The journey of a thousand miles begins with one step.
Perjalanan seribu mil dimulai dengan satu langkah. Matematika
Matematika SMA/MA X SMA/MA X
i
i
Matematika
Matematika
untuk SMA/MA Kelas X
1
1
Knowledge without follow-through is worse than no knowledge.
Pengetahuan tanpa tindak lanjut lebih buruk daripada tanpa pengetahuan.
Matematika
Matematika SMA/MA X SMA/MA X
ii
ii
untuk SMA/MA kelas X
Buku ini disetting dan dilayout menggunakan
Adobe InDesign® CS, Corel Draw® 11, dan
Adobe PhotoShop® CS.
Font isi: Times 11 pt.
ISBN: 978-602-292-012-0
Diterbitkan oleh CV Willian
Jl. Diponegoro No. 123 Wirogunan, Kartasura, Sukoharjo 57166
Hunting/Telp: (0271) 781797, 781853, 784754
Fax: (0271) 781797
Email: [email protected]
Penulis
Penulis
Tim Bimata
Editor
Editor
Rini Dewi Puspitasari
Grafis
Grafis
Aris Nugroho
Ilustrator
Ilustrator
Bayu Aprianto
Perancang Kulit
Perancang Kulit
Tim Willian
© Hak cipta dilindungi oleh Undang-Undang Nomor 19 Tahun 2002.
Dilarang memperbanyak/menyebarluaskan dalam bentuk apa pun
tanpa seizin tertulis dari penerbit.
Matematika
Matematika
The verit in action lies in fi nishing it to the end.
Kebaikan dalam tindakan terletak pada penyelesaian sampai akhir. Matematika
Matematika SMA/MA X SMA/MA X
iii
iii
3
3
1
1
Cover Dalam ... i
Copyright ... ii
Let’s Get to Know ... iii
Peta Konsep ... vi
Pendahuluan ... 7
Pembelajaran ... 8
Bab 1 Mengenal Eksponen dan Logaritma ...
9
Kegiatan Pembelajaran 1
Mengenal Eksponen ...
12
Kegiatan Pembelajaran 2
Mengenal Logaritma ...
31
Bab 3 Mendeskripsikan Sistem Persamaan dan
Pertidaksamaan Linear ...
76
Kegiatan Pembelajaran 1
Mengenal Sistem Persamaan Linear ...
79
Kegiatan Pembelajaran 2
Mengenal Sistem Pertidaksamaan Linear ...
95
Bab 2 Mendeskripsikan Persamaan dan Pertidaksamaan Linear
dengan Nilai Mutlak ... 49
Kegiatan Pembelajaran 1
Mengenal Persamaan Linear dengan Nilai Mutlak ... 52
Kegiatan Pembelajaran 2
Mengenal Pertidaksamaan Linear dengan Nilai Mutlak ... 64
Ulangan Tengah Semester 1 ... 112
Bab 4 Mendeskripsikan Konsep Matriks ... 118
Kegiatan Pembelajaran 1
Mengenal Operasi Hitung pada Matriks ... 121
Kegiatan Pembelajaran 2
Mengenal Aplikasi Matriks ... 137
Optimists are right.
Optimisme memang harus.
Matematika
Matematika SMA/MA X SMA/MA X
iv
iv
5
5
Bab 5 Mendeskripsikan Relasi dan Fungsi ... 153
Kegiatan Pembelajaran 1
Mengenal Relasi ... 156
Kegiatan Pembelajaran 2
Mengenal Pemetaan (Fungsi) ... 164
8
8
Bab 8 Mendeskripsikan Konsep-Konsep Geometri ... 264
Kegiatan Pembelajaran 1
Memahami Kedudukan Titik, Garis, dan Bidang
dalam Bangun Ruang ... 267
Kegiatan Pembelajaran 2
Memahami Jarak dan Sudut pada Bangun Ruang ... 277
6
6
Bab 6 Mendeskripsikan Barisan dan Deret ... 179
Kegiatan Pembelajaran 1
Mengenal Barisan dan Deret Aritmetika ... 182
Kegiatan Pembelajaran 2
Mengenal Barisan dan Deret Geometri ... 207
7
7
Bab 7 Mempelajari Persamaan dan Fungsi Kuadrat ... 229
Kegiatan Pembelajaran 1
Mengenal Persamaan Kuadrat ... 232
Kegiatan Pembelajaran 2
Mengenal Fungsi Kuadrat ... 248
No effort no results.
Tiada usaha tiada hasil. Matematika
Matematika SMA/MA X SMA/MA X
v
v
10
10
Bab 10 Mengenal Statistika dan Peluang ... 345
Kegiatan Pembelajaran 1
Mengenal Penyajian Data ... 348
Kegiatan Pembelajaran 2
Mengenal Pengolahan Data ... 364
Kegiatan Pembelajaran 3
Mendeskripsikan Konsep Peluang ... 378
Ulangan Semester 2 ... 433
Ujian Tingkat Kompetensi ... 439
Glosarium ... 444
Penutup ... 446
Daftar Pustaka ... 447
9
9
Bab 9 Mengenal Trigonometri dan Limit Fungsi ... 293
Kegiatan Pembelajaran 1
Memahami Perbandingan Trigonometri ... 296
Kegiatan Pembelajaran 2
Memahami Identitas dan Grafi k Fungsi Trigonometri ... 312
Kegiatan Pembelajaran 3
Mengenal Limit Fungsi Aljabar ... 324
Ulangan Tengah Semester 2 ... 339
11
11
Bab 11 Mengenal Logika Matematika ... 396
Kegiatan Pembelajaran 1
Mendeskripsikan Kalimat Terbuka dan
Penyangkalan (Ingkaran) ... 399
Kegiatan Pembelajaran 2
Mendeskripsikan Argumentasi Logis ... 413
All giant step need a lot of little steps.
Langkah-langkah besar membutuhkan banyak langkah-langkah kecil.
229
229
Mempelajari Persamaan danMempelajari Persamaan dan FungsiFungsi Kuadrat Kuadrat
Sumber: ba-lh6.googleusercontent.com
Pernahkah Anda mengikuti kegiatan ekstrakurikuler
di sekolah? Kegiatan ekstrakurikuler apa yang Anda
ikuti? Banyak jenis kegiatan ekstrakurikuler yang dapat
Anda ikuti di sekolah, misalnya basket. Basket adalah
salah satu cabang olahraga bola berkelompok yang terdiri
atas dua tim beranggotakan lima orang tiap kelompok.
Permainan basket dilakukan dengan memasukkan bola
ke dalam keranjang lawan. Coba Anda amati gerak bola
basket ketika dimasukkan ke dalam keranjang (ring)!
Bagaimana bentuk lintasan bola tersebut? Apabila
diamati dengan cermat, bola yang akan dimasukkan ke dalam ring membentuk lintasan
yang berupa garis lengkung. Garis lengkung tersebut merupakan bentuk grafi k fungsi
kuadrat. Coba Anda sebutkan bentuk permainan olahraga lain yang gerakan bolanya
berupa garis lengkung! Garis lengkung dapat diamati pula dalam permainan sepak bola
atau bola voli. Anda akan lebih mudah memahami bentuk-bentuk grafi k fungsi dengan
mempelajari materi persamaan dan fungsi kuadrat berikut.
Mempelajari
Mempelajari Persamaan
Persamaan
dan Fungsi Kuadrat
dan Fungsi Kuadrat
1. Apa yang dimaksud dengan persamaan kuadrat?
2. Jelaskan bentuk umum persamaan kuadrat!
3. Tentukan nilai a, b, dan c dari persamaan kuadrat 4 – 3x = 3 (2x2 – 3x)!
4. Jelas kan penger tian fungs i kuadrat dan bentuk umum fungsi kuadrat!
5. A p a y a n g d i m a k s u d t i t i k balik minimum dan titik balik maksimum?
6. J e l a s k a n l a n g k a h - l a n g k a h menggambar sketsa grafi k fungsi kuadrat!
7. J elas kan c ar a m enentu kan persamaan fungsi kuadrat dari sketsa grafi k!
Cek Kemampuan Awal
Sebelum materi persamaan dan fungsi kuadrat diajarkan atau dijelaskan oleh guru Anda di kelas, Anda dapat m e m ba c a d a n m e m p e l a j a r i nya ter lebi h dahu lu s ehing ga A nda memiliki gambaran tentang materi yang akan Anda pelajari di kelas. Berlatihlah mengerjakan soal yang berhubungan dengan persamaan dan fungsi kuadrat sehingga Anda terbiasa dalam mengerjakan soal-soal. Catat materi yang sekiranya Anda belum pahami dan soal yang sulit Anda kerjakan, kemudian tanyakan pada guru Anda saat belajar di kelas. Selain itu, untuk mempermudah memahami materi persamaan dan fungsi kuadrat Anda harus memperhatikan tiap penjelasan yang disampaikan oleh guru Anda.
Prasyarat
7
7
Bab
Bab
Don’t limit yourself, go as for as your mind lets you.
Jangan membatasi dirimu, pergilah sejauh mana pikiranmu membawa.
230
230
Ma
Matematikatematika SMA/MA X SMA/MA X
Metode: 1. Ceramah 2. Diskusi 3. Pemecahan Masalah 4. Tanya Jawab Apersepsi KOMPETENSI INTI KOMPETENSI DASAR • Sikap • Pengetahuan • Keterampilan
Mempelajari Persamaan dan
Fungsi Kuadrat Dimensi Standar Kompetensi Lulusan Acuan kualitas dan konten Materi pembelajaran KOGNITIF Pengukuran
Guru memberikan contoh penerapan persamaan dan fungsi kuadrat dalam kehidupan sehari-hari.
AFEKTIF PSIKOMOTORIK PENUGASAN 1. AFEKTIF 2. PSIKOMOTORIK PELATIHAN 1. AFEKTIF 2. PSIKOMOTORIK Aspek pembelajaran Alat/Media: 1. Referensi lain yang relevan. 2. Alat-alat tulis, dan media presentasi. 3. Internet.
Mengenal Fungsi Kuadrat
A. Memahami Pengertian Fungsi Kuadrat B. Menganalisis Grafi k
Fungsi Kuadrat C. Membuat Sketsa Grafi k
Fungsi Kuadrat D. Memahami Kedudukan
Grafi k Fungsi Kuadrat E. Menyusun Persamaan
Fungsi Kuadrat F. Menyajikan Model
Matematika yang Berkaitan dengan Fungsi Kuadrat dan Kombinasinya Mengenal Persamaan Kuadrat A. Memahami Pengertian Persamaan Kuadrat B. Menyelesaikan Persamaan Kuadrat C. Memahami Jenis-Jenis
Akar Persamaan Kuadrat D. Memahami Rumus
Jumlah dan Hasil Kali Akar-Akar Persamaan Kuadrat
E. Menyusun Persamaan Kuadrat Baru F. Menyajikan Model
Matematika dari Masalah yang Berkaitan dengan Persamaan Kuadrat
Cakupan Kualifi kasi Kemampuan
Kata Kunci
• Persamaan Kuadrat • Akar Persamaan • Fungsi Kuadrat • Grafi k Fungsi • Titik Balik • Akar-AkarPeta Konsep
Champion is 10 percen inspiration 90 percen perspiration.
Kemenangan adalah 10% gagasan 90% keringat.
231
231
Mempelajari Persamaan danMempelajari Persamaan dan FungsiFungsi Kuadrat Kuadrat
1.1 Menghayati dan mengamalkan ajaran agama yang dianutnya.
2.1 Memiliki motivasi internal, kemampuan bekerja sama, konsisten, sikap disiplin, rasa percaya diri, dan sikap toleransi dalam perbedaan strategi berpikir dalam memilih dan menerapkan strategi menyelesaikan masalah.
2.2 Mampu mentransformasi diri dalam berperilaku jujur, tangguh mengadapi masalah, kritis dan disiplin dalam melakukan tugas belajar matematika.
2.3 Menunjukkan sikap bertanggung jawab, rasa ingin tahu, jujur dan perilaku peduli lingkungan.
3.9 Mendeskripsikan berbagai bentuk ekspresi yang dapat diubah menjadi persamaan kuadrat.
3.10 Mendeskripsikan persamaan dan fungsi kuadrat, memilih strategi dan menerapkan untuk menyelesaikan persamaan dan fungsi kuadrat serta memeriksa kebenaran jawabannya.
3.11 Menganalisis fungsi dan persamaan kuadrat dalam berbagai bentuk penyajian masalah kontekstual.
3.12 Menganalisis grafi k fungsi dari data terkait masalah nyata dan menentukan model matematika berupa fungsi kuadrat.
4.9 Mengidentifi kasi dan menerapkan konsep fungsi dan persamaan kuadrat dalam menyelesaikan masalah nyata dan menjelaskannya secara lisan dan tulisan. 4.10 Menyusun model matematika dari masalah yang berkaitan dengan persamaan dan
fungsi kuadrat dan menyelesaikan serta memeriksa kebenaran jawabannya. 4.11 Menggambar dan membuat sketsa grafi k fungsi kuadrat dari masalah nyata
berdasarkan data yang ditentukan dan menafsirkan karakteristiknya.
4.12 Mengidentifi kasi hubungan fungsional kuadratik dari fenomena sehari-hari dan menafsirkan makna dari setiap variabel yang digunakan.
Mempelajari Persamaan dan Fungsi Kuadrat
1. Menghayati dan mengamalkan ajaran agama yang dianutnya.
2. Menghayati dan mengamalkan perilaku jujur, disiplin, tanggung jawab, peduli (gotong royong, kerja sama, toleran, damai), santun, responsif dan pro-aktif dan menunjukkan sikap sebagai bagian dari solusi atas berbagai permasalahan dalam berinteraksi secara efektif dengan lingkungan sosial dan alam serta dalam menempatkan diri sebagai cerminan bangsa dalam pergaulan dunia. 3. Memahami, menerapkan, menganalisis pengetahuan faktual, konseptual,
prosedural berdasarkan rasa ingin tahunya tentang ilmu pengetahuan, teknologi, seni, budaya, dan humaniora dengan wawasan kemanusiaan, kebangsaan, kenegaraan, dan peradaban terkait penyebab fenomena dan kejadian, serta menerapkan pengetahuan prosedural pada bidang kajian yang spesifi k sesuai dengan bakat dan minatnya untuk memecahkan masalah.
4. Mengolah, menalar dan menyaji dalam ranah konkret dan ranah abstrak terkait dengan pengembangan dari yang dipelajarinya di sekolah secara mandiri, dan mampu menggunakan metode sesuai kaidah keilmuan.
Kompetensi Inti dan Kompetensi Dasar
Kompetensi Inti dan Kompetensi Dasar
Kompetensi Inti
Kompetensi Inti
Kompetensi
Our power is in our ability to decide.
Kekuatan kami adalah kemampuan kami dalam memutuskan.
232
232
Ma
Matematikatematika SMA/MA X SMA/MA X
Indikator Pencapaian Kompetensi
Indikator Pencapaian Kompetensi
1.1 Peserta didik menghayati kebesaran Tuhan melalui pokok bahasan persamaan kuadrat.
1.2 Peserta didik mengamalkan rasa syukur kepada Tuhan karena diberi kesempatan untuk belajar persamaan kuadrat.
2.1 Peserta didik menerapkan kemampuan bekerja sama, konsisten, dan toleransi dalam mempelajari meteri persamaan kuadrat.
2.2 Peserta didik mengamalkan sikap disiplin dan rasa percaya diri dalam perbedaan strategi untuk menyelesaikan masalah persamaan kuadrat.
3.1 Peserta didik menerapkan sikap tangguh bertanggung jawab, rasa ingin tahu, dan jujur dalam mempelajari materi persamaan kuadrat.
3.2 Peserta didik menerapkan perilaku jujur, kritis, dan disiplin dalam mengerjakan tugas-tugas terkait materi persamaan kuadrat.
4.1 Peserta didik memahami pengertian persamaan kuadrat.
4.2 Peserta didik memahami cara menentukan penyelesaian persamaan kuadrat. 5.1 Peserta didik menganalisis jenis-jenis persamaan kuadrat.
5.2 Peserta didik menganalisis persamaan kuadrat baru bila diketahui akar-akarnya.
6.1 Peserta didik mencoba menemukan persamaan kuadrat yang akar-akarnya sudah diketahui.
6.2 Peserta didik menyajikan persamaan kuadrat yang akar-akarnya mempunyai hubungan dengan akar-akar persamaan kuadrat lain.
7.1 Peserta didik menyajikan model matematika dari masalah yang berkaitan dengan persamaan kuadrat. 7.2 Peserta didik menalar kebenaran model matematika dari masalah yang berkaitan dengan persamaan kuadrat. Setelah melaksanakan kegiatan pembelajaran, peserta didik diharapkan dapat:
1. menghayati dan merasakan kebesaran Tuhan melalui materi, persamaan kuadrat,
2. mengamalkan kemampuan sikap bekerja sama, konsisten, disiplin, rasa percaya diri, dan toleransi dalam perbedaan strategi untuk menyelesaikan masalah persamaan kuadrat,
3. menjalankan perilaku tangguh mengadapi masalah, serta kritis bertanggung jawab, rasa ingin tahu, jujur, dan disiplin dalam mengerjakan tugas persamaan kuadrat,
4. memahami berbagai bentuk ekspresi yang dapat diubah menjadi persamaan kuaadrat, 5. menganalisis persamaan kuadrat dalam berbagai bentuk penyajian masalah, 6. menyajikan konsep persamaan kuadrat dalam menyelesaikan masalah,
7. menyusun model matematika dari masalah berkaitan dengan persamaan kuadrat ser ta memeriksa kebenarannya.
Sebelum memulai kegiatan pembelajaran pertama, guru mengucapkan salam dilanjutkan dengan mengajak peserta didik untuk melakukan doa bersama. Guru memberikan motivasi peserta didik melalui penanaman nilai matematis, soft skill, dan kebergunaan matematika. Setelah itu guru menjelaskan materi mengenal persamaan kuadrat yang meliputi pengertian persamaan kuadrat, jenis-jenis akar persamaan kuadrat, rumus jumlah dan hasil kali akar-akar persamaan kuadrat, menyusun persamaan kuadrat baru, menyajikan model matematika dari masalah yang berkaitan dengan persamaan kuadrat menggunakan berbagai metode pelajaran seperti metode ceramah, diskusi, pemecahan masalah dan tanya jawab.
Tujuan Pembelajaran
Tujuan Pembelajaran
Mengenal Persamaan Kuadrat
Kegiatan Pembelajaran 1
A. Memahami Pengertian Persamaan Kuadrat
Coba ingat kembali pengertian persamaan kuadrat yang telah Anda pelajari di SMP!
Dapatkah Anda menyebutkan pengertian persamaan kuadrat? Persamaan kuadrat dalam
matematika memiliki bentuk umum sebagai berikut.
Make your life a mission, not an intermission.
Buatlah hidup sebagai sebuah misi, bukan beristirahat.
233
233
Mempelajari Persamaan danMempelajari Persamaan dan FungsiFungsi Kuadrat Kuadrat
Contoh
Contoh
Dengan membentuk persamaan menjadi
ax
2+ bx + c = 0, tentukan a, b, dan c dari
persamaan berikut!
1. 3 – 2x = 2(4x
2– 3x)
2.
2
3
1
4
x
x
= 3
3. (x – 3)
2+ 2(x – 3) – 3 = 0
4.
x
x
x
x
2
3
(
2
)
= 2
Jawab:
1. 3 – 2x = 2(4x
2– 3x)
3 – 2x = 8x
2– 6x
8x
2– 6x + 2x – 3 = 0
8x
2– 4x – 3 = 0
Jadi, a = 8, b = -4, dan c = -3.
2.
2
3
1
4
x
x
= 3 (kalikan dengan
(x + 3)(x – 4))
2(x – 4) – (x + 3) = 3(x + 3)(x – 4)
2x – 8 – x – 3 = 3(x
2– x – 12)
x – 11 = 3x
2– 3x – 36
3x
2– 3x – x – 36 + 11 = 0
3x
2– 4x – 25 = 0
Jadi, a = 3, b = -4, dan c = -25.
3. (x – 3)
2+ 2(x – 3) – 3 = 0
x
2– 6x + 9 + 2x – 6 – 3 = 0
x
2– 4x = 0
Jadi, a = 1, b = -4, dan c = 0.
4.
x
x
x
x
2
3
(
2
)
= 2 dikalikan x(x + 2)
x
2+ 3(x – 2)(x + 2) = 2x(x + 2)
x
2+ 3(x
2– 4) = 2x
2+ 4x
x
2+ 3x
2– 12 – 2x
2– 4x = 0
2x
2– 4x – 12 = 0
Jadi, a = 2, b = -4, dan c = -12.
B. Menyelesaikan Persamaan Kuadrat
Persamaan kuadrat dapat diselesaikan dengan mencari akar-akar persamaan kuadrat.
Akar atau solusi pesamaan kuadrat adalah nilai pengganti x yang memenuhi persamaan
kuadrat ax
2+ bx + c = 0, umumnya dinotasikan dengan x
1