• Tidak ada hasil yang ditemukan

Directory UMM :Data Elmu:jurnal:E:Environmental Management and Health:Vol07.Issue3.1996:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Data Elmu:jurnal:E:Environmental Management and Health:Vol07.Issue3.1996:"

Copied!
6
0
0

Teks penuh

(1)
(2)

Fayza A. Nas r and Hala M. El-Kamah

Che mic o -bio lo gic al tre atme nt o f dairy waste wate r

Enviro nme ntal Manage me nt and He alth

7 / 3 [1 9 9 6 ] 2 2 –2 7

(F igu r e 2). T h e m ixed liq u or -s u s p en d ed solid s w a s m a in t a in ed a r ou n d 3g/ l.

T h e t r ick lin g fi lt er w a s a gr avel-p a ck ed la b o-r a t oo-r y sca le m od el s im ila o-r t o t h a t u s ed by E l Goh a r y et a l.[8] (F igu r e 3). It con s is t ed of a py r ex gla s s t u b e of 75cm len gt h a n d 13cm in t er n a l d ia m et er. T h e in n er su r fa ce a r ea of t h e t u b e w a s con s id er ed a s a ver t ica l p la in s u r fa ce a r ea of 0.33m2. An a er ob ic t r ea t m en t

w a s con d u ct ed in a 3.7 lit r e con t in u ou s u p -fl ow a n a er ob ic r ea ct or (F igu r e 4). T h e r ea ct or w a s op er a t ed con t in u ou sly a t or ga n ic loa d of 15k g COD/ m3/ d ay a t a con s t a n t d et en t ion t im e of t wo d ay s. T h e sy s t em w a s op er a t ed a t r oom t em p er a t u r e (25± 3°C). T h e r ea ct or w a s s eed ed w it h sew a ge slu d ge collect ed fr om m u n icip a l w a st ew a t er t r ea t m en t p la n t a t a con cen t r a t ion of 15g/ l. P r ior t o seed in g, t h e slu d ge w a s a cclim a t ed t o t h e d a ir y w a st e-w a t er. T h e volu m e of b ioga s p r od u ced e-w a s r ecor d ed u sin g w a t er d isp la cem en t t ech n iq u e.

Analysis

P h y sico-ch em ica l ch a r a ct er ist ics cover ed t h e follow in g: p H , t ot a l s olid s (TR) a t 105°C, vola t ile or ga n ic m a t t er (VOM) a t 550°C, t ot a l p h osp h a t e (TP ), COD, a n d t ot a l k jed a h l n it r o-gen (TON ). T h e a n a ly ses w er e ca r r ied ou t a ccor d in g t o t h e AP H A m et h od s [9]. Pe rme ate Che mic al c o agulatio n Bio lo gic al tre atme nt Tric kling filte r

Ac tivate d s ludge

Up-flo w anae ro bic re ac to r

Figure 1

Sc he matic diagram o f the diffe re nt tre atme nt pro c e s s e s

Efflue nt

Air

1 5 c m

2

3

c

m

Figure 2

Sc he matic diagram o f the ac tivate d s ludge unit

Efflue nt

7

5

c

m

Se ttling bas in Pump

Fe e d

Influe nt

Tric kling filter mo to r

1 3 c m

Figure 3

(3)

Fayza A. Nas r and Hala M. El-Kamah

Che mic o -bio lo gic al tre atme nt o f dairy waste wate r

Enviro nme ntal Manage me nt and He alth

7 / 3 [1 9 9 6 ] 2 2 –2 7

Results and discussion

Characterization of wastewater from the cheese factory

Va r ia t ion s in t h e p h y sico-ch em ica l p a r a m e-t er s of w a s h in g w a e-t er fr om m ilk e-t a n k s a n d fi lt er s, t h e p er m ea t e efflu en t a n d com p os it e s a m p les of t h e fi n a l efflu en t of t h e ch ees e p la n t a r e r ecor d ed in Ta ble I. T h e r es u lt s ob t a in ed s h ow ed t h a t p er m ea t e is t h e m a in s ou r ce of p ollu t ion . T h e d a t a s h ow ed t h a t t h e p er m ea t e is a cid ic, t h e p H r a n ged fr om 4 t o 6. T h e COD r a n ged fr om 63 t o 70, w it h a n aver -a ge v-a lu e of 67gO2/ l. Cor r es p on d in g BOD r a n ged fr om 20 t o 24 w it h a n aver a ge va lu e of 21.6gO2/ l. Aver a ge t ot a l n it r ogen a n d p h os-p h or u s w er e 0.84gN / l a n d 0.52gP / l, r es os-p ec-t ively.

Physical treatment

T h e r esu lt s ob t a in ed (F igu r e 5) s h ow t h a t in cr ea sin g t h e r et en t ion t im e of set t lin g t o t h r ee h ou r s im p r oved t h e r em ova l efficien cy of COD by 20 p er cen t . Cor r esp on d in g r em ova l of VOM, TON a n d TP w er e 25 p er cen t , 21 p er cen t a n d 23 p er cen t r esp ect ively. In cr ea sin g t h e set t lin g t im e fr om t h r ee h ou r s t o 24 h ou r s sligh t ly in cr ea sed t h e COD r em ova l va lu es fr om 20 p er cen t t o 25 p er cen t .

Chemical treatment

Fe rro us sulphate with lime

Fer r ou s su lp h a t e w a s u sed a s a coa gu la n t , w h ile lim e w a s u sed a s a coa gu la n t a id a n d t o r a ise t h e p H of t h e p er m ea t e. Bot h Ca2+a n d Fe2+a ct ed sim u lt a n eou sly a s coa gu la n t s. T h e r esu lt s ob t a in ed in F igu r e 6 in d ica t ed t h a t t h e aver a ge d ose of fer r ou s su lp h a t e w h ich p r o-d u ceo-d t h e m a xim u m COD a n o-d p h osp h or u s r em ova l w a s 250m g/ l. T h e aver a ge p er cen t -a ge r em ov-a ls of COD, VOM, TP -a n d TON w er e

Influe nt

1 0 0 mm

5

5

0

m

m

5

0

m

m

Bio gas

Efflue nt

Figure 4

Up-flo w anae ro bic me te r

3 5

3 0

2 5

2 0

1 5

1 0

5

Re mo val (pe r c e nt)

1 2 3 4 2 4

Time (ho urs )

Key

Che mic al o xyge n de mand Vo latile o rganic matte r To tal kje dahl nitro ge n To tal pho s phate

Figure 5

Effic ie nc y o f the phys ic al tre atme nt pro c e s s

Table I

Charac te rizatio n o f was te wate r fro m the plant

Samples Washing water Final effluent of the cheese plant Permeate

Parameters g/ l Range Average Range Average Range Average

pH-value 4 .2 -6 .1 – 5 .2 -6 .7 – 4 -6 –

Total residue, 105°C 6 .9 -9 .8 8 .6 4 .2 -5 .9 5 .1 5 7 -6 3 5 8 .6

Volatile organic matter, 550°C 5 .5 -8 .1 6 .9 3 .4 -5 .0 4 .3 5 1 -5 7 5 2 .9

Chemical oxygen demand 4 .6 -8 .4 6 .2 3 .6 -5 .7 4 .1 6 3 -7 0 6 7 .2

Biological oxygen demand 2 .1 -3 .7 2 .6 1 .8 -2 .8 2 .2 2 0 -2 4 2 1 .6

Total kjedahl nitrogen 0 .1 4 -0 .4 2 0 .3 0 .1 2 -0 .3 1 0 .2 0 .6 5 -0 .8 7 0 .8 4

Total phosphorus 0 .0 8 -0 .1 5 0 .1 0 .0 3 -0 .0 8 0 .0 6 0 .4 8 -0 .6 3 0 .5 2

Note:

(4)
(5)

Fayza A. Nas r and Hala M. El-Kamah

Che mic o -bio lo gic al tre atme nt o f dairy waste wate r

Enviro nme ntal Manage me nt and He alth

7 / 3 [1 9 9 6 ] 2 2 –2 7

Tric kling filte r

T h e b iologica l t r ick lin g fi lt er w a s fed con t in -u o-u s ly w it h t h e ch em ica lly t r ea t ed effl-u en t s a t a con s t a n t h yd r a u lic loa d of 600l/ m3 d . Wh en t h e efflu en t t r ea t ed w it h fer r ou s s u l-p h a t e a id ed w it h lim e w a s u s ed , t h e or ga n ic loa d w a s 170g COD/ m2/ d a n d w it h fer r ic ch lor id e a id ed w it h lim e t h e or ga n ic loa d w a s 230g COD/ m2/ d .

F r om t h e r esu lt s ob t a in ed (F igu r e 7, Ta ble III) it ca n b e seen t h a t COD, VOM, TON a n d TP r em ova l va lu es wer e low d u r in g t h e fi r st t en d ay s; t h is w a s followed by a gr a d u a l in cr ea se u n t il it r ea ch ed it s st ea dy st a t e a ft er 30 d ay s. Du r in g t h is r u n , u p t o 95 p er cen t r em ova l of COD w a s r ecor d ed . Th e cor r e-sp on d in g VOM r ed u ct ion r ea ch ed 90 p er cen t . T h e fi n a l efflu en t con st it u en t s: COD, BOD, TON, TP, wer e 1.36gO2/ l, 0.49gO2/ l, 0.06gN / l a n d 0.026gP / l, r esp ect ively. Hen ce t h e va lu es of t h e p ollu t ion a l p a r a m et er s of t h e t r ea t ed efflu en t by t h is sy st em wer e st ill h igh er t h a n t h e lim it s of t h e N a t ion a l Re gu la t or y St a n d a r d s for w a st ew a t er d isp osa l in t o t h e sewer -a ge sy st em .

Up-flow anaerobic reactor

T h e r es u lt s ob t a in ed in d ica t ed effect ive a n d sign ifi ca n t b iod e gr a d a t ion of d iss olved or ga n ic m a t t er left in t h e ch em ica lly t r ea t ed efflu en t . Res id u a l COD r a n ged fr om 0.45 t o 0.76, w it h a n aver a ge va lu e of 0.65gO2/ l. Cor -r es p on d in g BOD va lu es -r a n ged f-r om 0.29 t o 0.43, w it h a n aver a ge va lu e of 0.37gO2/ l. Aver -a ge p er cen t -a ge r em ov-a l of COD -a n d BOD w er e 97.8 p er cen t a n d 96 p er cen t r es p ect ively. T h e b ioga s p r od u ct ion r a t e r a n ged b et w een 0.34 a n d 0.41m3/ k g COD r em oved . T h e aver -a ge v-a lu e w -a s 0.39m3/ k g COD r em oved .

T h e va lu es of t h e p ollu t ion a l p a r a m et er s of t h e t r ea t ed efflu en t by t h is sy st em m eet t h e Table II

Expe rime ntal re s ults o f c he mic al-bio lo gic al tre atme nt

BTEbtime (hours)

Characteristics Unit Raw waste CTEa 1 2 3 4 24

pH-value 6 .2 7 .6 6 .2 6 .2 6 .2 5 .5 4 .5

Total residue, 105°C g/ l 5 8 .6 3 6 .9 3 2 .3 2 9 .0 2 1 .9 1 8 .3 1 7 .3

Volatile organic matter, 550°C g/ l 5 2 .9 3 1 .7 2 6 .6 2 3 .3 1 6 .2 9 1 2 .6 1 1 .6

Percentage removal % – 4 0 1 6 2 6 .5 4 8 .6 6 0 .3 6 3 .5

Chemical oxygen demand gO2/ l 6 7 .2 2 9 .6 2 5 .3 4 8 .3 1 2 .4 1 1 .7 8 .6

Percentage removal % – 5 6 1 4 .6 1 7 .6 5 8 6 0 .4 7 0 .8

Biological oxygen demand gO2/ l 2 1 .6 9 .3 7 .8 7 .0 3 .7 3 .4 2 .5

Percentage removal % – 5 7 1 6 .2 2 4 .6 6 0 .7 6 4 .2 7 2 .6

Total kjeldahl nitrogen gN/ l 0 .8 4 0 .3 9 0 .3 1 9 0 .3 0 3 0 .2 6 5 0 .1 8 9 0 .2 0 6

Percentage removal % – 5 3 1 9 .3 2 3 .4 3 2 .9 5 2 5 7 .8

Total phosphorus gP/ l 0 .5 2 0 .2 6 0 .2 1 3 0 .2 0 4 0 .1 4 4 0 .1 3 9 0 .1 2 9

Percentage removal % – 5 1 1 6 .4 2 0 4 3 .6 4 5 .5 4 9 .1

Notes:

aChemic ally treated effluent using ferrous sulphate and lime bBiologic ally treated effluent using ac tivated sludge

1 0 0 9 0 8 0 7 0 6 0 5 0 4 0 3 0 2 0 1 0 0

TON re mo val (pe r c e nt)

0 5 Time (days )

1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0

Figure 7

Stability o f the bio lo gic al tric kling filte r us ing c he mic ally tre ate d pe rme ate

Key

Lo ad = 1 7 0 g COD/ m2/ d

Lo ad = 2 3 0 g COD/ m2/ d

1 0 0 9 0 8 0 7 0 6 0 5 0 4 0 3 0 2 0 1 0 0

COD re mo val (pe r c e nt)

0 5 Time (days )

1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0

1 0 0 9 0 8 0 7 0 6 0 5 0 4 0 3 0 2 0 1 0 0

VOM re mo val (pe r c e nt)

0 5 Time (days )

(6)

Fayza A. Nas r and Hala M. El-Kamah

Che mic o -bio lo gic al tre atme nt o f dairy waste wate r

Enviro nme ntal Manage me nt and He alth

7 / 3 [1 9 9 6 ] 2 2 –2 7

N a t ion a l Re gu la t or y St a n d a r d s for w a s t e-w a t er d is p os a l in t o t h e s ee-w er a ge sy s t em .

Conclusion

T h e follow in g w a s con clu d ed :

• T h e p h y s ica l or ch em ica l t r ea t m en t of t h e p er m ea t e fa iled in r ed u cin g a n y of t h e p ol-lu t ion a l p a r a m et er s t o t h e lim it s of t h e E gy p t ia n law 93/ 1962 for w a s t ew a t er d is-p os a l in t o t h e sew er a ge sy s t em .

• T h e ch em ica l-b iologica l t r ea t m en t u s in g a ct iva t ed slu d ge r em oved 64 p er cen t of VOM w h ile 90 p er cen t of VOM r em ova l w a s a ch ieved w h en t r ick lin g fi lt er w a s u s ed . H ow ever, t h is m et h od d id n ot r ed u ce t h e p ollu t ion a l p a r a m et er s t o t h e lim it s of t h e sa m e law m en t ion ed a b ove.

• T h e ch em ica l-b iologica l t r ea t m en t u s in g u p -fl ow a n a er ob ic r ea ct or su cceed ed in p r od u cin g a n efflu en t w h ich m eet s t h e N a t ion a l Re gu la t or y St a n d a r d s for w a s t e-w a t er d is p os a l in t o t h e s ee-w er a ge sy s t em .

References

1 Sw a m p a lli, R.Y. a n d Ba u m a n , E .R., “Kin et ic in t r ea t in g d om est ic a n d d a ir y w a s t e”, P r oceed -in gs 41, P u r d u e In d u st r ia l Wa s t e Con fer en ce, N o. 445, 1986.

2 Mu r r ay, W. a n d Va n d en Ber g, L., “An a er ob ic exp en d ed b ed t r ea t m en t of w h ey p r oces ses”,

A p p lied E n v ir on m en ta l M icr ob iolog y, Vol. 4,

1981, p p. 502-5.

3 N em er ow, N.L. a n d Da s gu p t a , H ., “T r ea t m en t of d a ir y w a st es”, in In d u str ia l a n d H a z a rd ou s

Wa ste T rea tm en t, Va n N os t r a n d Rein h old , N ew

Yor k , N Y, 1991.

4 M a r t in , J .H . a n d Za ll, P.R., “Da ir y p r ocess in g w a s t ew a t er eva lu a t ion ”, Pr oceed in gs 40, Pu r

-d u e In -d u str ia l Wa ste Con feren ce, N o. 351, 1985.

5 Va n d en Ber g, L. a n d Ken n edy, K.J ., “Da ir y w a s t e t r ea t m en t w it h a n a er ob ic st a t ion a r y fi xed fi lm r ea ct or s ”, B iotech n olog y L etters, N o. 3, 1981, p p. 165-70.

6 Ka r p a t i, A. Ben cze, L. a n d Bor s zek i, J ., “N ew p r oces s for p h y sico-ch em ica l p r et r ea t m en t of d a ir y efflu en t s w it h a gr icu lt u r a l u s e of slu d ge p r od u ced ”, Wa ter S cien ce a n d T ech n olog y, Vol. 22 N o. 9, 1990, p p. 93-100.

7 H iggin s, T., H a z a rd ou s Wa ste M in im iz a tion

H a n d b ook , 3r d ed ., Lew is P u blis h er, Boca

Ra t on , F L, 1990.

8 E l-Goh a r y, F.A., Aloo-E la , S.I. a n d E l-Ka m a h , H .M ., “Recla m a t ion of m u n icip a l w a st ew a t er ”,

Wa ter S cien ce a n d T ech n olog y, Vol. 21 N o. 1,

1989, p p. 93-9.

9 Am er ica n P u blic H ea lt h Associa t ion (AP H A),

S ta n d a rd M eth od s for th e E x a m in a tion of Wa ter a n d Wa stew a ter , 18t h ed ., Am er ica n

P u blic H ea lt h Associa t ion , Wa sh in gt on , DC, 1992.

10 E ck en feld er, V.W. J r, In d u str ia l Wa ter Pollu tion

Con tr ol, 2n d ed ., McGr aw -H ill In t er n a t ion a l

E d it ion s, N ew Yor k , N Y a n d Lon d on , 1989. 11 Ka r p a t i, A., “Wa st ew a t er p r et r ea t m en t a n d

s lu d ge u t iliza t ion in t h e d a ir y in d u s t r y ”, E n v i-r ot ech , Vien n a , 20-22 Feb i-r u a i-r y 1989.

Table III

Expe rime ntal re s ults o f c he mic al-bio lo gic al tre atme nt

BTEbtime (hours) BTEc

Characteristics Unit Raw waste CTEa M inimum M aximum Average M inimum M aximum Average

pH-value 6 .2 7 .6 5 .5 6 .9 – 5 .9 6 .7 –

Total residue, 105°C g/ l 5 8 .6 3 6 .9 7 .6 1 8 .6 8 .3 6 .8 7 .3 7 .1

Volatile organic matter,

550°C g/ l 5 2 .9 3 1 .7 2 .4 1 3 .4 3 .1 1 .6 2 .1 1 .8

Percentage removal % – 4 0 8 9 .3 9 2 .4 9 0 .2 9 3 .3 9 4 .9 9 4 .3

Chemical oxygen demand gO2/ l 6 7 .2 2 9 .6 1 .0 1 1 .8 8 1 .3 6 0 .4 5 0 .7 6 0 .6 5

Percentage removal % – 5 6 9 3 .4 9 6 .6 9 5 .4 9 7 .4 9 8 .5 9 7 .8

Biological oxygen demand gO2/ l 2 1 .6 9 .3 0 .3 8 0 .6 3 0 .4 9 0 .2 9 0 .4 3 0 .3 7

Percentage removal % – 5 7 9 3 .2 9 5 .9 9 4 .7 9 5 .4 9 6 .9 9 6

Total kjeldahl nitrogen gN/ l 0 .8 4 0 0 .3 9 0 .0 4 0 .0 7 0 .0 6 0 .0 2 6 0 .0 3 4 0 .0 3

Percentage removal % – 5 3 8 2 .1 8 9 .7 8 9 .4 9 1 .2 9 3 .1 9 2 .1

Total phosphorus gP/ l 0 .5 2 0 0 .2 6 0 .0 2 0 .0 3 0 .0 2 6 0 .0 0 5 0 .0 0 8 0 .0 0 5

Percentage removal % – 5 1 8 8 .2 9 2 .3 9 0 .0 9 8 .4 9 9 .0 9 8 .8

Biogas produced m3/ kg 0 .3 4 0 .4 1 0 .3 9

COD removed

Notes:

aChemic ally treated effluent using ferrous sulphate and lime bBiologic ally treated effluent using tric kling filter

cBiologic ally treated effluent using up-flow anaerobic reac tor

Gambar

Figure 1
Figure 5
Figure 6 shows that 250m g/ l alum  CODrem oval was 45 per  cent. VOM, TP and TONrem oval-values reached 31 per  cent, 40 percent and 46 per  cent respectively
Figure 7

Referensi

Dokumen terkait

Penelitian evaluasi pengaruh frekuensi dan periode pemberian pakan yang berbeda terhadap tingkah laku burung puyuh petelur, dilaksanakan pada bulan September sampai

Hasil penelitian menunjukkan bahwa pendapat Amien Rais mengenai penegakan demokrasi pasca reformasi khususnya dalam bidang politik yang telah dianggap maksimal

Ada empat komponen yang membentuk kurikulum, yaitu: komponen tujuan, komponen isi kurikulum atau materi pembelajaran, komponen metode atau

Potensi kefarmasian tumbuhan Balsem yang dilaporkan adalah (a) aktivitas sitotoksik atau antikanker (b) kandungan metabolit sekunder (c) antibakteri dan (d) Potensi

Beberapa teori menyatakan bahwa jatuhnya peradaban Mohenjodaro- Harappa disebabkan karena adanya kekeringan yang diakibatkan oleh musim kering yang amat hebat serta lama. Atau

Stres yang baik terjadi jika setiap stimulus mempunyai arti sebagai hal yang memberikan pelajaran bagi kita, betapa suatu hal yang dirasakan seseorang memberikan arti

Dengan demikian, proses penerjemahan tidak lagi bertumpu pada pengalihan kata, frasa atau kalimat, tetapi mengalihkan tujuan komunikasi , ekspresi yang telah mentradisi, struktur

Variabel independen: perputaran piutang dan perputaran persediaan Dari pengujian yang telah dilakukan, maka didapatlah hasil bahwa terdapat pengaruh yang signifikan antara