• Tidak ada hasil yang ditemukan

BAB II TINJAUAN PUSTAKA - Penggunaan Poliester Amida Pada Bioplastik Protein Kedelai Dari Limbah Padat Industri Tahu dengan Gliserol sebagai Bahan Pemlastis

N/A
N/A
Protected

Academic year: 2019

Membagikan "BAB II TINJAUAN PUSTAKA - Penggunaan Poliester Amida Pada Bioplastik Protein Kedelai Dari Limbah Padat Industri Tahu dengan Gliserol sebagai Bahan Pemlastis"

Copied!
21
0
0

Teks penuh

(1)

BAB II

TINJAUAN PUSTAKA

2.1 Kedelai

Kedelai adalah tanaman pangan berupa semak yang tumbuh tegak dan termasuk Famili Leguminosa (kacang-kacangan). Berdasarkan jenisnya tanaman kedelai terdiri atas kedelai putih/kuning, hitam, cokelat, dan hijau. Hubeis (1984) dalam Sutanto (1998), menyatakan bahwa berdasarkan umurnya kedelai terbagi atas kedelai berumur pendek (60-80 hari), berumur sedang (90-100 hari), dan berumur dalam (110-120 hari). Pada tanaman kedelai biasanya yang diambil adalah bijinya. Struktur biji kedelai terdiri atas tiga bagian utama, yaitu keping biji/kotiledon (90%), kulit biji (8%), dan embrio/hipokotil (2%).

Nilai gizi kedelai cukup tinggi terutama kandungan proteinnya. Selain protein, kedelai juga mempunyai kandungan lemak yang cukup tinggi, yang terdiri atas 86% asam lemak tidak jenuh dan 40% asam lemak jenuh. Komposisi zat gizi secara lengkap dapat dilihat pada Tabel 2.1.

(2)

Tabel 2.1 Komposisi Gizi Tiap 100 g Berat Kedelai

Protein adalah struktur makromolekul yang terdiri atas asam-asam amino yang saling berhubungan melalui ikatan peptida. Protein kedelai terdapat dalam jaringan kotiledon biji kedelai. Pada tingkat subseluler, protein kedelai terdistribusi di dalam bagian-bagian sel yang disebut protein tubuh dan di sekitar sitoplasma. Sekitar 90% protein kedelai adalah globulin yang terdapat sebagai protein cadangan, sisanya merupakan enzim-enzim intraseluler (lipoksigenase, amilase) hemaglutinin, protein inhibitor dan lipoprotein membran (Kinsella dalam Sutanto, 1998).

(3)

Sifat fungsional protein adalah sifat fisik dan kimia yang memungkinkan protein menyumbang karakteristik yang diinginkan pada makanan. Sifat-sifat fungsional protein yang dapat diklasifikasikan ke dalam tiga kelompok utama, yaitu (1) sifat hidrasi (berhubungan dengan interaksi protein-air) seperti daya ikat air, kebasahan, swelling, daya lekat, kekentalan, kelarutan; (2) sifat yang berhubungan dengan interaksi protein-protein seperti pembentukan gel, dan (3) sifat-sifat permukaan seperti emulsifikasi (Cheftel et al., 1985 dalam Sutanto, 1998). Sifat fungsional protein ini dipengaruhi oleh faktor intrinstik, faktor lingkungan, dan perlakuan selama proses.

Protein kedelai menjadi pilihan yang baik sebagai bahan baku film plastik karena polimer asam amino ini berisi 20 asam amino yang pada rantai samping, rantai akhir, atau rantai utamanya dapat menampung gugus fungsi. Gugus fungsi seperti amida, hidroksil, dan karboksil dapat berinteraksi dengan berbagai bahan pemlastis.

2.3 Limbah Industri Tahu

Industri tahu pada umumnya dibagi menjadi dua bentuk limbah, yaitu limbah padat dan limbah cair. Limbah padat ini berupa kotoran hasil pembersihan kedelai (batu, tanah, kedelai, dan benda padat lain yang menempel pada kedelai) dan sisa saringan bubur kedelai yang disebut dengan ampas tahu.

(4)

bisa dimanfaatkan sebagai bahan pakan ternak dan ikan. Akan tetapi kandungan air ampas tahu yang masih tinggi merupakan penghambat sebagai pakan ternak. Salah satu sifat dari ampas tahu ini adalah mudah tengik (basi dan tidak tahan lama) dan menimbulkan bau busuk kalau tidak cepat dikelola. Pengeringan merupakan salah satu jalan untuk mengatasinya. Pengeringan juga mengakibatkan berkurangnya asam lemak bebas dan ketengikan sehingga memperpanjang umur simpan (Kaswinarni, 2007).

Ampas tahu yang terbentuk besarannya berkisar antara 25-35% dari produk tahu yang dihasilkan. Oleh karena itu untuk menghasilkan ampas tahu tidak terlepas dari proses pembuatan tahu (Subowo, 2001).

Dasar pembuatan tahu adalah melarutkan protein yang terkandung dalam kedelai dengan menggunakan air sebagai pelarutnya. Setelah protein tersebut larut, diendapkan kembali dengan penambahan bahan pengendap sampai terbentuk gumpalan-gumpalan protein yang akan menjadi tahu. Salah satu cara pembuatan tahu ialah dengan menyaring bubur kedelai sebelum dimasak, sehingga cairan tahu sudah terpisah dari ampasnya (Kastyanto, 1994).

(5)

Komposisi limbah kedelai mengandung protein 35% bahkan pada varietas unggul

kadar proteinnya dapat mencapai 40-43%. Dibandingkan dengan beras, jagung, tepung

singkong, kacang hijau, daging, ikan segar, dan telur ayam, kedelai mempunyai kandungan

protein yang lebih tinggi, hampir menyamai kadar protein susu skim kering (Radiaty, 1992).

(6)

Kandungan nilai gizi yang masih terdapat dalam 100 gram ampas tahu secara rinci dapat

dilihat pada Tabel 2.2 di bawah ini.

Tabel 2.2 Kandungan Nilai Gizi Ampas Tahu

Unsur Satuan Nilai

Kalori kal 414

Protein g 26,6

Lemak g 18,3

Karbohidrat g 41,3

Kalsium mg 19

Fosfor mg 29

Besi mg 4,0

Vit. B mg 0,20

Air ml 9,0

(Sumber: Kaswinarni, 2007 )

2.4 Bioplastik

(7)

lingkungan tanpa meninggalkan sisa yang beracun.

Menurut Adam dan Clark (2009), bioplastik adalah polimer yang dapat berubah

menjadi biomassa, H2O, CO2 dan atau CH4 melalui tahapan depolimerisasi dan mineralisasi.

Depolimerisasi terjadi karena kerja enzim ekstraseluler (terdiri dari endoenzim dan

eksoenzim). Endoenzim memutuskan ikatan internal pada rantai utama polimer secara acak,

dan eksoenzim memutuskan unit monomer pada rantai utama secara berurutan.

Bagian-bagian polimer yang terbentuk ini dipindahkan ke dalam sel dan mengalami mineralisasi.

Proses mineralisasi membentuk CO2, CH4, N2

Berdasarkan bahan baku yang dipakai, bioplastik dikelompokkan menjadi dua

kelompok, yaitu kelompok dengan bahan baku petrokimia (non-renewableresources) dengan

bahan aditif dari senyawa bio-aktif yang bersifat biodegradabel, dan kelompok kedua adalah

dengan keseluruhan bahan baku dari sumber daya alam terbarukan (renewable resources)

seperti dari bahan tanaman pati dan selulosa serta hewan seperti cangkang atau dari

mikroorganisme yang dimanfaatkan untuk mengakumulasi plastik yang berasal dari sumber

tertentu seperti lumpur aktif atau limbah cair yang kaya akan bahan- bahan organik sebagai

sumber makanan bagi mikroorganisme tersebut (Adam dan Clark, 2009).

, air, garam-garam, mineral, dan biomassa.

Definisi polimer bioplastik dan hasil akhir yang terbentuk dapat beragam tergantung pada

polimer, organisme, dan lingkungan.

Polimer bioplastikdapat dikategorikan ke dalam tiga jenis (Evans, 2010) a.

, yaitu:

(8)

b.

c.

Starch-based bioplastic polymers. Pada jenis ini, pati (tepung halus dari singkong/kentang/ubi) ditambahkan sebagai bahan untuk produksi campuran plastik, misalnya starch-polyethylene. Tujuannya agar mikroba dalam tanah dapat mendegradasi pati dengan mudah sehingga dapat menguraikan plastik ini secara signifikan dalam waktu yang relatif cepat. Akan tetapi, beberapa jenis plastik lainnya dapat terdegradasi sebagian (tergantung kondisi tanah). Beberapa fragmen yang tertinggal setelah penghilangan pati tertinggal di lingkungan dalam waktu yang lama.

Polyhydroxyalkanoates (PHAs), yaitu polimer terdiri atas 2 sampai 6 hydroxy acids, yang diproduksi sebagai granula intraselular oleh banyak jenis bakteri. Ini sangat berpotensi sebagai plastik terbaharukan dan seratus persen bioplastik. Polimer ini dapat digunakan secara komersial untuk menggantikan penggunaan plastik konvensional.

Averous (2008) dalam Fibhumika (2009), mengelompokkan polimer bioplastik ke dalam dua kelompok dan empat keluarga berbeda. Kelompok utama adalah: (1) agro-polimer yang terdiri dari polisakarida, protein dan sebagainya; dan (2) biopoliester (bioplastik poliester) seperti poli asam laktat (PLA), polyhydroxyalkanoate (PHA), aromatik and alifatik kopoliester. Biopolimer yang tergolong agro-polimer adalah produk-produk biomassa yang diperoleh dari bahan-bahan pertanian.

(9)

Contoh polilaktida adalah poli asam laktat (PLA). Kelompok terakhir biopoliester yang lain juga ada yang diperoleh dengan sintesis secara konvensional dari monomer-monomernya. Kelompok ini terdiri dari polycaprolactones (PCL), polyesteramides (PEA), aliphatic co-polyesters dan aromatic co-polyesters.

Menurut laporan Pranamuda (2009) dalam penelitiannya, menyatakan bahwa saat ini

polimer bioplastik yang telah diproduksi adalah kebanyakan dari polimer jenis poliester

alifatik. Bioplastik yang sudah diproduksi skala industri, antara lain:

a. Poli (ε-kaprolakton) (PCL) : PCL adalah polimer hasil sintesa kimia menggunakan

bahan baku minyak bumi. PCL mempunyai sifat biodegradabilitas yang tinggi, dapat

dihidrolisa oleh enzim lipase dan esterase yang tersebar luas pada tanaman, hewan

dan mikroorganisme. Namun titik lelehnya yang rendah, Tm = 60 0

b. Poli (ß-hidroksi butirat) (PHB) : PHB adalah poliester yang diproduksi sebagai

cadangan makanan oleh mikroorganisme seperti Alcaligenes (Ralstonia) eutrophus,

Bacillus megaterium dsb. PHB mempunyai titik leleh yang tinggi (Tm = 180 C, menyebabkan

bidang aplikasi PCL menjadi terbatas (Awaliyyah RF, 2008; Pranamuda, 2009).

0

c. Poli (butilena suksinat) (PBS): PBS mempunyai titik leleh yang setara dengan plastik

konvensional polietilen, yaitu Tm = 113

C),

tetapi karena kristalinitasnya yang tinggi menyebabkan sifat mekanik dari PHB

kurang baik (Ping, 2006).

0

d. Poli asam laktat (PLA) : PLA merupakan poliester yang dapat diproduksi menggunakan bahan baku sumber daya alam terbarui seperti pati dan selulosa

(10)

0C, dan dapat dibuat menjadi lembaran film yang transparan (Kurniawan RA, 2010;

Pranamuda, 2009).

2.5 Metode Pembuatan Bioplastik

Kemampuan suatu bahan dasar dalam pembuatan film plastik dapat diterangkan melalui fenomena fase transisi gelas. Pada fase tertentu di antar fase cair dengan padat, massa dapat dicetak atau dibentuk menjadi suatu bentuk tertentu pada suhu dan kondisi lingkungan tertentu. Fase transisi gelas biasanya terjadi pada bahan polimer. Sedangkan suhu dimana fase transisi gelas terjadi disebut sebagai titik fase gelas (glassy point). Pada suhu tersebut bahan padat dapat dicetak menjadi suatu bentuk yang dikehendaki, misalnya bentuk lembaran tipis (film) kemasan.

Istilah plastik meliputi produk hasil proses polimerisasi baik yang sintesis maupun semisintesis. Plastik dapat dibentuk menjadi suatu objek, film, ataupun serat (Anonim, 2006). Menurut Allcock dan Lampe (1981), film plastik dapat dibuat melalui dua teknik dasar yang berbeda, yaitu solution casting atau molten polymer. Pada pembuatan film plastik dengan teknik solution casting, bahan polimer dilarutkan ke dalam pelarut yang cocok untuk menghasilkan larutan yang viskos. Larutan yang dihasilkan dituang pada suatu permukaan yang rata (cetakan) yang bersifat non-adesif dan pelarut dibiarkan menguap sampai habit. Film plastik yang sudah kering kemudian diangkat dari cetakannya. Teknik molten polymer dilakukan dengan cara pemanasan polimer sampai di atas titik lelehnya (Allcock dan Lampe, 1981).

(11)

pilihan yang cepat dan mudah untuk dilakukan pada skala laboratorium. Pemilihan jenis pelarut yang cocok dengan bahan polimer menjadi faktor penting yang perlu diperhatikan.

Teknik solution casting dilakukan dengan membuat larutan polimer 20% (b/v) untuk menghasilkan larutan dengan viskositas yang sesuai. Pengadukan diperlukan untuk mempercepat kelarutan, misalnya pengadukan dengan strirrer (Allcock dan Lampe, 1981). Allcock dan Lampe (1981) menambahkan bahwa apabila larutan polimer perlu disaring sebelum proses casting, maka dapat dilakukan penyaringan vakum karena larutan terlalu viskos. Pada skala laboratorium, proses solution casting dapat dilakukan pada plat kaca atau cawan gelas.

2.6

Menurut Wu dan Bates (1972) dalam Sutanto (1998), mekanisme pembentukan film protein terjadi karena polimerisasi endotermik dan denaturasi protein akibat pemanasan yang diikuti dehidrasi permukaan. Mekanisme polimerisasi melibatkan molekul disulfida dan ikatan hidrofobik. Pemanasan menyebabkan struktur tiga dimensi protein antara sulfhidril dan rantai sisi hidrofobik sehingga rantai protein yang tidak melipat akan saling mendekat satu dengan yang lainnya dan saling berhubungan lewat ikatan disulfida dan hidrofobik (Fukushima dan Van Burren, 1970 dalam Sutanto, 1998).

Mekanisme Pembentukan Film

(12)

peptida yang ada pada struktur primernya. Selama denaturasi rantai protein akan terbuka sehingga memungkinkan pembentukan jaringan matriks baru yang lebih kompak dan dapat berinteraksi dengan komponen lain. Pada saat larutan dipastikan telah homogen, poliester amida ditambahkan yang berfungsi untuk mengatasi sifat rapuh film. Dengan adanya penambahan poliester amida, maka gugus hidrogen dari poliester amida akan berikatan dengan gugus amida dari protein sehingga kekuatan intermolekuler antar rantai protein akan berkurang dan mobilitas polimer akan meningkat sehingga fleksibilitas akan meningkat pula (Sutanto, 1998).

(13)

2.7 Gliserol

Billmeyer (1994) dalam Sutanto (1998) menambahkan bahwa jika suatu polimer semikristalin mendapat tambahan

Menurut Hammer (1978) dalam Sutanto (1998), bahan pemlastis adalah bahan kimia yang dapat digunakan untuk mengurangi kekakuan resin termoplastik. Prinsip kerja bahan pemlastis adalah dengan membentuk interaksi molekuler rantai polimer untuk meningkatkan kecepatan respon viskoelastis pada polimer. Hal ini akan meningkatkan mobilitas molekuler rantai polimer dan akibatnya dapat menurunkan substransisi kaca (Tg).

bahan pemlastis maka akan terjadi penurunan titik lebur (Tm) dan derajat bahan pemlastis akan lebih banyak berinteraksi dengan fase amorf dan sangat sedikit yang berinteraksi dengan fase kristalin. Efektivitas penambahan bahan pemlastis dapat dilihat melalui beberapa parameter semi empiris, seperti penurunan suhu transisi kaca dan titik leleh, karakteristik mekanik, serta kondisi molekuler.

Menurut Syarief (1989), untuk memperbaiki sifat plastik maka ditambahkan berbagai jenis tambahan atau aditif. Bahan tambahan ini sengaja ditambahkan dan berupa komponen bukan plastik yang diantaranya berfungsi sebagai bahan pemlastis, penstabil pangan, pewama, penyerap UV, dan lain-lain. Bahan itu dapat berupa senyawa organik maupun anorganik yang biasanya mempunyai berat molekul rendah.

(14)

pemlastis adalah bahan non-volatil dengan titik didih tinggi yang apabila ditambahkan ke dalam bahan lain akan merubah sifat fisik dan atau sifat mekanik dari bahan tersebut (Krochta, et.a1, 1994). Bahan pemlastis ditambahkan untuk mengurangi gaya intermolekul antar partikel penyusun pati yang menyebabkan terbentuknya tekstur edible film yang mudah patah (getas). Bahan pemlastis juga meningkatkan gaya intermolekuler dan meningkatkan mobilitas ikatan polimer sehingga memperbaiki fleksibilitas dan extensibilitas film.

Sedangkan bahan pemlastis yang umum digunakan dalam pembuatan plastik bioplastik adalah gliserol karena ketersediaan gliserol melimpah di alam dan sifatnya yang tidak merusak alam. Gliserol atau biasa disebut gliserin merupakan suatu larutan kental tidak berwama dan mempunyai rasa yang manis. Jika direaksikan dengan air dan alkohol menyebabkan rasa dingin pada kulit. Gliserol dapat dihasilkan dari minyak sawit (CPO, BPO, dan RPDPO), minyak inti sawit (PKO), dan minyak kelapa (CNO). Dalam pengolahan minyak (trigliserida) selain menghasilkan gliserol juga akan menghasilkan asam lemak yang juga dapat diolah menjadi beberapa macam produk seperti asam laurat, asam kaprat, dan asam stearat (Guerrero, dkk., 2010).

(15)

seiring dengan peningkatan kadar gliserol dalam film akibat dari penurunan kerapatan jenis protein (Gontard, 2009).

Gliserol efektif digunakan sebagai bahan pemlastis pada film hidrofilik, seperti pektin, pati, gel dan modifikasi pati, maupun pembuatan edible film berbasis protein (Juliyarsi et al, 2011).

Gambar 2.3 Rumus Struktur Gliserol

2.8 Poliester Amida

Sejumlah besar biodegradable polyester yang berasal dari minyak bumi diperoleh secara kimiawi dari monomer-monomer sintesisnya. Biodegradable polyester ini dapat dibedakan berdasarkan struktur kimianya, seperti policaprolactones, poliester amida, kopoliester alifatis maupun kopoliester aromatis. Semua poliester ini lembut pada temperatur kamar.

Poliester amida diperoleh secara industri dari monomer-monomer kopolikondensasi poliamida dan asam adipic. Poliester yang menunjukkan komponen polar tertinggi memiliki kekompakan yang baik dengan produk polar lainnya, seperti senyawa-senyawa karbohidrat. Selain itu, poliester golongan ini juga menunjukkan permeabilitas air yang paling tinggi.

(16)

kompatibilitasnya yang baik antara gugus amida dan plastik protein kedelai. Pencampuran protein kedelai dengan biodegradable polyester bertujuan untuk meningkatkan kekuatan plastik bioplastik dari kedelai.

R

C 1 C NH R2 NH C R1 C O R3

O

Dan, beberapa sifat fisika dan mekanik dari poliester amida dapat dilihat pada Tabel 2.3 di bawah ini :

Sifat Poliester amida Satuan Nilai

Densitas g/cm3 1,07

Titik leleh 0C 112

Transisi gelas 0C -29

Kristalinitas % 15

Modulus MPa 262

Sifat Poliester amida Satuan Nilai O O

O O

(17)

Elongation at break % 420

Kekuatan tarik MPa 17

Biodegradasi/mineralisasi * % 100

Permeabilitas air pada 250C g/m2/hari 680

Tegangan permukaan mN/m 59

(*) Selama 60 hari dalam pengkontrolan berdasarkan ASTM 5336

2.9 Analisis dan Karakterisasi Bahan Polimer

2.9.1 Spektroskopi Infra merah Fourier-Transform (FTIR)

Serapan radiasi infra merah oleh suatu molekul terjadi karena interaksi vibrasi ikatan kimia yang menyebabkan perubahan polarisabilitas dengan medan listrik gelombang elektromagnetik. Ada dua jenis vibrasi ikatan kimia yang dapat menyerap radiasi infra merah, yakni vibrasi longitudinal dan vibrasi sudut.

Molekul polimer dikenal dengan karakteristik rantai yang terdiri dari sejumlah satuan-ulangan (sampai 102 - 105 unit per rantai). Secara teori spektrum inframerah bahan polimer akan tergantung dari karakteristik spektrum dan struktur kimia satuan ulangannya. Akan tetapi, berbeda dengan senyawa bobot molekul rendah yang murni, struktur satuan-ulangan dalam rantai polimer tidak selamanya identik. Ditambah lagi perubahan susunan geometris, perubahan orientasi ikatan dan bentuk kristal akan mempengaruhi serapan inframerah oleh kimia satuan-ulangan. Karena itu dapat

(18)

diduga bahwa polimer dengan bobot molekul tinggi yang terdiri dari 103-106 atom per molekul akan memberikan sejumlah besar pita serapan.

Pada dasarnya, teknik FTIR adalah sama dengan spektroskopi inframerah biasa, kecuali dilengkapi dengan cara penghitungan Fourier Transform dan pengolahan data untuk mendapatkan resolusi dan kepekaan yang lebih tinggi.

2.9.2 Pengujian Sifat Mekanis

Penggunaan bahan polimer sebagai bahan teknik misalnya dalam industri suku cadang mesin, konstruksi bangunan dan transportasi, tergantung sifat mekanisnya, yaitu gabungan antara kekuatan yang tinggi dan elastisitas yang baik. Sifat mekanis yang khas ini disebabkan oleh adanya dua macam ikatan dalam bahan polimer, yakni ikatan kimia yang kuat antara atom dan interaksi antara rantai polimer yang lebih lemah.

(19)

0

/A Fmaks t =

σ

SEM berbeda dengan mikroskopi elektron transmisi (TEM), dalam hal ini suatu

berkas insiden elektron yang sangat halus di-scan menyilangi permukaan sampel dalam

sinkronisasi dengan berkas tersebut dalam tabung sinar katoda. Elektron-elektron yang

terhambur digunakan untuk memproduksi sinyal yang memodulasi berkas dalam tabung sinar

katoda, yang memproduksi suatu citra dengan kedalaman medan yang besar dan penampakan

yang hampir tiga dimensi.

2.9.3 Mikroskop Pemindai Elektron (SEM)

Dalam penelitian morfologi permukaan SEM terbatas pemakaiannya, tetapi

memberikan informasi yang bermanfaat mengenai topologi permukaan dengan resolusi

sekitar 100 A. Aplikasi-aplikasi yang khas mencakup penelitian dispersidispersi pigmen

dalam cat, pelepuhan atau peretakan koting, batas-batas fasa dalam polipaduan yang tak dapat

campur, struktur sel busa-busa polimer, dan kerusakan pada bahan perekat. SEM teristimewa

berharga dalam mengevaluasi betapa penanaman (implant) bedah polimerik bereaksi baik

(20)

2.10 Penelitian Pendahuluan Yang Pernah Dicapai

Penelitian yang menyangkut penggunaan protein kedelai sebagai bahan dasar

bioplastik yang pernah dilakukan diantaranya, Sutanto (1998) melakukan

pencampuran antara protein bungkil kedelai dengan karboksi metil selulosa (CMC),

metil selulosa (MC), lilin lebah dan bahan pemlastis polietilen glikol (PEG).

Penambahan lilin lebah adalah untuk meningkatkan barrier uap air dari film berbasis

polisakarida dan protein, sedangkan penambahan bahan pemlastis adalah untuk

mengatasi sifat rapuh film. Bungkil kedelai diambil ekstrak proteinnya dengan

beberapa tahap, yaitu penggilingan dan perendaman pada suhu 65 0C selama satu

jam, dilanjutkan dengan penirisan selama 20 menit, penghancuran dengan blender,

pemasakan dengan suhu 90-95 0

Kristanoko (1996) juga melakukan penelitian terhadap pengaruh penambahan

CMC dan sorbitol terhadap karakteristik fisik edible film dari ekstraksi bungkil

kedelai. Konsentrasi CMC yang diteliti 0,75; 100; dan 1,25 g/ 45 ml ekstrak protein

bungkil kedelai. Sedangkan sorbitol yang ditambahkan 2 dan 3 ml/ 45 ml ekstrak C selama 10 menit, penyaringan, lalu sentrifusi. Dari

hasil penelitian tersebut disimpulkan bahwa dengan peningkatan konsentrasi PEG,

maka kuat tarik akan menurun, sedangkan permeabilitas uap air, permeabilitas

oksigen, persen pemanjangan, dan ketebalan akan meningkat. Dengan peningkatan

konsentrasi lilin lebah, maka kuat tarik, permeabilitas uap air, dan oksigen akan

menurun sedangkan ketebalan dan persen pemanjangan akan meningkat. Dari segi

penampakan, semakin tinggi jumlah lilin lebah, maka film akan semakin kurang

(21)

protein bungkil kedelai. Konsentrasi ekstrak protein bungkil kedelai adalah 3%.

Film yang dihasilkan untuk beberapa karakteristik fisik tertentu sangat

dipengaruhi oleh konsentrasi CMC dan sorbitol yang ditambahkan. CMC

meningkatkan kadar air, ketebalan, kuat tarik, persen pemanjangan, laju transmisi uap

air (WVTR). Sedangkan kadar protein film menjadi turun. Sorbitol memberikan

pengaruh yang berbeda. Sorbitol meningkatkan kadar air, kadar protein, ketebalan,

persen pemanjangan, dan laju transmisi uap air, tetapi kuat tarik film semakin

menurun.

Bai et al. (2010) melakukan penelitian tentang efek dari salicylic acid

terhadap sifat mekanis dan ketahanan air dari film isolat protein kedelai. Film

komposit protein kedelai (SF) disiapkan dengan menggunakan isolat protein kedelai

(SPI), salicylic acid (SA), dan gliserol sebagai bahan pemlastisnya. Sedangkan untuk

menyiapkan film komposit protein kedelai tahan air (SF-B), maka digunakan 2,

2-diphenyl-2-hydroxyethanoic acid (DPHEAc). Sejumlah SA yang berbeda (0,25; 0,5;

0,75 w/w) dicampur hingga merata dengan tepung SPI dan gliserol (30% dari berat

SPI) menggunakan mixer selama 15 menit, kemudian dipress menggunakan hot press

pada suhu 140 0C dan tekanan 20 MPa selama 10 menit. Hasil penelitian tersebut

menunjukkan bahwa film SF-B dengan 0,5% (wt) SA memiliki kekuatan tarik dan

Gambar

Gambar 2.1 Sruktur Kimia Asam Amino Protein Kedelai (Sutanto, 1998)
Gambar 2.2 Diagram Alir Proses Pembuatan Tahu (Sumber : Said, 2006)
Tabel 2.2 Kandungan Nilai Gizi Ampas Tahu
Gambar 2.3 Rumus Struktur Gliserol
+2

Referensi

Dokumen terkait

Berdasarkan paparan tersebut, peneliti menyimpulkan bahwa penggunaan alat persegi satuan dalam proses pembelajaran dapat meningkatan prestasi belajar siswa

Industri yang mengalami nilai total produktivitas yang negatif ketika tahun krisis adalah industri tembakau, tekstil, kulit dan barang dari kulit, kayu, karet,

Hasil penelitian ini menunjukkan bahwa Aqaid Al-Khamsina adalah Sifat- Sifat Allah Swt dan RasulNya yang berjumlah 50 yaitu 20 Sifat Wajib Allah, 20 Sifat Mustahil Allah,

2. 'enghasilan yang diper"leh perusahaan dapat berasal dari  berbagai kegiatan, sebagai %"nt"h penjualan barang, penyeaan aset tetap dan sebagiannya. /emikian halnya

2.4 Jarak Unit Produksi ke Daerah Pelayanan(Panjang Pipa Transmisi Air Minum) Harga satuan investasi per-SR khususnya pada komponen unit produksi, dipengaruhi oleh panjang

SKRIPSI ANALISIS DAMPAK PELAKSANAAN COMMON EFFECTIVE ....

Tari Ronggeng Manis merupakan tari garapan baru yang berpijak pada tari Lengger Banyumas.. Tari Lengger adalah salah satu bentuk kesenian tradisio nal yang cukup

Gambar 5.5 Implementasi Halaman Cek kerusakan Setelah user mengisi data diri maka sistem akan menampilkan halaman yang berisi pertanyaan konsultasi