Imam Fachmi Nasrulloh, 2016
IMPLEMENTASI GRAD IENT D ESCENT D AN VARIANNYA D ALAM BAHASA R D ENGAN STUD I KASUS PRED IKSI FAKTOR KOMPRESIBILITAS GAS
Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu
63
DAFTAR PUSTAKA
Abu-Mostafa, Y. S., Magdon-Ismail, M., & Lin, H.-T. (2003). Learning From Data: A Short Course. AMLbook.com.
Bergmeir, C., & Benítez, J. M. (2015). RSNNS: Neural Networks in R using the Stuttgart Neural Network Simulator (SNNS).
Bottou, L. (2010). Large-Scale Machine Learning with Stochastic Gradient Descent. COMPSTAT'2010 (pp. 17-186). NEC Labs America, Princeton NJ 088542, USA.
Chemguide. (2016). Real Gases.
http://www.chemguide.co.uk/physical/kt/realgases.html (juni 2016). Clapeyron, E. (1834). Memoire sur la puisssance motrice de la chaleur. Journal de
I'Ecole Polytechnique, XIV: 153-190.
Cotter, A., Shamir, O., Srebro, N., & Sridharan, K. (2011). Better Mini-Batch Algoritms via Accelerated Gradient Methods. NIPS, 1647-155. Ihaka, R., & Gentleman, R. (1996). R: A Language for Data Analysis and
Graphics. Journal of Computational and Graphical Statistics, 5(3):299-314.
Kawsar, A., Abdullah-Al-Emran, Tasnuba, J., Roushney, M. F., Md, R. Z., & Farzana, A. (2013). Early Detection of Lung Cancer Risk Using Data Mining. Asian Pacific Journal of Cancer Prevention, 14(1):595-598. Kennedy, G. C. (1954). Pressure-Volmue Temperature Relations in CO2 at
Elevated Temperatures and Pressures. American Journal of Science, 225-241.
Lastra, M., Herrera, F., & Benitez, J. M. (2014). A High Performance Fingerprint Matching System for Large Databases Based on GPU. IEEE Transactions on Information Forensics and Security, 9(1):62-71.
Le Roux, N., Schmidt, M., & Bach, F. (2011). A Stochastic Gradient Method with an Exceptional Convergence Rate for Finite Training Sets. Advances in Neural Information Processing Systems.
Mahersia, H., Gabralla, L. A., & Ajith, A. (2015). Ensemble Neurocomputing Based Oil Price Prediction. Advances in Intelligent Systems and Computing, 334:293-302.
Melzer, L. S. (2012). Carbon Dioxide Exhanced Oil Recovery (CO2 EOR): Factors Involved in Adding Carbon Capture, Utilization and Storage to Enhanced Oil Recovery. Midland, TX: CO2 Consultant and Annual CO2 Flooding Conference Director.
64
Imam Fachmi Nasrulloh, 2016
IMPLEMENTASI GRAD IENT D ESCENT D AN VARIANNYA D ALAM BAHASA R D ENGAN STUD I KASUS PRED IKSI FAKTOR KOMPRESIBILITAS GAS
Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu
Mohagheghian, E., Zafarian-Rigaki, H., Motamedi-Ghahfarrokhi, Y., & Hemmati-Sarapardeh, A. (2015). Using an Artiicial Neural Network to Predict Carbon Diokside Compressibility Factor at High Pressure and Temperature. Korean J. Chem.
Navid, A., Isazadeh, D., & Behbahani, D. (2010). An efficient correlation for calculating compresibility factor of natural gasses. Journal of Natural Gas Chemistry, 19(6), 642-645.
Peters, A., Hothorn, T., Ripley, B. D., Therneau, T., & Atkinson, B. (2015). ipred: Improved Predictors.
Piatetsky, G. (2015, May). R leads ReapidMiner, Python catches up, Big Data tools grow, Spark ignites. Dipetik Oktober 25, 2105, dari Kdnuggets web site: http://www.kdnuggets.com/2015/05/poll-r-rapidminer-python-big-data-spark.html
Pressman, R. (2012). Software Engineering: A Practioner Approach. New York: Mc Graw Hill.
Raschka, S. (2016, June 12). Single-Layer Neural Networks and Gradient Descent. Diambil kembali dari sebastianraschka:
http://sebastianraschka.com/Articles/2015_singlelayer_neurons.html Ripley, B., & Venables, W. (2016). nnet: Feed-Forward Neural Networks and
Multinomial Log-Linear Models.
Riza, L. S. (2015). Data Science and Big Data Processing in R: Represntations and Software. Granada: Programa de Doctorado en Tecnologias de la informacion y la Comunicacion.
Riza, L. S., Bergmeir, C., Herrera, F., & Benitez, M. J. (2015). frbs: Fuzzy Rule-Bases Systems for Classification and Regression Tasks.
Samuel, A. L. (1959). Some Studies in Machine Learning Using the Game of Checkers. IBM Journal (Vol:3, No:2).
Schmidt, M., Le Roux, N., & Bach, F. (2013). Minimizing Finite Sums with the Stochastic Average Gradient. Paris, France: INRIA-SIERRA Project - Team Departement d'informatique de l'Ecole Normale Superieure. Stone, P., Sutton, R. S., & Kuhlmann, G. (2005). Reinforced Learning for RoboCup-Soccer Keepaway. Adaptive Behaviour, 13(3):165-188. Wei, J., Xinbing, Z., Lei, W., & Randi, F. (2014). Classification of clouds in
satellite imagery using over-complete dictionary via sparse representation.
Patter Recognition Letters, 49:193:200. Wickham, H. (2015). Advanced R. CRC Press.