• Tidak ada hasil yang ditemukan

Ponderomotive Force Generated by Microwaves During Sintering

N/A
N/A
Protected

Academic year: 2018

Membagikan "Ponderomotive Force Generated by Microwaves During Sintering"

Copied!
5
0
0

Teks penuh

(1)

JURNAL APLIKASI FISIKA VOLUME 11 NOMOR 2 AGUSTUS 2015

Ponderomotive Force Generated by Microwaves During Sintering

M. Zamrun Firihu dan I.N. Sudiana

Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Halu Oleo, Kendari, Sulawesi Tenggara, 93231

E-mail : muhammad.zamrun@uho.ac.id

ABSTRAK

Dalam beberapa tahun terakhir, banyak peneliti telah melaporkan pengamatan dari "efek microwave" di berbagai proses material seperti pada sintering, annealing, sintesis, Istilah efek microwave tidak didefinisikan secara ketat. Sering digunakan untuk menandai perbedaan hasil ketika pemanasan microwave digunakan dibandingkan dengan pemanasan biasa dengan pemanas listrik atau gas. Efek microwave dapat dijelaskan dalam dua kategori yakni efek termal dan efek non termal. Banyak hasil eksperimen menunjukkan adanya efek nonthermal dari microwave yang meningkatkan laju difusi atom di zat padat. Dalam teori sintering, atom berpindah karna adanya gaya pemicu (driving force) sebagai penyebabnya misalnya karna perbedaan tekanan permukaan, suhu, gravitasi, dll. Para ahli meyakini bahwa selama pemanasan dengan microwave ada gaya tambahan yang menyebabkan atom berdifusi lebih cepat akibat kehadiran medan listrik yang dinamai ponderomotive force. Dalam tulisan ini dibahas gaya ini terkait data ekperimen yang telah diperoleh beberapa tahun terakhir.

Keywords: efek mikrowave, efek nonthermal, poderomotive force, difusi atom

I. INTRODUCTION

Many researchers have reported

observations of "microwave effects" in a

variety of material processes [1-3].

Microwave effect is sometime used to

mark the enhancement of the processing

rate when microwave heating is utilized

such as enhancement of densification,

atomic diffusion, chemical reaction rate

[3]. In principle, the potential benefits of

microwave heating, caused by the

volumetric nature of microwave energy

deposition which provides, in particular,

a possibility of faster and more

controllable temperature ramp-up and

its selectivity which can provide

concentration of energy deposition in

the desired region result in precision

heating. All the listed peculiarities of

microwave heating can be treated as the

thermal action of the electromagnetic

field on matter. All microwave effects

can be explained specifically to thermal

and nonthermal effect.

(2)

Numerous experimental results

suggest existence of a specific

nonthermal action of microwaves on

mass transport in crystalline solids [4].

The characteristics of porosity under

microwave heating were found to differ

considerably from those observed in a

conventional sintering process under the

same conditions. A direct influence of

the microwave field on the transport

phenomena in crystals was found in

investigations of atomic diffusion [1], as

well as in a study of the observation of a

quasi-stationary electric current induced

in a dielectric subjected to pulsed

microwave irradiation [5]. However, the

physical mechanisms of the effect are

not completely clear. Some researchers

proposed the additional driving force

exist during microwave processing.

Especially, Rybakov and Semenov

proposed the first model being able to

explain quantitatively the existence of

an additional driving force for transport

processes in ionic crystals subjected to a

microwave field [4]. The basic idea was

comparatively simple, based on the

effect of rectification of the oscillatory

vacancy drift near grain boundaries and

interfaces. The additional driving force

is known as ponderomotive force.

II. RESULTS OF MICROWAVE

PROCESSING OF MATERIAL

Microwave enhanced sintering has been

reported by several scholars [1-3,6-7 ]. It

has received much attention because of

the observed substantial decrease in

sintering temperature and fast heating

rates. Tian, et al.[6], have performed

sintering of alumina at 1700 oC for 12

minutes. They reported that the sintered

samples achieved 99.8% of theoretically

density, with fine grain of 1.9 m. The

effect of microwave is not only in

ceramic processing. Microwave

enhanced drying have been also reported

[8-9]. Some microwave enhancement

results are shown in Fig 1 to 3.

Fig. 1. Drying curves of cocoa beans in a microwave and in an electric furnace [8]

(3)

JAF Vol 11 No. 2 (2015) 48-52

Figure 2. Effect of microwave frequency and green sample in microwave sintering

alumina [10]

Fig. 3 Reduction of open and closed porosity of silica xerogel upon MMW as compared to conventional sintering [2]

III. DISCUSSIONS

Because of all results are temperature

activation process, they can be

associated to enhancement of diffusion.

Sintering lowers the surface energy of

material by reducing surface area with

concomitant formation of interparticle

bonds. During sintering, high-energy

free surfaces are replaced by lower

energy sites such as grain boundaries or

crystalline regions. The formation of

these low-energy sites (neck region),

and subsequent reduction in surface

area. This reduction results in a decrease

in the overall surface energy and known

as driving force:

(1)

(4)

where G is free energy, s is specific

surface energy, and A is surface area.

The stress associated with the curved

surface as

(2)

where R1 and R2 are principal radii of

curvature for this surface.

Flux of atom, J, is product of inter

atomic distance, reaction rate constant,

and diffusing concentration.

Diffusion path of mass transport during

sintering of crystalline materials can

occur by at least six mechanisms: vapor

transport (evaporation/condensation),

surface diffusion, lattice (volume)

diffusion, grain boundary diffusion, and

plastic flow [25].

Figure 4. Possible atomic diffusion ways during sintering [10]

The enhancement shown in Figure 1-3

reported by researchers is indicated that

microwaves enhanced diffusion rate

(mass transport flux) during processing.

For drnsification, by simplifying of

diffusion process using two particle

model the relation of densification to

material transport parameters can be

expressed by following equation:

ziF rmscRT2πVmx2a33/2t3/2 (3)

Where = density, L= material

dimension, Q= activation energy, R is

the universal gas constant,

T=temperature, Do is diffusion constant,

s is specific surface energy, zi = charge

on the ion, F =Faraday constant = 9.65

kJ/ V, Erms = root mean square of the

electric field of microwave, A is the

cross-sectional area over which

diffusion occurs and Vm is the molar

volume of the material being transferred,

x is radius of neck, a is radius of

particle, and t is time. Component

is microwave contribution on atomic transport during sintering. It is

driving force generated by electric field

of microwaves. It should enhanced

atomic transport during sintering.

Application of ponderomotive effect

was shown in experiment performed by

Rybakov [11]. It was shown that a

microwave field with the E-vector

directed tangentially to a surface of a

solid can develop a deformation-type

instability. This results in the formation

of a corrugated profile on that surface

(5)

JAF Vol 11 No. 2 (2015) 44-48

the spatial period on the order of 1

micrometer controlled period by

adjusting the microwave power.

However no direct experiment can

demonstrate a ponderomotive

force-driven mass transport up to now. One of

important tasks in this field of research

microwaves which enhances diffusion in

solids appears to be reasonable. As

follows from the theoretical and

experimental results obtained for ionic

crystalline solids and drying it can be

viewed in terms of an additional driving

force (ponderomotive force). The

experimental results on microwave

sintering indicate supports the theory.

However no direct experiment can

demonstrate a ponderomotive

force-driven mass transport up to now.

REFERENSI

[1] Janney, M.A, H. Kimrey, W. Allen, J. Kiggans,1997. Enhanced diffusion in sapphire during microwave heating,

J. Materials Science 32, 1347–1355. [2] Sudiana, I.N., S. Mitsudo, T. No. 34, 2015, pp. 1607-1615

[3] Zamrun, M F., I. N. Sudiana,

Microwaves Enhanced Sintering Mechanisms in Alumina Ceramic Sintering Experiments, Cont. Eng. Sci, Vol. 9, 2016, 5, 237 – 247 [4] Rybakov, K.I. and V.E.Semenov,

Physical Review B , 52[ 5], 3030 (1995).

[5] S.A. Freeman, J.H. Booske, and R.F. Cooper, Phys. Rev. Lett., 74 [11], 2042 (1995). Microstructure of Al2O3 Produced

by Microwave Sintering, Cer. CICES2014, November 10-11, 2014, Kendari, Indonesia. Materials Research Society Symposium Proceedings, Vol. 430, Pittsburgh, PA, 1996), p. 435.

Gambar

Fig. 1. Drying curves of cocoa beans in a microwave and in an electric furnace [8]
Fig. 3 Reduction of open and closed porosity of silica xerogel upon MMW as compared to conventional sintering [2]
Figure 4. Possible atomic diffusion ways

Referensi

Dokumen terkait

Dalam melaksanakan audit sistem informasi ini, proses TI terhadap tingkat keselarasan tujuan TI terhadap Universitas Widyatama, berjalan dngan baik, dikarenakan dari beberapa

Ini berarti bahwa kegiatan penegakan hukum pidana terhadap suatu tindak pidana lingkungan hidup baru dapat dimulai apabila aparat yang berwenang telah menjatuhkan

Tujuan pokok dalam penelitian tindakan ini adalah untuk meningkatkan kualitas pembelajaran biologi umum dari aspek pengembangan unsur-unsur keterampilan proses sains dan

Tiga langkah kunci dalam proses pengembangan IPA (metode ilmiah) yaitu melakukan pengamatan, menginferensi, dan mengomunikasikan. Pengamatan untuk mengumpulkan data dan

Penelitian ini menunjukkan bahwa dengan mengombinasikan Logika Fuzzy yang memiliki kelebihan dalam memproses kondisi yang tidak pasti dengan Jaringan Syaraf Tiruan

Dengan kepercayaan maka para nasabah akan merasa aman terhadap asetnya dan inilah yang menyebabkan mereka akan loyal terhadap bank dan ini akan berdampak pada

Untuk itu, pemerintah juga perlu menerapkan kebijakan pembatasan lalu lintas, terutama pada area yang layanan angkutan umum dan fasilitas kendaraan tidak bermotornya sudah

Model sebelumnya tentang model konseptual menghasilkan pendugaan bahwa faktor Customer Relationship Marketing yaitu variabel dari Ikatan, Empati, Timbal Balik, Kepercayaan,