ID•
M. W1d1a1a, PTIK BPPT, ID•
N. Maultdev1, Institut Teknolog1 Bandung, ID•
0 . S1dek, Un1vers1t1 Sa1ns Malaysia, MY0 Lawanto, Utah State University, US
•
P. Hitzler, Wnght State University, US•
P. Mursanto, Universitas I ndonesia, ID セ@セ@
•
S. Bressan, National University of Singapore, SG•
S. Kuswad1, lnst1tut Teknolog1 Sepuluh Nopember, ID•
S. Nomura, Nagaoka University of Technology, JP•
S. Yaz1d, Universitas Indonesia, 10•
T. Basaruddin, Un1vers1tas Indonesia, ID•
T. Hardjono, Massachusetts Institute of Technology, UST. Gunawan, International Islamic University Malaysia, MY
•
T . A. Masoem, Univers1tas Indonesia, ID•
V. Allan, Utah State University, USW. Chutimaskul, King Mokut's University of Technology, TH
•
W . Molnar, Public Research Center Henri Tudor, LU•
W. Nugroho, Universitas Indonesia, ID•
W . Prasetya, Universiteit Utrecht, NL•
W. Sed1ono, International Islamic University Malaysia, MY•
W. Sus1lo, University of Wollongong, AU•
W. Wibowo, Universitas Indonesia, JD•
X. Lt, The University of Queensland, AUY. lsal, Universitas Indonesia, ID
•
Y. Sucahyo, Un1vers1tas Indonesia, IDLocal Organ izing Committee:
•
A . Y. Utomo, Universitas Indonesia, ID•
Aprinald1, Univers1tas Indonesia, IDD. Eka, Un1vers1tas Indonesia, ID E. S. Utama , Universitas Indonesia, ID
•
E. Cahyanings1h, Universitas Indonesia, IDr
•
H. A. W1sesa, Universitas Indonesia, ID•
H. R. Sanabila, Universitas Indonesia, ID•
K. M. Kurniawan, Universitas Indonesia, ID•
M. Mega, Universitas Indonesia, ID•
M. Ni'ma, Universitas Indonesia, IDIC'.\< 'SIS '21111
I
t
r
ICACSIS 2014
'
-.
f
•
•
M. M. Soleh , Univers1tas Indonesia, ID I. Suryani, Universitas Indonesia, ID1 M. Prav1tasar1, Univers1tas Indonesia, ID
•
I
•
N Rahmah, Un1vers1tas Indonesia , ID•
Putut, Univers1tas Indonesia, IDt
•
R. Musf1kar, Untvers1tas Indonesia , IDl
•
R. Latifah, Universitas Indonesia, ID R. P. Rangkuti, Univers1tas Indonesia, ID•
V. Ayumi, Unlvers1tas I ndonesia, IDJ
セ@
セ@5
セ@
l
I
J
l
\
I
セ@
L
セ@
f
l
.
セ@
i
l
•
i
セ@
'
I
セ@l
f
1
I
'
l·
l
1
セ@
i
セ@
t
t
l
-- -
-- - --
- - ----
·
I('.\ ( 'S IS :!II I I
--- --
-CONFERENCE INFORMATION
Dates
Organizer
Venue
Official language
Secretariat
October 18:h (Saturday) - October QYG セ@ (Sunday) 2014
Faculty of Computer Science, Un1versitas Indonesia
Department of Computer Science, lnst1tut Pertanian Bogor
Faculty of Information Technology, Un1versitas Tarumanegara
Ambhara Hotel
Jalan lskandarsyah Raya No. 1, Jakarta Selatan, OKI Jakarta, 12160, Indonesia
Phone : +62-21-2700 888
Fax : +62-21 -2700 215
Website : http://www.ambharahotel.com/
English
Faculty of Computer Science, Un1versitas Indonesia
Kampus UI Depok
Depok, 16424
Indonesia
T: +62 21786 3419 ext. 3225
F: +62 21 786 3415
W: http://www.cs.ui .ac.id
Conference Website http://icacsis.cs.ui.ac.id
v
( '
IC:\C
Gs i セ@2111 .1
PROGRAM SCHEDULE
· Saturday, October 1s1t1, 2014-CONFERENCE
Time ' Event
·-
- -
.-08.00·09.00
I
I
09 00-09.30!
OpeningI
I
I
I
I
09.30-10.15
I
Plenary Speech II
I' 10.15-10.30
1 10.30-11.15 Plenary Speech II
1115.12.30
12.30-14 .00 Parallel Session I :
Four Parallel Sessions
1 14.00·15 30 Parallel Session II:
Four Parallel Sessions
15.30-16.00
1 16.00-17.30 Pa rallel Session Ill :
Four Parallel Sessions
セ@ 17.30-19.00
1 19.00-22.00 Gala Dinner
i
-
- -
-Event Details Registrat ion
I
Rooms- -
セ MM MMMセMMMMM MMNNNNNNャ@Ope ning rom t h D
e
ean o Faculty ofj
Computer Science Universitas IIndonesia/General Chair of ICACSIS I 2014
1 Dr . Ir. Basuki Yusuf lskandar, MA Dirgantara
I from Ministry of Communication and Room, 2"° Floor
I
InformationI
Coffee Break
セイッヲ
N@
Dame Wendy HallI
from Southampton University, UKLunch
See Technical (Parallel Session I Elang, Kasuari,
Schedule) Merak, Cend rawasih
Room, Lobby Level
See Technical (Parallel Session II Elang, Kasuari,
Schedule) Merak, Cend rawasih
Room, Lobby Level
Coffee Break
See Technical (Parallel Session Ill Elang, Kasuari,
Schedule) Merak, Cendrawasih
Room, Lobby Level
Break I
Dinner, accompanied by music Dirgantara Room,
I
performance and traditional dances 2nd Floor
I
l
lI
:
J
I (':\(
'SIS
:?11 1.1• • Qセ@ JCAC515
2014
-
- ·
-I
Sunday, October 19th, 2014-CONFERENCEI
Timer
08.00-09 00Event
09.00-10.00 Plenary Speech Ill
I
10.00-10.15
L
10.1s-11.3o Plenary Speech IV11.30-12.30
I
Parallel Session IV :1230-14.00
Four Parallel Sessions
Parallel Session V : 14.00-15.30
Four Parallel Sessions
15.30-16.00
1 16.00-16.30 Closing Ceremony
Event Details
Registration
Ors. Harry Waluyo, M .Hum
1 from Directorate General of Media,
Design. Science & Technology Based
I
Creative EconomyCoffee Break
Prof. Masatoshi Ishikawa
from Un1vers1ty of Tokyo, JP
Lunch
See Technical (Parallel Session IV Schedule)
See Technical (Parallel Session V Schedule)
Coffee Break
J Awards Announcement and Photo
Session
-- -
-Rooms
Dirgantara Room, 2"d Floor
Elang, Kasuari, Merak, Cendrawasih Room, Lobby Level
Elang, Kasuari, Merak, Cendrawasih Room, Lobby Level
Oirgantara Room,
ind Floor
XI
ISBI'\ : 978-979-1-121-225
'
l
t
.
•
[('\('SIS
セャャj@I
Table of Contents
\\ drnmc
セ@ォウセ。ァ」Z@from
Gcnc:ral
cィ。ゥイセ@w・ォッュセ@
ivkssagc
from Dean of l·::ic.:ull) nf Cumpuler S1.:ic111..:e Uni\.ersi l) of Indonesia
Committees
Confrrc:ncc Information
Program S<.:hetlule
l'ahk olTontcnb
Comptltl'r Netwo r ks, A rc hitecture
&
lligh Perform a nce Computing
セャオャエゥキイ」@
Computation of Tacti<.:al lntcgrntiun System in the Maritime Patrol l\ircrall
オセゥョァ@
lntd Threading Building Block
.\/11hu111111ud
Furis Fathoni.
Bumbang
Sridadi
ャュイョエAイウゥ|セ@
Virtual 30 Environment based on 499 fps Hand Gc-,1urc Interface
.\/11/wmmacl
Sakti Afrissalim
Im pro\ e fault tolerance in cell -based evolve hardware nrchitccturt!
Chemin
IVnngyai
A New Pntients· Rights Oriented
Modd of EMR Access Sccurit)
}'B D1ri
Setiantn. >'ustina Retno
IV.
Utm11i
Element Extraction and Evaluation of Packaging Design using Computational Kansei
Engineering Approac.:h
Tat!fik
Djutna. Fajar .\f1111ichp11tra1110 . .\'i11u llairiyalt. t:(/ira Febriani
lmcgratcd Information S)stern Specification to Support SSTC
Allmacl Tamimi
Fadhilah. fudlro
GiriSucahyo. Denny
A Real Time Simulation Model Of Production System Of GI) ccrol Ester With Self
111
v
IX
x
xiii
7
13
19
33
Optilnization
39
hrnn
Aang Soenandi, Taujik Djallw
-
- -
--
-
M セ@-
- -
·
[( '..\C
'SIS
'21ll II
)c\ 、ッーQQQセョQ@ or'l ni\ l.'r-.il)
or
ャョjッョ」セゥ。@ ZMMNエZセャ@( i1.·n1:rntil)ll I in.'" .ill PrnWt>
pc.tnd
NN|ョZ」セセ@
Control \\ ith
Deep
P:.1ckc1
ャョセーャNGQNGャゥッョ@llan"1
.\lllh1111111wd \t1::1l'/. /'01111_\ .·ld/11 St1h1/\f i1111 .·ll/1111 /'rnekal. (j/1111/11 (111tmldi11Reliabk
Data
ャォャゥ|・イセ@:'vkd1anism on Irrigation Moni toring S}'>ll.'m
.f111wicl1
H11Ji Sa11gl!r. fler11Sukoco.
Satyr111fo Su1>1011wE-<;ovcrnm ent
1:-
valuation on
People A
spe<.:t in
K
nn" lctlgt: Management
S
セウエ・ュ@I mplcmcntation :
J\Casi.'
Stud)
or
Bank
Imloncsia
llandrf!
Durianu. lclu
.·I\ 11Tri.\·110111_1.
and
/>11111ll'uri llamlaycmi
( im
ernment
Kno\\ledge Managcmenl
sセ@s1em
Analysis :
Case StuJy
Badan
Kepl!g<l\\aian Negara
Eli11
(
'ahyaningsih. So/iyunti !11dria.wri. Pinkie ,·lnggia.
/Jww /ndraSe11s11se.
Wa'1y11 Ca1111· Wihowo
sィセュZ、@
Scr\. icc in E-GO\ernment Sector: Case
SIUU)or
Implementation
in
Developed
cッオョQイゥ」セ@
Raviku I lc{/i=i.
Suruya,\ fiskon. A::i::ah Ahtlul Rahman
GIS-based DSS in e-Livestock Indonesia
Arie
I
Rcmwcllum.
Dona
/nclra
Se11.,·11se . • I/uhammad
Ocwviww
f>ralama.
l'ina
A,rumi. :lniati ,\/urni
aイケュオイエャセイ@Influence
Or
Presidential Candidates E-Campaign To\\ an.ls Voter" In
201-l
Presidential
Election In Repuhlic Of Indonesiara11i
i\'11rlwcl1J·a11i.
Al/Cmg Kurnia.lnyml
SatriaInformation Sccurit)
Risk
Management Planning:
J\Case Stud)
at Application Module
51
55
65
73
81
87
of
State Asset Directorate General of State
Assc1
Ministry of Finance
93
Sigit
Praseryo.
Yudho Giri Sucahyo
I'
Campaign
2.0:
Analysis of Social Media Utilintion in 201-l Jakarta Legislative Election
99
Deem
.
lpricmaRamadlw11
セi@
55
SS
73
31
)3
)9
IC'.-\('SIS
セャャャ@I
TO\\artfs
m。エオイゥQセ@:-.todd
for E-(iO\l:rnmcnt lmpkmt:ntation Basl!J on Suc\.'.ess !·actors
105
i>11r111c11rc111
/Jt1I!.111da.\"api
t11p11!t1
The
Cri1i1.:alSuccl!ss Fal·IOrs
10 d」|セャオー@an lntq?.rall.:d
Applic11iun of runa f-i,hing Data
\lanagl'llh!lllin
Indonesia
l>e\'i Fi1riwwh. .\'ursiclik Ht!rtt J'rapto11" . . frlmwcl .\'i:"r I liday"11w .. lniali ,\lumi
.·/ 1)'111 Ill'/
hy
A Com:ep1ual Paper on ICT as National Strat1:gic Resourcl!s t<mard National
Compl!titivcness
l {
13asuki
Yusuf
lskandar i.lnd h:idhilah
Mathar
Ba.rnki
r11s1!l lskcmclar
e111cl
Fm/hi/uh .\!a1lwrEnterprise Computing
Qualil) l:-.valu:ition
of
Airline's E-Commcrcc Website!. A Case! Study
or
AirAsia and
Lion Air Wehsitcs
Famh Slwj/ra q/1mdi. Jku A
l/i11a
Hotspot Clustering l hi ng DBSCA N Algorithm anti Shin} Web Frame\\Ork
Karli11a
Khiyarin Nisu
Analysis
of
Trust Presence Within
E-Commcrce
Websites:
A
Study
of
Indonesian
E-Commerce Websites
M11ha111111ucl
Rijki Shilwb.
SriJl 'ahy1111i .. -ll111wd .Vi;ar Hiclaya1110
The
Impact of Customer Kno\\ ledge Acquisition Lo
KnO\\ledge
Management
Benefits:
A Case Study in lndonc.:sian Banking anc.J lnsurnnce lnc.Justric.:s
.Huhammad R[fki Shihah. A.Jeng Anugrah Leslari
111
117
123
127
131
137
A
System Analysis and Design for Sorghum Based Nano- Composite Film Production
143
Belladini Lovely.
Ta1!fik pja111a
Moving Towards
PCI
DSS
3.0
Compliance:
A
Case Study
of
Credit Card Data Security
Audit in an
Online
Payment Company
Muhammad Rijki Shihab, Fehria11a .\/isdia111i
- -- - - - -- - -
- -- - -
- - -·-149
I( GN |\NGsiセ@ .!lll-l
:\n ᄋ|ョ。ャ^A|ゥセ@ and Dc-.ign ol I イᆱhZ」。「ゥャゥエセ@ In I ro1cnVannamc '-;hrimp PrnJuct ィ。セ」、@ l"1
1)1g11al ャSオAM^ゥョ」Bセ@ ャZZN」ッZZNセセエ」ュ@
li111/ik
IJjo111a 11ml ..ldi1w (ii111111111k11b。IセZNゥ。ョ@ Rough Set i\todcl in I ャ セ「イゥ、@ Kan sl.!i Engineering for Ht:'vcragc Packaging
Oc ... ign
..l:r(/inl'(lll um/
Tau{tk Dja11w
Predicting Sma11 • lome Lighting Ocha\ iour from Sensor::. und User Input using Ver)
155
163
Fast Dt!cision Tree with K ernel Dt:n sity Estimation and Improved Laplace Correction
169
Ida Bagu., f>wu
Pl!rmlnyu Di11ottt. and Boh f/orclia11
Vi-;ual Llsahilit) Design for Mohilc Application Ba!->cd On lJscr Personality
175
Rirn. lk111·ia.
Tc11!fik Dja11w.
am/ foni
.\'11rhudrya11iForma l Method Software Engineering
Interacti on bl.!mccn users and builJi ngs: イ」セオャエA|@ of a multicrdcria anal) Sis
181
Audrey Bona
u11d .Jew1-.Wurc
Salo/IiDigital \'vatermark ing in audio for copyright protection
187
Hcmis
M11s1apho
ancl Houdraa Bachir
An Extension o f Petri Nct\\Ork for Multi-Agent System Ri:rresenli.ltion
193
Pierre Sam·oge
Enhancing Re l iability of Feature Modeling" ith Transforming Representation into
Abstract Behavioral Specification (A B S) 199
.\lulwmmod lr/(111
Fadhilluh
:vtaking "Energy-saving Strategies": Using a Cue Offering Interface
205
, >'as111aka
Kishi.
KyokoIto. and Shogo .\'isltida
Extending V-modcl practices to support SRE to build Secure Web Application
111
.-1/a Ali ..tbdulm=eg
'
'-'
II
>3
)9
15
11
I ᄋIセ@
.
__
.)r
I
f
H ':\('SIS :?Ul -1!
I
t
t
l
l
I
f
•
i
•
t :
I
l
lf
l
セ@
t
t
i
f
'
I
i
t
.
i
I
f
t
t
It
1. ;
I
Social Nl!l\\ or!- Anal)
セゥウ@for P..:opk "ith Systemic
lオーオセ@tr) thcrnatosus
オセゥョァ@R4
I·
ramc \\
ork.·lri11f..."ar/11101111d F1rmc111 .-lrdiall\\<1/i
{セーQNMイゥNNZョ」NNZウ@
l 1-;ing /2St\I.
,\/uriu U(/uh Sirl!gar. John Derrick. Siobhan North, and
An1/10ny
J.
H.
Simons
Information Retric\•al
Rt!latiH:
o」ョセゥャI@Estimation using Self-Organizing
m。ーセ@Denny
Creating Bahasa Indonesian - Javanese Parallel Corpora Usi ng Wikipcdia Articles
Buyu Di.\t
imran
tイゥ N|B ᆪGᆪセ|@·a
Classi fo:alion
of
Campus E-Complaint
oセ」オイョ・ョエウ@using Directed Acyclic
Graph
Multi-217
223
23 1
237
Class
SVM
Based on Anal) tic Hierarch) Process
245
Imam C''10/issodi11 . .\loya l\11r11imrnti. lndriati, and ls.\·a A
n1a11i
Frame\\ Ork Model of Sustainab le Supply Chain Risk for Uairy Agroindust ry Based on
Knowledge Base
Winnie Septiani. ,\farimin. Yeni llerJ(reni. mu/ Ue.\betini
hオjゥセェ。イッォッ@Ph)sicians· lnvolvem1.:nt in Social Mcuia on Dissemination of Health Information
Pmd I
hrahim Nainggolan
A
Spatial Decision Tree based on Topological Relationships for Classifying Hotspot
Occurenccs in Bengkalis Riau lnuoncsia
raumil Miss
ャ|ィッゥイセイョィL@and Imus Sukaesih Sita11ggw1g
Shalla\\' Parsing Natural Language Processing Implementation for Intelligent Automatic
253
259
265
Customer Ser" i<.:e System
271
.
lhmad f:ries
.-I
mares ..
·ldhi l\m11adi. and .\'i .\fade SutYika J.nrari
SMOTE-Out, SMOTE-Cosine. and Selected-SMOTE: An Enhancement Strategy to
Handle Imbalance in Data Level
-
-277
I<
GZ |cGセiセ@ ᄋセQQQQ@Fajri
J\oror\Japti\c
lnlorrn:.nion
L-::-.tra1:tilHl
of Di-.a-.1cr
Informat ion
from
1 \\ itt\.·r
Ralph l"incent .I Regulodo . .Je11i110
L.
Chua . .JmrinL.
Co. Ih:r111w1
< ·
Cht:ngJr ..
. ·lngl!!o l/rul'I.' I . .
\fagpanruy. am/
J\n.\fme .\la Dommicfllt' FA.'a/011
Citatit111
セ」ョエゥZョ」」@ldcntilic;.nion anc.I Classification for Rdatc:d
\\.'ork
Summari1ation
D1ri
llt!mlrutmu
Jl'idnmtoro. am/ /111od11dtli11 .·l111i11
Experiments
on K c)\\ord
ャNゥセエ@Gem:ration
fl)
Tcrm Distribution Clustering for Social
セXS@
287
\kdia Dma Classilication
293
ll"tl\(}I/
roncla
Clllll ' '·' '"/'11nrnria11ti
Tourism Rec.:ummcndation bョセ」、@ on Vector
Space Model and
Social Rc:comml!ndcrUsing
Composite Socia l Media Extrm:tion
299H11.rn11/
J\lwtimah.1
ul!fik
f)jat11a.and Yam
.\'urluub:nmiLearning to Rank for Dctc:rmining Relevant Document in Indonesian-English Cross
L:mguagc: Information Retrieval using IJM25
.\\cmclra
Sari and ;\Jirna
Adriani
Pattern Recognition
&
Image Processing
Forccasting thc Length of the Rainy Season Using fimt: Delay Neural Net\\ork
Ag11.'> Buono .. \111/wmmad
:b:l'lwr:lgmalam. and Amllliu Fitrcmty
Almira11) brid Sampling for Multiclass Imbalanced Problem: Case Study of Students'
Performance Pred iction
lrantlwnee l'rachuabsupakij and
.\'11r111wa11Soontlwmphisc!i
:-..Julti-Cirid ·1 ransformation for Medical Im age Registration
Por<l\rat
Visutsak
\Jock I Prediction for Accred itation of Public
Junior I
ligh School in Bogor Using Spatial
Decision Tree
fNQQ、キQセ@
.
PumamaCiiri and Aniati .\/umi
.·Jnwurth\' . .305
311
3 17
..,...,.,
->-.:>
329
X\·jjj
ISBN : 978-979-1-421-225
t
,
.
.,.
t
I.
I.
I
1
t
!
Applil.'.ation of
ャォQNZゥ セゥッョ@rn.!t:
cャ。ウセゥャゥエZイ@for Singh.: :'\udcotidc
pッャIュッイーィゥセュ@DisCO\l!r)
from Nt::\t-Gc.:m:ration St:quc.:ncing Data
.\f11ht1111111t1d
.·lhmr
/,·1ioc/1. ll'irn11
.·lmmta
f.:11s11m<1.untf I .\fadl' I
mmo
Altemuth c
I
c.:.iturc.: btraction from D1gitizc.:J
iュ。ァ・NZセ@of
dセ」ZZ@Solution')
tba
セャッ、」NZi@for
335
Algal Bloom Remote Sensing
3-l I
Ro}!.er
l.11i.\C)-.
.Jvi.:l Jlao.
Frie P1111:<1/a11.wul !'ram!
.\farit'I011g
Iris Localization using Gradient
Magnitude nntl l·ourier Oc.:s1.:nptor
Stell art
.\'e111ww<! .• -11110S .\'ugrolw. Reggw .\'I lurtmw ..
\/ol1e1111macl l '/iniam:rah.
um/
L |O ・ゥエセイ@l.ayoouri
Multiscale Fractal Dimension Modelling on Leaf Venation Topo log) Pattern of
Indonesian Medicinnl Plants
A:i;
Rahmad
re11i
Oャ・イ」ャセイ」ョゥN@Agus Buono.
and Stephane
dッオ。」セ| G@347
353
Fuzzy C-Mcans for Deforestratiun Iden ti
Ii
cation Basetl on Rc::mote Sensing Image
359
Setia Darmm1•<111 .·Uandi. J'eni
h・イ」ャセイ」QQゥN@and l.ilik 8 Prasetyo
Quantitative Evaluation for Simple Sc.:gmentation SVM in Landscape lmagt.:
£11cla11x
f' unwmu (j iriand A
11ia1
i ,\-111r11iA
ry11111r1'1y
ldt.:milication of Single Nucleotide Pol)inorphism using Support Vector Mm:hinc on
Imbalanced Data
Lai/an Sa'1ri11a flasibuan
Development of Interaction and Orientation Method in Welding Simulator for Welding
Training Using /\ugmenetcd Reality
.·lrio
Swwr Baskoro . .\lohammml rl;:1rar Amat. and
r。ョ」セイ@Pa11ges111 Ku.nrunv
Tracking Efficiency Measurement of Dynamic Models on Geometric Particle Filter
365
371
377
using Kl.D-Rcsampling
38 I
.-l/e.w11der
..I S Ci1111mrn11. ll"is1111.Ja1111iko. l'ektor
De11·c11110.F.
Rad111wdi. undF
Jo\'lm ,
i\onlinearl) Wc.:ighted Multiple Kernel Learning for Time Series Forecasting
Agus Widodo. Indra Budi. and Bellllrati Widjaja
385
:
I ( ' :\ ( 'SIS :20 I I
·
-D1:.!0rllllll |ョ。ャIセゥNL@
nr
I liaarchical \li:-.ing I c:chniquc:
Oil セipi@ {1 <...tt1T\l l11ld'itanJ;m.1
lkl11rw1t1
1:../fitri .. \11111111'1 .\/11/wrum. am/ ,\lulwmmcul S/10h1rt11
.\ C\1mpari son of 8ackpropagatinn anJ 1.VQ: a t:a'>c:
ML Qオjセ@nl. lung
セョオョj@recognition
Foe/hi/ah Sra/ria .
.
.
·I i:11\811onv. a11d
Hih l'aru/111111 Silalahi
. '
:\rcPSO:
lャャゥーセ・@Di.:tcctiun
セォエィッ、@ オセゥョァ@P:.irtidc
セ||。イュ@Optimization and Arc
Combinat ion
..lpri11e1/di. lkh\Clllll! Huhihl(•. Roht'th Rul111wt11/lah.
a11cl
..r
K11miC111 u11
31)
Virtual Pet
Game
ᄋᄋセ A ッ。イᄋᄋ@With .t\l1gmcnti.:J Rcalit'
v • 10Simulnte Pct
r。ゥウゥョセ@ vS1.:cnario
on
Mobi
k
De'
i1:c
(
'/Ufen Allen,
Nj・。QQQセQ ᄋ@ J1rugc111tha.
ancl DC1ri11., ..lnclww Haris
J\utornatic
FcialOrgans Segmentation Using Multila) er Super Pixel and Image Moment
Feature
R. Rohma1111/uh .. \/. Anwar
J\l(l.\"/1/11,Apri11C1ltli.P. i\111r.•w1110.
n.
ll'iweko.
C//lU Herl)·
Integration
of
Smoke
dゥ ウ ーセイウゥッョ@MoJeling with Earth·
s
Surface Images
..I
Sulaimon. M Scully
Performance
of
Robust Two-dimensional Principal Component for Cl3ssi fication
Diuh
£.
I lerwindiati, Semi,\/. Isa. und Ju11sv11
He11d1:i·li
Pareto Frontier Optimization in Soccer Simulation Using Normalizc:<l Normal
Constraint
Darius
.·lndana Haris
Fully Unsuperv ised Clustering in Nonlinear!) Separable Data Using Intelligent
KernelK-:\1eans
Te11y
Ifanda.vuni and Ito
WasifoRobust Discriminant Analysis for Classi lication
of Remote Sensing Data
r
Wina.
Dyah
£.
Henvindiati.
and
Semi.\/.
Isa
Automacic Fetal Organs Detection and Approximation In Ultrasound Image Using
391
403
409
415
423
429
437
445
Boosting Classifier and I louuh Transform
455
- v
f'
l
I
l
9
r
7
•
1
,.
i.
I
5
l
t9
!
!
I
5
I(':\< Gsiセ@ ᄋセオ@ 1.1
\I .·l1111w·
.\/0
1.\11111. Wi,1111./01111iko
\I lc1ht1f7illl
t1k11/ u11d !-uri' .
II.I/ii
p。ョゥ」ャセ@
\\\arm Optimation
ィ。ウセ、@ セMdゥQQQQNNZョウゥエQョL、@ rNQョjエIュQQセ、@I l\H1gh
Tran:--torm tor
l'ctal
I
ャセ。、@13iomctr) Detection anJ r\ppro\llllJtion in l ltra'iOUllJ lm<1g ing
f'llfu Satll'iko. fkJ11w111l f/ahihie .. \/ .-11111w· .\la'rnm,. l11dn•cH
Fehrion. £11rico
B mlitmw
Oigital Library
&
Dista nce Learning
Gamified E-Lcarning Model
Bnse<..l
on Communit)
uf
lnqu ir)
:foci
i
k
a
)'iu
11
w f."tu 111 o.
.
.f./
U
(
1
..I
111ri'1111.
A Iha
111
Fi
kn A
11.
Fa
fl11
Ro
'1111
uh
.\'I/r
Wohiclah.
mu/
Kmiyah .\/..l111111s
KnO\\ ledge Management System Development '' ich Evaluation Method in Lesson Study
463
469
Activity
477
.\lure in .\Ii
ks
Cl .\ lort!hit1 ..·1
r111l'i11
ZR.
l.ang
i. wulfoanes BC1ncl1111g
Designing Minahasa Tou lour 30 Animation Movie
as
Part of Indonesian e-Cultural
Heritage and Natural JI istory
483
Sum/ey
KarotnrLearning Content Pcrsonali?.ation Based on Triple-Factor Learning Type Approach in
E-learning
489
,\lira Suryani.
HanyBudi Santoso. anti 7ainal A . llasih11a11
Adaptation
of
Composite E-1.earning
cッョエ・ョエセ@for Reus3blc in Sm:irtphone Based
Learning System
497
liermw1 Tolle.
l\ohei Arui.
and
.-I
1yoPi11c11ulito
The Case Study or Using GIS as Instrument for Preserving Javanese Culture in a
Traditional Coastal Batik. Indonesia
503
l}i beng .lap am/ Sri Tiatri
IC'. |csiセ@ 2111 I
A Comparison of Backpropagation and LVQ · a case
study of lung sound recognition
I .1dhdah セセ[ゥヲイQ。 Q@• .-\g.11' 1\111111<1 and Bib pセQQオィQQQQQ@ \1lalahi ;
!>"f't1r1111e1/f o)
c
011/11/llttl'rs,
'''"' ,.
t111d ャォO ^\QイャャAュセᄋQQ QQQO@ _\lt1tht·ma11c:!>Fm·u//\ of _\/01J11:11111t1C\ and .\'a111rcil s」ゥ・QQオセ|@ Ojオセッイ N@ lj.!rtcttlturul {_ Gョゥョᄋイセゥエケ@ Bog or. /ndune :!>iu
l·.mail: 1
fadhiinlh) afria2
I 0211/ gmail.1.:0111.'pudc:;ha
<t·) ahoo.<.:o. id . 1bibparuhum I'it.yahoo.com
.11>,11-.1<1 One \l:l) to C\aluatc 1h.: '>lak 1lf 1he
lungs 1s b) ャゥセエ・ョゥョァ@ ll' breath sounds U'>ing
stethoscope I his techni4uc is !..no\\ n us auscuhat1on.
This technique is foirl) simple and inc:-.penmc. but ii
has some disad\antagc. 1 he) arc the rec;ults
or
subjecti\c anal) !>is. human hearing is le.,, -.cn,ili\e 10 lo\1 fre4ucn<.:). en' ironrnental noise and paucrn 11f
lung セッオョ、ウ@ th:it alnllhl '>i111il:1r 13ccau'c tif' thc,e
ヲ。」ャャQイセN@ 1111sd iagno:.is cnn occur if proccdurc of
auscultation is not done properly. In this research.'' 111
be made a model of lung sound recognition \\ ith neural network approach. Artificial 111.:ural networl.
method used ii. D:icl.propagation (UP) and learning
Veclllr Quan11.zatit)n (L VQ). Comparison
or
these t\\Omethods イセᄋイヲッイュ」、@ ICl determine and recommend
algorithms which provide better recognition accuraq of speech recognition in \he case of lung sounds. In
addition 10 the above two methods, the method of Mel
Frequency Cepstrum Coefficient (MFCC) is also used as method of feature extraction. The results sho'' the
accurnc) of using Bacl•propagation is 9:>.17°0. \1hile
the value of u:.ing 1he L VQ is 86.88° o. It can be
concluded that the introduction of lung sounds usmg Backpropagation method gives beuer performance compared to the LVQ method for speech recognition
cases of lung sounds.
I. I 'J fl{!)()\ 'l 1101'
Lung ウッオョ、セ@ are pan of the respirator) sounds.
Respiratol) sounds include the sound of the mouth and trachea while lung sounds occur around the chest. Sounds of lungs occurs due 10 air turbulence 11hen the air enters the respiratory tract during breathing. This turbulence occurs because the air flow from the air duct that is "ider 10 narrower airways or ,·ice versa.
In general. the sound of the lung is divided into rwo. sounds is the sound of the lungs that nre not detectable respiratory abnormality. whereas abnormal lung
;397
sounds ;ire s11lllldS lung dborder.
On.: GG。セ@ hl e' alua\c the state of the lungs 1s b)
ヲッNエ・ョゥョセ@ 10 hrcath .,oumh using a stethoscope 1 his
tc::chnique is セョッBョ@ as auscultation エ・」ィョゥアオ・セN@
Auscultation technique 1s a basic technique that 1'> u-,ed
b) ph)'sic1ans to C\ aluate breath sounds ャBィゥセ@
tedmique ゥセ@ fairly -,impk and rnexpensive. hut it has
the tfr,ath antnge that 1he results of a MNオセェ・」エゥ|」@
Zゥョ。ャセGゥゥG^@ LセL N@ I he ョZセオィウ@ Llf the 。イイョャセ ウゥウ@
ur
hrcalh:.om1L1' オセゥョァ@ <lll"cuh<11ion technique relics 1ln the
ability. auditor)·. and experience of the docll1r \\hO performed thc :urn l) sis. In addition. human henring is
less scnsllive 111 lo" frequcnc) sound is 。ャセッ@ a problem
in this technique. hccnusc the sound of hrcathing
occupies a lo\\ enough frequency. The nc:-.1 prnhkm in auscullatiL'll technique<; are the prohl.:111 111° en\ imnmenrnl noise nnd the pallern of sou nds that almost similar between one 1ype of breath sounds and the other. Because of these factors, misdiagnosis can occur if the procedure of auscultation is not done properly.
Based on the abO\e problems.
''e
interested inconducting rc!icarch in performing speech recognition of normal lung and lung sounds \\ere detci.:h:d
interference (abnormnl). Sounds of lungs resuhing in
some ca!.es of the disease showed a specific pattern
1ha1 can he n:cogni/ed. This soun<l paltern can b.:
1aken as materi:il for diagnosis
131.
Lung sound will beclassified into four 、。セウNZウN@ namely tracheal. "esiculnr.
cradde am.I \\hCe/e Tracheal and vesicular セッオョ、@
ゥョjゥ」。ィAセ@ nomal lung. "h1lc the crack le and \\ hcete
sound indicates abnormalities in the lungs
l4Jl5 ].
Voice recognition is an effort in order to the voice
can be recognized or identified so that it can be used. A \Oice recognition S)Stem is a computational application that is able to identify or verit) the ::.ound is autonrnticnlly. These systems need to be trained in advance 10 be able to recognize the voice and the voice classifies according to the class. For such purposes. an algorithm is needed to train the spced1
recognition S) stem 10 perform more precise.
/\ ウセセQ」ュ@ can learn and recognize pauems ol sound
•
I< '.\t'SI' セャャャ@ 1
-:.111 he: d1•11c: \\llh エィセᄋ@ .1rpl11.:at11111 111 .1r111il.1<il ni:ur.il
QQQNZQQQQhBMセ@ t\rtitkial n..:ura l 111:111ork i) a ..:.1111r111a1w11al
m..:thod that m1mu:) the: biolog11.:al 11c:11ral lld\\urlo. 111
hum.111 that c:nrabl..: trainl·J to sol\..: prubl..:111, . In
g<'.nl'r<il. thc:rl.' .1rc: '><'.\ c:ral art1tici.1I nl.'11ral QQ\セQQQL ゥ イャNN@
al11Mrthll1' that can bt: .ippli..:J tu pallcrn rc:..:.>gnitiun
l
hi'
n:'>c::trd1"'II
llS\.' l\111 art1li-:i.tl neural n1.·t\l••rl...il,:1•rnh111' エィNZセ@ .ire: llt1l.l..rr11pag.1t111n 1111'1 :mJ
l」Z。イョ QQQセ@ \ l'Ctur <)ua11111a1io11 (l.V<)1 B,11h 111c:tl11•J)
hJ\ ,. :1.h antngc' and di'><'\lh ant:lg..:' 1)1 c:.1..:h
C11mp.1ri-,11n .11" these l\lo mc:thtid-. ー」ZイャセQイュNNZj@ to
det..:rmine and recommend algorithm) "htch pro11dc: bcn..:r recognition accuracr uf specd1 ri:cugniti(1n in
the case: of lung sounds.
In addition to u-;ing an ariilkial 111.:ural nc1111.1r!,.
algt1ruhm in thi: classification proc..:,s. it 1<. Ill) le)'
impMtant in voice recognition is the feature e:1.tractiun.
In tllllt ウエオ、セN@ foaturc e.\traction methods arc オセNNZ、@ Md
he4uenc:) Cepstrurn Coenisient ( M FCC). MFCC 1s a
teaturi: e:1.traction method "hich g1\'es excdlent ri:suhs in 」ャ。M[ウゥャセゥョァ@ normal lung ウッオョ、セ@ and whee.le slャオョjセ@
16).
II. rエᄋセャ ᄋa rャ@ 11 Mt lltllll
Rl•:-c.1rch m..:thod .:onducted is ill11).tra1cd 111 I· igurc
I . In thl· image looks that re)earch bi:gin-; "ith J
fi 1..:rm11re revie\\ of thi: theories ャャャG」」セウ。イI@ tor the
comrletion of this study. such as lung suund thcor) .
M fCC. Bad: propagation. L VQ anJ MA TLA U
programming.
A .Hatawl.v Rt•.warch
Lung sound data obtained from the repositor) of
respirator) sounds on the Internet, namely Littmann
Repository. The sound data consist of J2 lung sound
data. "hich is divided into 8 tracheal sounds. 8
vesicular sounds. 8 crackle sound and 8 \\hCeLe sound .
Tracheal sound is a sound that is audible :11 the bai.e
of the neck and larynx. Tracheal sound is v..:ry loud
and htl- pitch i) high (Fig. 2a). <;o this sound is \W)
dear i;ounding compared to another normal lung. Inspiration and e:1.pira1ory are relatively equal in
length [7j.
Vesicular sounds arc normal breach sound:\ 1ha1 arc
hearJ on 1hc side ches1 and 」ィ・セエ@ near the stomach.
The セッオョ、セ@ ware セョヲゥ@ "ith a 1111\ pitch (Fig. 2b ). lnspira1ion sound) much stronger than e:1.piratol)
セオ オョjM[ N@ Often the c\piratol) proCl!S!' is hardl) a1H.lihle 17].
Cradles sounds arc a short burst sound chat is discontinuous (Fig. 2c), it is generally more audible
sound m the process of inspiration (8]. The conditions
that is causl! the cra ckles are ARDS. as1hm11.
bro11d11ectus1J.' d1rv111c hro11ch1t1s. comnlulo1io11.
エAュᄋセQᄋ@ cHF. 111ers1i1iol lung disease dan p11/111011m)·
edema ( 9)_
-
- ---- ---
- -
- -
-
-398
•
•
1 ... .nu1 r "''tt•tto"
Mf(I
( \l.fb4 \f\ 1 h.f' tnoctt"t
サXN。\ ャーヲセセᄋ GᄚB@ ;ar.d l'VQ,
•
. .... , :w•J ..
1rf.1".-•.itC
LLLセ@ ᄋ セᄋ\LNZ L@
,,..,.'(; •"" ..
..-a '·"· Gvセ「@y
f,,1,.,ct,;..i·\•tri .,. .. , S.:.'-.. J
r
y
Ooc:Vf'M ョャセィoエG|@ セョ、@
lfCIQtU
ll'hee:i>s sound is a type of sound that is continuous, have a hiuh pitch (Fig. 2d). and more often heard ori
the
・クーゥイ。セッイケN@
This sound occurs when the Oo\\ of air:throuuh the narrowed airnays due to secretions,'
forc::ign hod) or wounds that preclude (3J T ·
duration
or
the process of inspiration longt:r than lhNNZZQNーゥイ。エッイセ@ proc.:ss. Besides that inspiring sound;
inh:n,,ity g rearer rhan the expiratory. The conditions .•
that is cause the 11'/iee:e are osth111a. CllF. chronic
bmnchiti.\. COPD dan p11/111n11ary edemu
f9J.
a. Tracheal b. Vesicular
d. Crackle d. Wheeze
Figure 2 tセQ^」@ of tung sound (91
[image:21.632.336.556.79.489.2]B .\t!glllL' l//cl/11)11
Lung )ound Jata 1h;i1 has been collected then 111ad1:
the c;ound -,1gnal :.egmentation ーイッ」」セウ N@ This prnl.'.CS) i)
jッオセᄋ@ to cut '>l'Ulld 1nll> '>C\ era I )lllilllcr frame' 111 ••nkr
111 ・。LQQセ@ pro..:cssetl Lung ) 01111J セゥァョ。ャ@ '' tll 01: .:ut
baseJ on unc n:.,p1nllM) NNZ セ、・@ SounJ sign.ti
'>egnwnt.1111111 pn•..:c)'> I\ d,,n,· ィセ@ U!.lllg the A11Jaut>
wli"arc. llh1strm1011 o f ... ignal :.cgmentat1011 proc.:,.,
shtmn Ill Figure 3. セ」ァュ・ョエ。エゥッョ@ pmcc ... s produce) 2-1
tracheal ... uund\. 2-1, c::.ic11lar sound-.. 2-1 ..:r.1cl.k :.t>unJ,
anJ セNNェ@ \\ hc1•ze -..oumh. セQQ@ the total .,,1unJ, c>ht.11111:J ln1111 the 'e!-!1111·nt.it1o n prn..:c" I) CJ(1 "'und' data
C L>ata Di1trth111i1111 oj Trui11i11x am/ tエカエュセ@ Dura
In gc111!ral. then! are \\\O processes that occur in the
artificial neural network algorithm. namel)' training process and testing pn>ces). Sound data u!leJ in the learning process is called training data. while the sound data used in the testing process is calll!d h:::.t
darn. rhereforc. the lung sound dilta that lrn' heen
segmented di\'1ded into l\\O parts. nnmely the training
data and 1.::.1 data. The number of lung sounJ Jata i'
96 data. Data lung sounds Jrc then dclined ao, 80
training sounds and 16 testing !>Ounds data.
D .\/FCC F<'t1/11rc Extraction
MFC'C feature e>.traction is a technique used to
generate a \'Cctor which 1s used as an identilier
f
IOJ .The feature is the cepstral col!fficient. cepstrnl coefficients that are used still considering the
perception of the human auditory system. MFCC
technique can represent a better signal than the LPC.
l.PCC and the other in speech recognition ( 11 ]. This is
due to the 11orkings or 1hc MFCC is based on the
frequenc)' difference that can be captured by the human car so that it can rcpresent how people reci:i\ c
sound signals [ 121. Figure 4 is a llow diagram of
MFCC.
=ot.itt '•'tct?r
•
ヲイ セイ@ ..
セ@
,,
...
(pp\ft Ut1'l ( \)...,f l( 1ru1 ' ... 'pn:,...,,
O''"''""' C'o\ .nf'
''""''°'"'
Figure -I Diag.ram ッヲセifcc@
J , J\ t ' セ I@.. ' ,,1 •
•' ᄋᄋャセィN^ エ ャ@t f t r)
"''
....
,...
t h • ''('• l t.o •'l\\ i
\V'•l"l"'\i
I <'atur.: e\trnuiun l Q セイョァ@ 1\1 FCC "111 not n:mm e
""> charactcrt)tics or 1mp0nant information of each
lung sound data. In add1t1on. the ;;11c of the lung sound
dat:i 「・」ッュ・セ@ 11ut t1)0 large. uイッ。\ャャセ@ speaking. there
ar.: Ii\ c \tag6 o f セヲヲ ccN@ ic: frame block mg.
"indu" 111g. fast tuuricr tran ) fi.irm. md ャイ・Tオ」ュZZセ@
'"app111g anJ ct>pstrum Cl>etlicient.
I ung ''·JUnJ data that ィ。セ@ bl.'l'll セ・ァュ・ョエ・、@ then
pc:rt,1rr11eJ tram.:- bf,1d .1111.!' Qゥイオ」・セ ゥ^N@ Because the sound
dat.1 ha:. セ・ァュ・ョエNZj@ u::.ing Judal:it) !>Olt\\are. frame
blo..:king ーイッ」」 ウセ@ "ill read the lilc') that have been
prc\ ゥカオセiセ@ -...:g111c1ttl.'d. Furthermore. "tndowing
ーョQNZ\ᄋセL@ using llamm111g W ind1H\ becau'c of c;imple
ll•rmula. I he 111.'\l セィZー@ " the ra'>t 1-uuricr ·1 ransform l H
r ).
I· Ir
pruccs:. iセ@ used to COil\ at each frame thath;i!) b.:.:n gcm:rated from thl! pre\ iou!) proce'>s from 1he
t 11nc dum:iin 111t1) th.: frcqucnc) domain, so it can be
more ce1si I) ob sen cJ Onci;: the signal is converted
from the time domain into the frequency domain, the
11e>.1 step is the mel frequency \Happing process, this
prm:ess need the tilter. thus will be formed M filler
before wrapping process 1s Jone. Nexl is the Discrelc
C:o!)inc rransform ( DC'Tl 10 get coeffisient cepsrrum.
thi::. Cocl1hicn1 cepstrum that 1s an output of the MFCC: [IJJ.
f sゥュゥOキᄋゥセイ@ .\ lt'cm11·e111c.:111 tCl11H ificu11011J
Lung sound data that has been obtained their
fraturc vector through feature extraction process will
he cla)osifo:d オセゥョァ@ t\\O method'> : bacpropagation and
L VQ. !"he rcsult:i of prelim1nar) proce'>sing of data in
the form ,)f voice ... ampk!) that ha'e been segmented
and th.: extracti1lf1 procc:is is carrieJ out \viii be the input ur lhe tv.o mcthutls.
Broadly speaking voic.: recognition lungs out b) using the back propagation and L VQ has t\\ o main pans, namely the stages of learning patterns (!raining)
and the stages of pattern recognition I similaril)
meCl'iurement (testing). Learning outcomes data
collected and stored as a learning model that can later be used to measure the similarity of a sound signal
entering the lungs セッ@ that the subsequent lung sound
signals can be recognized. Once the learning phase is complete, the next !>lage is the stage of pattern n:cognition (sunilant) measuremenrs).
I J Back.prvpog11111111
Backpropagation 1s a systematic method of artificial neural network using supervised learning algorithm and is l)·pically used by the perceptron with many la)ers (input la)er. hidden la)'er and output layer) to change the existing weights in the hidden layer [ 14}.
QS。」セーュー。ァ。エゥッョ@ is training which セー・@ controlled
using "eights adjustment patterns to achieve the
minimum value of the error between the output of the
prediction results with rea l output. To get a network error. the forward propagation phase (fcedforward) must be done before.
..
. !
I
ll GN|HGNNNN[iセ@ 11111
In th.: エセ・jエオイョ@ .1rJ pha<. .. • ea..:h un11 r\.'l:el\ ... , 111p111
!>1gnab and furnarJc; the signal 10 all 11111h in th .. · ijセ@ er
,1bv' e 11 (the hiJJcn l.i: er). l:ach un11 111 the h1JJen
ャ。セ・イ@ '\Umming the input signab that ii. イNZ」」ャ|」セ N@ 111 th1:-.
:.tcp a<:tl\at1un fum:tion is used to calculate the lllllput ... 1gnal
w
be セ」QQQ@ Ill .ill unit:. on 11 (lh1: uutput l.1: er).I Ill> ... 1.:p d .. 111e
a'
111111.:h .h 1he m1111b.:r ,1f ャイョィォZセ@la: er:- I hen. for each unit \.'I output -.ummmg the
vutput [QセQQLエャ[@ In th1) >tt."p .11.:tl\ at ion t'u1H..tt0n h al'>o I N'J I t' .:.i!..:ulatc the \.lUtput -.1i::nal
I
I.:;I
Alier the foctlfornard phase. the next step 1!>
bad .. fornard pha)e In thi'> phase. ea..:h 1\utput unit
recei\e., a target pattern 。ZNsャャoセャャエNB、@ ''1th the tr;1111111g
111put pattern and then .:akubt.: hi' .:rr11r informati<Hl
I hen c.1kulat .. • the corr.:1:t1l>ll ''eight'\ anJ baa.,
"'•rrn.th111 I f11, ... 1.:p June .h mu.:h ·" tho: n11111her .,f
lmld.:n
la:
er:-. l:a.:h hidJen unit Jelt.1 .. ummmg 111put:-.(from unit> lrn;utcJ in th.: ャ。セ・イ@ nbO\ e it). Multipl) th.:
Jella \alue b) the derivati\e of activation fu111.:tion Iv calculate error information. and then calculate th.: .:orrection \\Cighb anti bias correction. The linal \ tep .
for each unit vf (\Utput Ii:\ int! ||エZQァィQセ@ and bia:.. as "t:ll
a'> the hidden units are also lixing ''eights and bia'> [15 j.
'} J lNエQイョQQQセ@ Vt!ctur (!1u1111i:atio11 t LI
'<Ji
1.VQ algorithm i:. a method for trainmg competiti\e
la)crs of the supervised (16J . Competiti\e la)er ''ill
automaticall} learn 10 dassi f)' the given input vector.
I he approach tal..en is b) 、。セウゥ@ f) the input 't>Cllir
hased on proximit) distam:e of the input 'ector to
agent \ICCtor (euclidean distance method).
L VO network structure is a l\\\1-la)1.'r neural
net'' \lrl.. Qセ@ 1.:lm1pnseJ of mrwt ャ。セ@ er :ind output la) er
Input la)cr Clllltainc, neurone; 。セ@ man) a-. dimen;illllal
input. l.)Utput la) er contains neurons 。セ@ man)
as
thenumber of classes
r
In
These I\\ 0 la) t:r'> are...onnecteJ b) linl.. 「・エ||ャNセ・ョ@ each neuron that ha:- a
certain weight is called the agent vecto r.
LVQ algorithm is a method of artificial neural networ!.. hased on competition with a mechani'>m squared euclidean distance in picking winnt>rs agent 'ector to determine the category of the input vector. In L VQ nt:twork. the learning process unJenal..en are a
;upervised learning. "here pro' iJing input are accompanied by the expected output information. etwork alway!> directed to determine the most appropriate output unit with the target of input 'e<:tors
through shift position of agent vector. If the vectors of
training Jata are grouped toge1her with ngcnt 'c:ctor ''inner. then the agent vector is shifted come near to vecto r of training data h) the equation ·
I\' (n6'\<·) = II'
.
(olci) + ol.\'. - I\'..
(old) ( ()If vectors the training data are not grouped together with the agent \.ector winner. then the agent 'ector
shifted :ma) from the training vector is 」Z\ーイ・ウセ」j@ by
the equation :
Ir.. HQQセ ᄋ I@
=
ii'.. (olo) - c(.'( - [セᄋ N Hッャ、I@ (::!)Where :
0 JI'
r
I earning 1.11e
\\ 1:1gh1 ur .1gcnl \l.'..:lllr
|セ・ゥァィエ@ \.l f lllput \C\.!Or
111 RI "' I t \ |セャャ@ Dt\tl l,\IU'I
T <:sting JI エィゥ セ@ st:ige to lool.. at the lc'd of
rel.<'gn111on 。NNZ」オイ。」セ@ u<.ing 1.VQ Te)!lllg 1s done 「セ@
1.:hanging th .. · numher ,,f coelfo:u:nts :'\1fCC and tho!
\ alut: uf karn1ng r,Hc 10 Sl'C ii:, effect Oil the lc\el Of
rc..:ogrnlllllt accurat:) The number of セifcc@
N[L Q NZPゥ」ゥ・QQQセ@ オ セ ・、@ Jr.: MFCC 13. MFCC I'. MFCC 20
dan \1H'C Jll. Bィ」イ・NQセ@ tht: learning rate used are 0.1, 0.2. O .. ;, 0 セj。ョ@ 0 セ@
I V<.>
1111p lcm.:ntallun ts done 111 Matlabfum;tion Learning
2. I 1hat on Matlab
en' lfl>lllllClll \\ ith ; r .- '
ィQQQ」エゥQャャャセ@ オセQZj@ art: I. VO
unplcmentcJ ''ith functiom :<.!c. u .lvq_.
A<:1:onJi11g 10 e'periment on L VQ 「セ@ vaf) ing the
purameter value' the learning rate :rnd cocdfo:ients
M ITC. obtained a1:eurac:v leH!ls \al) in testing \\Ith
tl:!:-.t data a., presented m Table I. There was no general
pallern of the: rdation:.hip between MFCC codlicit:nl
and learning rate. hut both paramct.:rl> affect エィセ@
。」」オイ。」セ@ frt:cl). I lo\\CH!r. the value of the highe:>t
accuracy in I. VQ obtained with 20 MFCC coefficients
and the of 0.2 lc:arning rate with an accurnc) 97.02°. {mar\..eJ in bold).
l.\Ht t-I
.\( < l RIC' tll' t FST"l1 I!\ I.VI}
\lln Lcarninl? Kat.:
( 1>.:ll'ic1..:11h
tit ti'.! 0 J 0 4
I ' 911 I!! I},\ Tセ@ 1)4 011 Ill -1-1
15 l(IPN 9).45 91 37 Jll 85
w
89 :W 97.U:? 76 19 8-182N セッ@ l)l .26 8601 ll-182 'Xl-11
Overall. testing with LVQ can achie\e the highest
;iccurac) of I00° o. Ho\\ e-..er. in a ュゥョッイゥセ@ of
cxpcrimems obtained an accuracy of 0°ro, ie no data is
correctly identified . This is due to the performance of
the L VQ training up and 、ッQセョ@ during the training
ーイセG」・ウウ@ iternt ion or not towards convergent. For ・セ。ューャ・N@ it was determined that the maximum error of
0.0 I. howc' i:r \\hen th.: training process until the
ュョセゥュオュ@ 11cra1io11 nc\er been obia111ed the error rate.
ve11 the error becomes higher as the iteration goes though the prt!\ ious iteration error oflow value
fl. Tes1111g Resu/11 o/ Backpropagation .\lethod
Testing al thi" stage to look at the level of recognition accuracy using Backpropagation. Testing
is done by changing the number of coefficients MFCC
ancJ the value of Jcaming rate to see its effect on the
'
'
ICACSIS 201 -1
k\cl ol n:cug.11i11un accura.,;) I he m1111hl.'r ,,f \ll·l·l
cocllirn:nl!'> used arc MFCC J l. セQQ@ lT iセN@ t\1FCC 20
Jan セQjMcNZc@ 30. \\hcn:a:- lhc learning 1a11: オセNNZj@ arc 0 I.
0.2. 0.3. 0.4 dan 0.5.
fl11dpropagatiu11 impkmc:ntall\lll Qセ@ J,111c in Matlah
Cll\ironmcnt \1i1h nc,,ff Actl\alh'll fu11d11111 オセ」j@ Qセ@
\1gmoiJ 1 J _; '. ...i J in thl.' h 1JJc:11 l.1: l'r anJ a linc:ir
funct1llll HZNNAセ ᄋLNZZN Iゥョ@ tht' ,1l1tput IJ:cr lrJ111ing
.1lgon1hm u,cJ ゥセ@ graJ1t'nt J.:,cc:nt 1 · : , " · :J.
Ac.:lirding Ill experiment on lhH:l..prupag:.11io11 h: \:tr) mg the: parameter 'ah1e\ the learning rate: anJ
coefficients MFCC. obtaineJ accurm:) k\ds 'ar: in
te5ting \\ilh ICSl data as prc:scmcd in fuble 2. jオセエ@ JiJ..i:
the L VQ. not obtaineJ u di:ar general paltc:rn of th<.' relationship between MFCC coefficient anJ karning r:tle. However. from lhe table! ii 1.:an he seen that the
。」」オイ。」セ@ tenJs to increase '' i1h i111.:n:asi11g learning rate wi1h an increase in the: lluctuat1ng In some cases. the value of learning rate that is too high c,111 maJ..e ,1 lo" er accurac).
the value of the: ィQァィ」 セ エ@ accurac: 111
Backpropagation obtained "1th 11 M FCC
codlicient!'-.ind the of 0.4 learning rate with an accurac: 97 . .12" o
(fable 2). 11ad:propagati<'ll mcthml ab\1 1.::.111 ad1ic1 e
the highest accurac) of I 00° o a) in L VQ. hut in some
expcrinwnts. the accurac} is quill! lo\\ on :i particular
class can ewn reach 0° o.
r1\UI F II
,\cn, kACY OF 1 EST NG IN R \O..PR(ll' \(1-\ 110'1
\ll·CC: I .::irn1nti R:it.:
ro.:tlic1.:nb
0 I () 2 (I l 11 . .i fl 5
IJ 9t% %-13 C).j Hiセ@ 97.32 96 7)
15 89 88 9.t l).j o.i ッセ@ 1.J:'SJ 1)1) .jJ
20 87 5 9t 96 93 75 95 ).j lj.j .35
30 8036 89 58 115 ;!.j 'II Ill> t).jC).j
C Ejj'i?<:t of Numher t/ .\IFC(' C:oe//ic1t•111 Agmmt
r1cc urUC.J'
From 1he entire experiment. the a\\:rnge 。」」オイ。」セ@
[image:24.619.266.508.177.474.2]obmincd at each value of tht: coefticient is shO\\n in
Figure 5. From the graph it can be seen that there is a
lendency that the higher the coefficient M FCC makes
lo"er accuracy in L VQ and Backpropagation. ' although the decrease was not significant. Accuraq at
MFCC coefficient 13 tend to be higher than the
accuracy of the MFCC coenicicnt greater. This is due lo the higher coefficient of MFCC impact on the dimensions of a larger data. Large data dimc:nsions
make the generalization capability of /\NN is lower so
lhe accuracy is decreased.
D. Effect of Learning Rate Ag11111H ..lcrnrac:1·
Influence of the learning rate throughout the cxperimenl to the average accurac)' is shown in Figure
6. From the graph, in L VQ there is a 1enden1:) that
h1ghc,1 NQNZャオイZQQNZセ@ lll·cur un the lcarn111g 1.1te '' 11\lt tl1l1
I''"
or h ll' high If the learning ratl' 1:-; ll'tl high. NQ」イョイ。」セ@ 11 ill Ot.' j・」イ・。セ」@ because of th.: L \'<) that Ull the: change l>f nct\\ork \1cights "1th tht.' nature of the 1:1 impl't it il111. 1c. increa.;e or ,k.:rc,1'l' the '' l' 1ght 111 thl· net\\11rJ... '\' that the karn111g 1.1ti: 1' 1,1,1 l.1rg,· .,;,11"ing Jr.1 ... t11 .. 1.hang.::. .11 l'ach 11era1i11n w th.it the \1eigh1 uttho: 11..:t\1 \1 rJ.. 「・」ッュ・セ@ オQQセエNQィィZ@ I ll111 I!\ l!r. 1f the
li:arn1ng rate i-. t1l0 )011. thc lc;ir11111g. ーョQ」ゥZA^セ@ ,,j)) he
h111g
l
..
!
c
•
•
...
I"
..
.
.
l...
......
..
...
.
セ@ I.
ᄋセ@ I,
.
..
,
.. jセ A@
...
..
: I,• セi@....
,
I))':'\°l;
\111 ....
...
, ..セᄋᄋ ^@ .,.
I> セNャ@
"''li1 ,,.,,:.1
...
,
,, セ G|iゥL@.: I
..
,,,. .
.
"'
G.-.ph of accuracy Butd on Ltrning Rolt
)(<)
ᄋセ@
ᄋセ@
J
!:
'•4セ@
!':
..
セ@ .. l
Ill
'.l!
c
!16&.I
81
l!l)
tl! 0,/
.,.
Illᄋ ᄋ セ ᄋャャ GG@
...
t il.•• .. } 'l\. \) 'l\.'t\ セ i@ Gセ@ A'· 'It .• ' ·11 • ( T"""' '"A o.n .. ) GkャNGセ@
.,
ᄋセ@ flt• •e S\;t,.p.,: r·,,.." .... ., o,.•.ai S?"l 91.'' GャセG^@ 'lh.G•
• RP t1 f\h r._ £> •'..ti セLNL@ OJ,/ I 94,4/
'''·
,,,
...
Ml S1
"'' ....
. .
""'
.. ) . .1/
j
tl.\ '1\1.t•
セ Nゥ ᄋ@
} / , l j
セGMセG@
. . - - • ,p
hgurc Ii Graph <>f 。」NZオイョ」セ@ !3a(cd 11n f t<1111in.f! H111 ..
In contrast, in Backpropagation. increased learning rate tends to increase the accuracy. rhis is due to the
algorithm BacJ..propagation ェオセエ@ ch;inging the nctworJ..
\\Cight-: 「セ@ -;umrning