OPERASI PENJADWALAN BEBERAPA PEMBANGKIT TERMAL DENGAN
KEKANGAN TRANSMISI MENGGUNAKAN METODE LAGRANGIAN
RELAXATION
SKRIPSI
diajukan untuk memenuhi sebagian syarat untuk memperoleh gelar Sarjana Teknik
Program Studi Tenik Elektro
Oleh
Mega Nur Sonyawati
E.5051.0808170
PROGRAM STUDI TEKNIK ELEKTRO
DEPARTEMEN PENDIDIKAN TEKNIK ELEKTRO
FAKULTAS PENDIDIKAN TEKNOLOGI DAN KEJURUAN
UNIVERSITAS PENDIDIKAN INDONESIA
OPERASI PENJADWALAN BEBERAPA PEMBANGKIT
TERMAL DENGAN KEKANGAN TRANSMISI
MENGGUNAKAN METODE LAGRANGIAN RELAXATION
Oleh
Mega Nur Sonyawati
Sebuah skripsi yang diajukan untuk memenuhi salah satu syarat memperoleh gelar Sarjana Teknik pada Program Studi Tenik Elektro
© Mega Nur Sonyawati 2015
Universitas Pendidikan Indonesia
Januari 2015
Hak Cipta dilindungi undang-undang
Skripsi ini tidak boleh diperbanyak seluruhya atau sebagian,
MEGA NUR SONYAWATI
OPERASI PENJADWALAN BEBERAPA PEMBANGKIT TERMAL
DENGAN KEKANGAN TRANSMISI MENGGUNAKAN METODE
LAGRANGIAN RELAXATION
Disetujui dan disahkan oleh pembimbing :
Pembimbing I
Drs. Yadi Mulyadi, MT NIP. 196630727 199302 1 001
Pembimbing II
Ir. H. Dadang Lukman Hakim, MT NIP. 19610604 198603 1 001
Mengetahui,
Ketua Departemen Pendidikan Teknik Elektro
FPTK UPI
Mega Nur Sonyawati, 2015
OPERASI PENJAD WALAN BEBERAPA PEMBANGKIT TERMAL D ENGAN KEKANGAN TRANSMISI ABSTRAK
Operasi Penjadwalan Beberapa Pembangkit Termal dengan Kekangan Transmisi Menggunakan Metode Lagrangian Relaxation membahas tentang perencanaan menjadwalkan pembangkit-pembangkit termal yang akan dioperasikan dengan pengaruh kekangan transmisi yakni rugi-rugi transmisi. Dari penjadwalan tersebut dicari daya pembangkitan yang memenuhi permintaan beban secara optimal dan biaya yang digunakan pun ekonomis. Hasil penjadwalan metode yang dipilih penulis dalam penelitian ini akan dibandingkan dengan hasil realisasi dari Penyaluran dan Pusat Pengatur Beban (P3B) PT PLN (Persero) Jawa Bali. Perbandingan ini bertujuan untuk membuktikan apakah metode yang digunakan penulis lebih baik dari realisasi PLN, sehingga diketahui pula keunggulan dan kelemahan metode Lagrangian Relaxation. Dengan adanya penelitian ini diharapkan dapat mengembangkan metode Lagrangian Relaxation, agar diketahui sejauh mana metode ini mampu memberi kontribusi di lapangan.
Kata kunci: penjadwalan pembangkit, kekangan transmisi, dan Lagrangian
Relaxation
ABSTRACT
Operations scheduling several generating thermal with transmission constrained using Lagrangian Relaxation Method discusses the planning schedule of thermal power plants which will be operated by the confinement effect of the transmission of transmission losses. The scheduling of generation sought the optimally power to satisfy the load demand and costs used were economic. Results scheduling method chosen authors in this study will be compared with actual results of Distribution and Load Control Center (P3B) PT PLN (Persero) Java Bali. This comparison aims to prove whether the method used by the author better than the realization of PLN, so it is also known advantages and disadvantages of the Lagrangian Relaxation method. With the research is expected to develop a Lagrangian Relaxation method, in order to know the extent to which this method is able to contribute in the field.
DAFTAR ISI
PERNYATAAN... i
ABSTRAK... ii
KATA PENGANTAR... iii
UCAPAN TERIMA KASIH... iv
DAFTAR ISI... v
DAFTAR TABEL... viii
DAFTAR GAMBAR... x
DAFTAR LAMPIRAN... xi
BAB I PENDAHULUAN... 1
1.1 Latar Belakang Penelitian... 1
1.2 Rumusan Masalah Penelitian... 2
1.3 Tujuan Penelitian... 3
1.4 Manfaat Penelitian... 3
1.5 Teknik Pengumpulan Data... 4
1.6 Sistematika Penulisan... 4
BAB II KAJIAN PUSTAKA / LANDASAN TEORITIS... 6
2.1 Sistem Tenaga Listrik... 6
2.2 Pembangkit Listrik Termal... 7
2.3 Saluran Transmisi... 8
2.4 Beban dan Daya Pembangkitan... 9
2.5 Operasi Sistem Tenaga Listrik... 9
2.5.1 Kendala Operasi... 9
2.5.2 Manajemen Operasi Tenaga Listrik... 10
2.5.3 Rencana Operasi Sistem Tenaga Listrik... 11
2.5.4 Analisa Beban Sistem... 13
2.6 Karakteristik Input/Output Pembangkit Listrik Tenaga Termal... 14
2.7 Economic Dispatch... 15
2.9 Optimasi Termal... 19
2.9.1 Optimasi Termal dengan Metode Langrange Multiplier... 19
2.9.2 Optimasi Termal dengan Metode Langrangian Relaxation... 22
2.10 Metode Numerik... 27
2.10.1 Model Simulasi... 27
2.10.2 Desain Algoritma... 27
2.11 Kajian Pustaka Mengenai Unit Commitment, Kekangan Transmisi, dan Lagrangian Relaxation... 28
BAB III METODE PENELITIAN... 30
3.1 Metode Prakiraan Beban yang Dipakai PLN... 30
3.2 Data Aktual Pembangkit... 31
3.3 Tahap Perhitungan Fungsi Biaya Bahan Bakar... 34
3.4 Penjadwalan Pembangkit Termal dengan Kekangan Transmisi Menggunakan Metode Lagrangian Relaxation... 35
3.5 Flow Chart Penyelesaian Penjadwalan Pembangkit Termal dengan Kekangan Transmisi Menggunakan Metode Lagrangian Relaxation... 38
BAB IV TEMUAN DAN PEMBAHASAN... 39
4.1 Konfigurasi Sub Sistem Jawa Bali 150 kV... 39
4.2 Pembebanan dengan Rugi-Rugi Transmisi... 41
4.3 Hasil Karakteristik Input/Output dan Fungsi Biaya Bahan Bakar... 43
4.4 Simulasi MATLAB Metode Lagrangian Relaxation... 44
4.5 Hasil Optimasi Penjadwalan Pembangkit Termal dengan Kekangan Transmisi Menggunakan Metode Lagrangian Relaxation... 47
4.6 Penjadwalan Pembangkit Termal PLN... 50
BAB V SIMPULAN, IMPLIKASI DAN REKOMENDASI... 58
5.1 Simpulan... 58
5.2 Implikasi dan Rekomendasi... 58
DAFTAR PUSTAKA... 60
LAMPIRAN
RIWAYAT HIDUP PENULIS
30
BAB III
METODE PENELITIAN
Penelitian penjadwalan pembangkit termal ini adalah untuk
membandingkan metode Lagrangian Relaxation yang diajukan penulis dengan
metode yang digunakan PLN. Di sini akan diuji metode mana yang peramalannya
lebih optimal dalam pembangkitan daya dan ekonomis dalam penggunaan biaya
penjadwalan pembangkit. Hal ini dapat dilihat dari realisasi pembangkitan yang
dilaksanakan oleh PLN.
3.1. Metode Prakiraan Beban yang Dipakai PLN
Untuk membuat prakiraan beban listrik jangka pendek, PLN
menggunakan suatu metode yang sudah lama digunakan, yaitu metode
koefisien beban. Pada metode ini untuk menentukan koefisien digunakan
beban-beban masa lalu dan beban puncak. Untuk algoritma metode
koefisien ini disusun sebagai berikut:
1. Menyusun data beban-beban masa lalu pada jam ke-t pada hari ke (h-1),
(h-2), (h-3), …, (h-n). Ini disimbolkan Xt(h-1), Xt(h-2), Xt(h-2), …, Xt(h-n)
dengan t = 1,2,3,… 24 dan h adalah hari senin sampai minggu.
2. Menentukan beban puncak dan beban dasar untuk setiap beban pada
hari (h-1), (h-2), (h-3), …, (h-n) pada hari senin sampai minggu.
3. Menentukan koefisien (α) untuk setiap jam t dengan cara
membandingkan besarnya beban pada jam t, hari h dengan beban
puncak pada hari h tersebut.
α = Xt h− ,t h− ,…,t h−n
Xmaks h− , h− ,…, h−n (3-1)
dimana,
α = koefisien beban
Xt h−n = beban pada jam t hari h, n minggu sebelumnya (n=1, 2,
3…)
Xmaks h−n = beban maksimum hari h, n minggu sebelumnya (n = 1, 2,
31
4. Menentukan pertumbuhan (β) yang dihitung dengan membandingkan
beban pada jam t hari h dengan beban pada t yang sama dan hari yang
sama sebelumnya.
β = Xt h− ,t h− ,…,t h− n−
Xt h− , h− ,…, h−n (3-2) β = pertumbuhan beban
5. Menghitung prakiraan beban pada jam t hari h dengan rumus:
Yth = ̅ x ̅ x Xmaks h− (3-3)
Yth = prakiraan beban pada jam t hari h
3.2. Data Aktual Pembangkit
Data aktual pembangkit merupakan data lapangan dari Bidang
Operasi Sistem, PT PLN (Persero) Pusat Pembagi Beban (P3B) Jawa Bali.
Data pembangkit-pembangkit termal untuk wilayah (region) yang dipilih
adalah APB Jawa Timur (APB 4) dengan sub sistem Krian-Gresik, dan
Paiton-Grati. Berikut ini adalah data-datanya:
Tabel 3.1 Batas Kemampuan Operasi Unit Pembangkit Termal
No Jenis Pembangkit
Unit Pembangkit MW Min Maks
1 PLTGU Gresik Baru 1.0 115 180
2 PLTGU Gresik Baru 3.0 115 180
3 PLTGU Grati 1.0 90 156
4 PLTGU Grati 1.1 40 100
5 PLTGU Grati 1.2 40 100
6 PLTGU Grati 1.3 40 100
7 PLTU Paiton unit 1 225 370
32
Tabel 3.2 Penjadwalan Pembebanan Unit Pembangkit Termal
33
Data penjadwalan pembebanan pada tabel 3.6 ini mengabaikan
rugi-rugi transmisi. Sedangkan untuk rugi-rugi transmisi yang dimiliki
pembangkit-pembangkit termal di atas adalah PLt = 2,35% atau setara
dengan 0,0235 pu, dengan 100 MVA base. Ini berlaku untuk semua
pembangkit termal tersebut di atas selama 24 jam.
Tabel 3.3 Data Heat rate Unit Pembangkit Termal
Pembangkit
pembangkit termal. Walaupun waktu tiap unit telah beroperasi berbeda, jika
suatu unit memiliki pembebanan yang sama maka nilai heat rate-nya pun
sama, begitu pula sebaliknya. Hubungan nilai heat rate dan kemampuan
pembeban ini dapat dilihat dari tabel 3.3 dan 3.1.
Tabel 3.4 Bahan Bakar Pembangkit Termal
34
Jenis bahan bakar PLTGU Gresik Baru unit 1.0 dan 3.0 serta
PLTGU Grati unit 1.0 memakai gas buang dari pembakaran GT (generator
turbin) yang beroperasi dari blok tersebut. Gas buang pembakaran tersebut
digunakan untuk merebus air yang berada di HRSG (Head Recovery Steam
Generator) yang berfungsi seperti boiler pada PLTU. Jadi unit PLTGU
yang memakai gas buang pembakaran pada HRSG adalah semua STG atau
STG 1.0 atau 2.0 atau 3.0. Maka, PLTGU Gresik Baru ST (steam turbin)
1.0 beroperasi menggunakan gas buang pembakaran dari GT 1.1, 1.2, dan
1.3; PLTGU Gresik Baru ST 3.0 memakai gas buang dari GT 3.1, 3.2, dan
3.3; PLTGU Grati ST 1.0 menggunakan gas buang dari GT 1.1, 1.2, dan
1.3. Sedangkan untuk bahan bakar setiap GT yang beroperasi baik dari unit
PLTGU Gresik Baru maupun PLTGU Grati adalah gas alam. Untuk bahan
bakar PLTU Paiton unit 1 dan 2 menggunakan batu bara.
3.3. Tahap Perhitungan Fungsi Biaya Bahan Bakar
Gambar 3.1 Flowchart Perhitungan Fungsi Biaya Bahan Bakar Pembangkit Termal Mulai
Keluaran fungsi biaya bahan bakar unit pembangkit termal Menghitung konstanta a, b, dan c
I/O unit pembangkit termal
Membentuk karakteristik I/O Fi(Pit) = ai + bi Pit + ci Pit2
Menghitung incremental fuel cost
Menghitung fungsi biaya bahan bakar / persamaan
incremental fuel cost unit pembangkit termal
Fi(Pit) = ai + bi Pit + ci Pit2 x incremental fuel cost
Baca Data
35
Dalam penjadwalan pembangkit termal dengan metode Lagrangian
Relaxation diperlukan penentuan fungsi biaya bahan bakar terlebih dahulu.
Di bawah ini adalah flowchart dan tahapan-tahapannya, antara lain:
1. Membaca data heat rate setiap unit pembangkit, yang terdapat pada
tabel 3.4.
2. Menghitung konstanta a, b, dan c input/output dari tiap unit pembangkit
dengan mengolah data heat rate dan daya pembangkit, kemudian
membentuk karakteristik input/output dengan memasukan hasil dari
koefisien a, b, dan c ke persamaan Fi(Pit) = ai + bi Pit + ci Pit2 (3-4)
3. Menghitung incremental fuel cost
Rp jam
⁄ x
heat rate kCal/kWh x daya pembangkit MW (3-5)
4. Menghitung fungsi biaya bahan bakar atau persamaan incremental fuel
cost.
Fi(Pit) = ai + bi Pit + ci Pit2 x incremental fuel cost (3-6)
3.4. Penjadwalan Pembangkit Termal dengan Kekangan Transmisi
Menggunakan Metode Lagrangian Relaxation
Susunan algoritma penjadwalan pembangkit termal dengan
kekangan transmisi menggunakan metode Lagrangian Relaxation adalah
sebagai berikut:
1. Menentukan dan mengumpulkan data, yakni data biaya bahan bakar,
rugi-rugi transmisi, dan daya yang dihasilkan oleh pembangkit termal,
dalam waktu 24 jam. Selain itu, ditetapkan juga kekangan-kekangan
pada pembangkit termal, antara lain:
a. Permintaan sistem / keseimbangan daya (MW)
∑ni= uitPit = PLt + Dt (3-7)
Dimana n adalah jumlah unit pembangkit termal.
b. Kapasitas operasional pembangkit
Pi(min) < Pit < Pi(maks) jika Pit >0,
Pit = 0 jika Pit <0 (3-8)
36
∑ni= uitPi maks > Dt + PLt + Rt (3-9)
2. Menghitung karakteristik input/output dan fungsi biaya bahan bakar
atau persamaan incremental fuel cost pembangkit termal.
3. Membuat perkiraan biaya bahan bakar dan daya yang dihasilkan
pembangkit termal menggunakan metode Lagrangian Relaxation,
dengan pemecahan masalah ganda
4. q*= maxλ{ minP
it∑T=1∑ Fi=1 i Pi +∑T=1[λt(∑i=1 Piui − D +PL) + µt
(∑ Pi=1 i ak ui − R + ∑ µi=1 i ak Pi − Pi ak + ∑ µi=1 i i
Pi −Pi i ] (3-10)
Persamaan ini akan mengalami proses penurunan rumus, sehingga nanti
akan melalui proses iterasi untuk mengolah data. Proses iterasi ini
terdapat pada poin 5.
5. Proses iterasi
a. Iterasi pertama k = 1
37
6. Menghitung biaya bahan bakar total
FT = ∑Tt= ∑ni= Fi Pit (3-22)
Dalam penelitian ini perhitungan hanya sampai memperhitungkan
biaya bahan bakar (fuel cost) saja, karena biaya start up tidak
diminimalisasi, maka start/stop, minimum up/down time, dan biaya-biaya
maupun pengaruh akibat proses start up unit pembangkit termal tidak
dipertimbangkan dalam perhitungan.
3.5 Flow Chart Penyelesaian Penjadwalan Pembangkit Termal dengan
38
57
BAB V
SIMPULAN DAN SARAN
5.1 Simpulan
Berdasarkan penelitian skripsi yang telah dilakukan oleh penulis,
didapat beberapa kesimpulan sebagai berikut:
1. Pada penjadwalan pembangkit termal dengan kekangan transmisi
menggunakan metode Lagrangian Relaxation diperoleh penjadwalan
yang sebagian besar pembangkit-pembangkit termalnya beroperasi atau
aktif untuk memenuhi permintaan beban.
2. Daya pembangkitan dari penjadwalan pembangkit termal dengan
kekangan transmisi yang menggunakan metode Lagrangian Relaxation
lebih optimal, karena lebih mendekati jumlah permintaan beban
dibandingkan daya pembangkitan PLN yang jumlahnya bahkan lebih
besar dari daya pembangkitan menggunakan metode yang dipilih
penulis dan biaya bahan bakarnya pun lebih ekonomis dibandingkan
yang dikeluarkan PLN.
3. Rugi-rugi transmisi pada metode Lagrangian Relaxation, nilainya lebih
tinggi daripada rugi-rugi transmisi PLN. Dari sini diketahui, kelemahan
metode yang dipakai penulis lebih banyak menimbulkan rugi-rugi
transmisi dan kurang tepat digunakan pada pembangkit berkapasitas
daya tinggi, disamping keunggulannya yang dapat memperoleh daya
lebih optimal dan biaya yang lebih ekonomis dalam memenuhi
permintaan beban daripada realisasi PLN.
5.2 Saran
Di bawah ini merupakan beberapa saran penulis terhadap penelitian
skripsi ini:
1. Penjadwalan pembangkit termal dengan kekangan transmisi
menggunakan metode Lagrangian Relaxation sebaiknya melibatkan
58
2. Penggunaan metode Lagrangian Relaxation terhadap penjadwalan
pembangkit termal yang melibatkan kekangan transmisi kurang cocok
digunakan pada sub sistem Jawa Bali yang kebanyakan berkapasitas di
atas 100 MW, sehingga penjadwalan dengan metode ini tidak bisa
digunakan untuk menghitung satu sistem Jawa Bali yang memiliki
kapasitas operasi yang besar, karena akan menimbulkan rugi-rugi
transmisi yang besar.
3. Kekangan-kekangan unit commitment terhadap Metode Lagrangian
Relaxation bisa diperbanyak agar hasil perhitungan penjadwalan
pembangkit lebih ideal.
4. Metode Lagrangian Relaxation dapat dikombinasikan dengan metode
lain, agar metode yang dikombinasikan dengan metode Lagrangian
Relaxation ini mungkin dapat menutupi kelemahannya dalam
penjadwalan pembangkit.
5. Jenis pembangkit yang dioperasikan diperluas, tidak hanya pembangkit
59
Mega Nur Sonyawati, 2015
DAFTAR PUSTAKA
Bidang Operasi Sistem Pusat Pembagi Beban (P3B) PT. PLN (Persero) Jawa Bali
(2014) Dokumen Bidang Operasi Sistem. Jakarta: PT. PLN (Persero).
Cekdin, C. (2010). Sistem Tenaga Listrik - Contoh Soal dan Penyelesaian
Menggunakan MATLAB. Edisi kedua. Yogyakarta: ANDI.
Gaddam, R. R. (2013). Optimal Unit Commitment Using Swarm Intelligence for
Secure Operation of Solar Energy Integrated Smart Grid. (Tesis).
International Institute of Information Technology, Hyderabad, India.
Harun, N. (2011). Bahan Ajar Perancangan Pembangkitan Tenaga Listrik .
Makassar.
Jatnika, G. S. D. (2013). Optimasi Sistem Interkoneksi 500 kV Jawa-Bali dengan
Aliran Daya Optimal Metode MINOPF. (Skripsi). Jurusan Pendidikan
Teknik Elektro, Universitas Pendidikan Indonesia, Bandung.
Marsudi, D. (2006). Operasi Sistem Tenaga Listrik. Yogyakarta: Graha Ilmu.
Marsudi, D. (2005). Pembangkitan Energi Listrik. Jakarta: Erlangga.
Prihastomo. (2008). Makalah SCADA. [Online]. Tersedia di:
Error!
Hyperlink
reference
not
valid.
.com/2008/01/makalahscada.pdf. Diakses 3 September 2013.Rohmat, A., Abdullah, A. G., & Hasbullah. (2014). Koordinasi Hidro Thermal
Jangka Pendek Menggunakan Algoritma Lagrangian Relaxation. Hlm. 1-18.
Saadat, H. (1999). Power System Analisys. New York: The McGraw-Hill
60
Mega Nur Sonyawati, 2015
OPERASI PENJAD WALAN BEBERAPA PEMBANGKIT TERMAL D ENGAN KEKANGAN TRANSMISI Siagian, A. (2011). BAB II Tinjauan Pustaka. [Online]. Tersedia di:
http://repository.usu.ac.id/bitstream/123456789/21771/4/Chapter%20II.pdf.
Diakses 8 Mei 2013.
Stevenson, W. D. (1983). Analisis Sistem Tenaga Listrik. Edisi keempat. Jakarta:
Erlangga.
Supriyatna. (2002). Simulasi Unit Commitment Berskala Besar pada Persaingan
Unit Pembangkit. (Tesis). Institut Teknologi Bandung, Bandung.
Tseng, C. L. dkk. (1998). A transmission-constrained unit commitment method.
IEEE.
Universitas Pendidikan Indonesia. (2014). Pedoman Penulisan Karya Ilmiah.
Bandung: UPI PRESS.
Widiyastuti, Y. (2009). Optimasi Hidro-Termis dengan Menggunakan Metode
Gradien Berbantuan Software Matlab. (Tugas Akhir). Jurusan Pendidikan
Teknik Elektro, Universitas Pendidikan Indonesia, Bandung.
Wang, S. J. dkk. (1995). Short-term generation scheduling with transmission and
environmental constraints using an augmented lagrangian relaxation. IEEE
Transactions on Power Systems, 10 (3), hlm. 1294-1301.
Wood, A. J & Wollenberg, B. F. (1996). Power Generation, Operation, and
Control. Edisi kedua. New York: John Wiley & Sons, Inc.
Yan, H. dkk. (1993). Scheduling of hydrothermal power system. IEEE