• Tidak ada hasil yang ditemukan

KAJI EKSPERIMENT PERFORMA TURBIN PELTON TYPE FM 32

N/A
N/A
Protected

Academic year: 2021

Membagikan "KAJI EKSPERIMENT PERFORMA TURBIN PELTON TYPE FM 32"

Copied!
13
0
0

Teks penuh

(1)

KAJI EKSPERIMENT PERFORMA TURBIN PELTON TYPE

FM 32

Sahran Fauji, Suryadimal, M.T1), Burmawi, M.Si2)

Program Studi Teknik Mesin-Fakultas Teknologi Industri-Universitas Bung Hatta Jl. Gajah Mada No.19 Olo Nanggalo Padang 25143

Telp. 0751-7054257 Fax. 0751-7051341

Email : fj_ozie@yahoo.co.id Suryadimal2004@yahoo.com Burmawi_koto@yahoo.com

ABSTRAK

Turbin Pelton adalah turbin reaksi di mana pancaran air menumbuk roda yang terdapat sejumlah mangkok atau sudu - sudu. Pancaran air keluar dari nozzle dengan valve untuk mengatur aliran air. Nozzel turbin berada searah dengan piringan ranner. Air yang memutar sudu akan diteruskan menuju transmisi. Dari transmisi kemudian diteruskan menuju alternator DC. Dari alternator DC inilah akan dihasilkan energi listrik. Tujuan yang ingin di capai dalam penelitian ini adalah untuk menentukan performansi pada alat peraga turbin pelton type FM 32 modifikasi. Dari hasil percobaan yang di dapat, pada putaran pertama 3150 rpm dan debit 0,00038 mengalami kenaikan pada putaran kedua 3299 rpm dan debit 0,00042, pada putaran ketiga 3275 rpm dan debit 0,00032 mengalami penurunan. Jika debit aliran menggunakan watermeter semakin meningkat, maka putaran rata – rata turbin mengalami peningkatan. Dan jika debit aliran semakin menurun , maka putaran rata – rata turbin mengalami penurunan.

!.Pendahuluan

Kondisi air yang bisa dimanfaatkan sebagai sumber daya

(Resources) penghasil listrik adalah

memiliki kapasitas aliran dan ketinggian tertentu dan instalasi. Semakin besar kapasitas aliran maupun ketinggian dari instalasi maka semakin besar energi yang bisa dimanfaatkan untuk menghasilkan energi listrik. Biasanya pembangkit listrik tenaga air yang dibangun berdasarkan kenyataan bahwa adanya air yang mengalir di suatu daerah dengan kapasitas dan ketinggian yang memadai. Istilah kapasitas mengacu kepada jumlah volume aliran air persatuan waktu

(Flow Capacity), sedangkan beda

ketinggian daerah aliran sampai ke instalasi dikenal dengan istilah heed.

Air maupun energi air dapat di manfaatkan sebagai penggerak mula yang ekonomis pada suatu pembangkit listrik. Pembangkit listrik jenis ini dapat digolongkan atas: Hidro electrik power

(PLTA),Thermal power

(PLTU),Atomic power (PLTN) PLTU dan PLTN memanfaatkan tenaga uap air untuk menggerakkan mesin penggerak mula suatu pembangkit, sedangkan PLTA memanfaatkan energi potensial atau energi kinetik air.

(2)

Untuk merubah energi potensial maupun kinetik air dibutuhkan peralatan misalnya turbin Pelton.Energi Potensial air dipengaruhi oleh ketinggiannya, sedangkan energi kinetik dipengaruhi oleh kecepatan air tersebut. Turbin Pelton merupakan turbin impuls, yaitu turbin yang digerakkan oleh energi kinetik air. Semprotan (jet) air yang berkecepatan tinggi mengenai buket runner dan setelah menggerakkan runner air keluar pada kecepatan rendah, yang berarti sebagian energinya tidak diserap oleh runner. Tekanan air masuk dan keluar sudu adalah tekanan atmosfir. Turbin pelton adalah merupakan contoh terbaik dari turbin impuls. Turbin tersebut dioperasikan oleh satu atau lebih jet (nozzle) air yang masuk ke center bucket pada sekeliling parameter dari runner. Tenaga berasal dari gaya air dari tekanan tinggi yang menumbuk buckets sehingga dinamai impuls turbin.

Turbin type FM 32 di beli pada tahun 2005 sampai pada tahun 2013 tidak pernah digunakan dalam praktikum.Sehingga turbin mengalami kerusakan pada komponen dan tidak dapat di fungsikan kembali.Dari kendala tersebut maka dilakukan perbaikan pada turbin pelton type FM 32 dan modifikasi sehingga mendapatkan performansi turbin.

I. TINJAUAN PUSTAKA

2.1 Tinjauan Umum Sistem Pembangkit

Pembangkitan listrik tenaga air adalah suatu bentuk perubahan energi dari air dengan ketinggian dan debit tertentu (energi potensial menjadi energi mekanik) dengan bantuan turbin. Dengan bantuan turbin air dan generator daya yang di hasilkan adalah suatu persentase hasil perkalian tinggi terjun air dan debit air. Oleh karena itu keberhasilan dalam perencanaan sistim pembangkitan listrik tenaga air tergantung dari debit dan tinggi jatuhnya potensi air sebagai pembangkit secara produktif.

Sebagai perbandingan dengan memanfaatkan potensi yang ada maka sebuah sungai pada umumnya kemiringan di hulu sungai lebih curam dan memiliki tinggi terjun yang besar, sedangkan di hilir sungai tinggi terjun rendah dan memiliki debit yang besar. Adapun faktor yang menentukan ukuran, dimensi dan peralatan mesin adalah debit air. Sedangkan untuk tinggi terjun air tinggi dan debit kecil memerlukan peralatan, permesinan dan dimensi yang kecil pula, dan untuk tinggi terjun air yang rendah dan debit besar memerlukan peralatan, permesinan dan dimensi yang besar. Maka dari itu bagian hulu sungai merupakan lokasi yang efektif dan ekonomis dibandingkan hilir sungai. 2.2 Komponen – Komponen utama pengujian turbin pelton type FM 32 Kompresor 1) Sudu Turbin 2) Nozzel 3) Rumah Turbin 4) Poros Penghubung 5) Generator 6) Pompa

(3)

II. Metodologi Penelitian 2.1 Diagram Alir Penelitian

3.1 Diagram Alir Penelitian 2.2 Data Alat Ukur

Alat yang digunakan dalam pengujian yaitu :

a) Ampere Meter Arus Searah b) Pressure Gauge

c) Ampermeter

d) Water Meter PDAM e) Stopwatch

f) Slang Fleksibel g) Multi Meter 2.3 Pengolahan Data

Setelah menentukan peralatan yang di butuhkan dalam eksperiment perancangan alat uji turbin pelton type FM 32 yang telah di tentukan,maka dilanjutkan ke tahap perencanaan ,perencanaan

tersebut di bagi menjadi tiga bagian yaitu :

Prosedur Pengujian

1.Pemeriksaan keadaan turbin 2 .Hidupkan motor listrik 3 .Buka katup

4 .Buka katup nozzel 5 .Catat pressure guage A 6 .Catat pressure guage B 7 .Catat arus(Ampere meter) 8 .Catat tegangan(volt meter) 9 .Catat putaran poros turbin

10.Catat putaran poros generator mini arus searah (DC)

11.Hidupkan lampu yang dibutuhkan

12.Ulangi prosedur percobaan no.4 hingga 11

13.Ulangi prosedur percobaan no.3 hingga 11

Catatan : Jika Ampere Meter dan Volt Meter tidak berfungsi dengan maksimal gunakan Multimeter.

3.4 Waktu Dan Tempat Penlitian Waktu : Bulan Mai – Juli 2014 Tempat : Penelitian dilakukan pada laboratoruim Prestasi Mesin Jurusan Teknik Mesin Fakultas Teknologi Industri Kampus III Universitas Bung Hatta.

(4)

III. Analisa data.

4.1 Tabel Percobaan

4.3 Pengolahan Data Turbin

4.2.1 Debit Aliran Air 0,00038 m3/s Bukaan Katup 1 Nozzel 1

 Energi Air Nw = (F1 – F2).s.g = (1,4 - 0,7).0,05m.9,81m/s² = 0,343 Nm  Momen Puntir Mp = (F1 + F2).s.g = (1,4 + 0,7).0,05m.9,81m/s² =1,030Nm

 Putaran Poros Rata – Rata (N) N = 3150 rpm  Daya Poros Np = Mp.(2. .N)/60 = 1,030.(2.3,14.3150)/60 = 1,030.19782/60 = 339,59  Efisiensi = 99,005%

4.2.2 Debit Aliran Air 0,00042 m3/24s Bukaan Katup 1 Nozzel 1/4

 Energi Air Nw = (F1 – F2).s.g = (1,9 - 0,8).0,05m.9,81m/s² = 0,539 Nm  Momen Puntir Mp = (F1 + F2).s.g = (1,9 + 0,8).0,05m.9,81m/s² = 1,324 Nm

 Putaran Poros Rata – Rata (N)

(5)

N = 3299,75 rpm  Daya Poros Np = Mp.(2. .N)/60 = 1,324.(2.3,14.3299,75)/60 = 457,27  Efisiensi = 84,836%

4.2.3 Debit Aliran Air 0,00032 m3/s Bukaan Katup 1 Nozzel 1/2

Energi Air Nw = (F1 – F2).s.g = (1,7 - 1).0,05m.9,81m/s² = 0,343 Nm  Momen Puntir Mp = (F1 + F2).s.g = (1,7 + 1).0,05m.9,81m/s² = 1,324 Nm

Putaran Poros Rata – Rata (N) N = 3275 rpm  Daya Poros Np = Mp.(2. .N)/60 = 1,324.(2.3,14.3275)/60 = 453,854  Efisiensi = 132,316%

4.2.4 Debit Aliran Air 0,00018 m3/s Bukaan Katup 1 Nozzel 3/4

Energi Air Nw = (F1 – F2).s.g = (1 – 0,4).0,05m.9,81m/s² = 0,294 Nm  Momen Puntir Mp = (F1 + F2).s.g = (1 + 0,4).0,05m.9,81m/s² = 0,686 Nm

(6)

 Putaran Poros Rata – Rata (N) N = 2937,25 rpm  Daya Poros Np = Mp.(2. .N)/60 = 0,686.(2.3,14.2937,25)/60 = 210,898  Efisiensi = 71,734%

4.2.5 Debit Aliran Air 0,00033 m3/s Bukaan Katup 1/2 Nozzel 1

 Energi Air Nw = (F1 – F2).s.g = (1,8 – 1,2).0,05m.9,81m/s² = 0,294 Nm  Momen Puntir Mp = (F1 + F2).s.g = (1,8+ 1,2).0,05m.9,81m/s² = 1,471 Nm

 Putaran Poros Rata – Rata (N) N = 2651,5 rpm  Daya Poros Np = Mp.(2. .N)/60 = 1,471.(2.3,14.2651,5)/60 = 408,237  Efisiensi = 138,856%

4.2.6 Debit Aliran Air 0,00034 m3/s Bukaan Katup 1/2 Nozzel 1/4

 Energi Air Nw = (F1 – F2).s.g

(7)

= (1,4 – 0,8).0,05m.9,81m/s² = 0,294 m/s²  Momen Puntir Mp = (F1 + F2).s.g = (1,4+ 0,8).0,05m.9,81m/s² = 1,079 Nm

 Putaran Poros Rata – Rata (N) N = 2837 rpm  Daya Poros Np = Mp.(2. .N)/60 = 1,079.(2.3,14.2837)/60 = 320,397  Efisiensi = 108,978%

4.2.7 Debit Aliran Air 0,00025 m3/s Bukaan Katup 1/2 Nozzel 1/2  Energi Air Nw = (F1 – F2).s.g = (1,4 – 0,8).0,05m.9,81m/s² = 0,294 Nm  Momen Puntir Mp = (F1 + F2).s.g = (1,4+ 0,8).0,05m.9,81m/s² = 1,079 Nm

 Putaran Poros Rata – Rata (N)

N = 2932,5 rpm  Daya Poros Np = Mp.(2. .N)/60 = 1,079.(2.3,14.2932,5)/60 = 331,182  Efisiensi

(8)

= 112,646%

4.2.8 Debit Aliran Air 0,000171 m3/s Bukaan Katup 1/2 Nozzel 3/4  Energi Air Nw = (F1 – F2).s.g = (1 – 0,4).0,05m.9,81m/s² = 0,196 Nm  Momen Puntir Mp = (F1 + F2).s.g = (1,4+ 0,8).0,05m.9,81m/s² = 0,686 Nm

 Putaran Poros Rata – Rata (N)

N = 2851,5 rpm  Daya Poros Np = Mp.(2. .N)/60 = 0,686.(2.3,14.2851,5)/60 = 204,741  Efisiensi = 104,459%

4.3 Pengolahan Data Dinamo DC 12 Volt

4.3.1 Debit Aliran Air 0,00038 m3/s Bukaan Katup 1 Nozzel 1

 Putaran Poros Rata – Rata (N)

N = 5497,75 rpm  Daya Dinamo

P = 4,3.0,04.0,8 =0,1376

4.3.2 Debit Aliran Air 0,00042 m3/s Bukaan Katup 1 Nozzel 1/4

(9)

N = 6379,25 rpm  Daya Dinamo

P = 4,4.0,04.0,8 =0,1408

4.3.3 Debit Aliran Air 0,00025 m3/s Bukaan Katup 1/2 Nozzel 1/2  Putaran Poros Rata – Rata (N)

N = 6242,5 rpm  Daya Dinamo

P = 4,4.0,04.0,8 =0,1408

4.3.4 Debit Aliran Air 0,00018 m3/s Bukaan Katup 1 Nozzel 3/4

 Putaran Poros Rata – Rata (N)

N = 5704,25 rpm  Daya Dinamo

P = 4,1.0,04.0,8 =0,1312

4.3.5 Debit Aliran Air 0,00033 m3/s Bukaan Katup 1/2 Nozzel 1

 Putaran Poros Rata – Rata (N)

N = 4882,75 rpm  Daya Dinamo

(10)

P = 3,9.0,03.0,8 =0,0936

4.3.6 Debit Aliran Air 0,00034 m3/s Bukaan Katup 1/2 Nozzel 1/4  Putaran Poros Rata – Rata (N)

N = 5383 rpm  Daya Dinamo

P = 4,0.0,04.0,8 =0,128

4.3.7 Debit Aliran Air 0,00025 m3/s Bukaan Katup 1/2 Nozzel 1/2  Putaran Poros Rata – Rata (N)

N = 5417,25 rpm  Daya Dinamo

P = 3,9.0,03.0,8 =0,0936

4.2.8 Debit Aliran Air 0,00017 m3/s Bukaan Katup 1/2 Nozzel 3/4  Putaran Poros Rata – Rata (N)

N = 5532,75 rpm

 Daya Dinamo

P = 3,9.0,03.0,8 =0,0936

4.5. Grafik dan analisa hasil percobaan

(11)

turbin

Grafik 4.1. Grafik terhadap debit dengan putaran.

Dari hasil percobaan yang di dapat, dapat kita lihat pada putaran pertama 3150 rpm dan debit 0,00038 mengalami kenaikan pada putaran kedua 3299 rpm dan debit 0,00042, pada putaran ketiga 3275 rpm dan debit 0,00032 mengalami penurunan. Jika debit aliran menggunakan watermeter semakin meningkat, maka putaran rata – rata turbin mengalami peningkatan. Dan jika debit aliran semakin menurun , maka putaran rata – rata turbin mengalami penurunan.

Grafik 4.2.hubungan antara moment puntir dengan putaran.

Dari hasil percobaan yang dilakukan bahwa moment puntir pada putaran 3150 rpm dan momen puntir 1,03 mengalami kenaikan pada putaran 3299 dan momen puntir

1,324,dan pada putaran 3275 dan momen puntirnya tidak mengalami perubahan,pada grafik di atas dapat kita lihat bahwa jika putaran rata- rata tidak mengalami peningkatan yang signifikan maka momen puntirnya tidak akan mengalami perubahan.

Grafik 4.3. hubungan antara daya poros dengan putaran.

Dari hasil percobaan di dapatkan grafik hasil yang mana grafik di atas menunjukkan bahwa setiap pergantian besaran putaran maka daya poros mengalami perubahan daya.

Grafik 4.4. hubungan efisiensi dengan putaran.

Dari grafik diatas menunjukkan efisiensi dari turbin mengalami perubahan pada saat putaran poros semakin tinggi,terlihat dari mulai putaran 3150 rpm dan

(12)

efisiensi 99,005 sampai 3275 rpm dan efisiensi 132,316.

Grafik 4.5. hubungan antara daya air dengan putaran.

Dari grafik diatas didapat di lihat dari putaran rata – rata turbin pertama 3299 rpm dan daya air 0,539 terjadi penurunan pada putaran rata – rata turbin kedua 3275 dan daya air 0,343 dan pada putaran rata – rata turbin ketiga 2937,25 dan daya air 0,294 juga mengalami penurunan, maka dapat kita lihat jika putaran rata – rata turbin mengalami penurunan maka daya air juga mengalami penurunan.

Grafik 4.6.hubungan debit aliran dengan tekanan air.

Dari grafik di atas dapat di lihat dari tekanan air 1,030

mengalami kenaikan pada tekanan 1,324 , maka dapat kita ketahui semakin besar debit aliran air maka terhadap tekanan pada air juga mengalami peningkatan, begitu juga pada debit aliran jika turun maka tekanan air juga mengalami penurunan.

4.6.Grafik Dan Analisa Hasil Percobaan Dinamo 12 Volt

Grafik 4.7. hubungan antara debit aliran terhadap putaran dynamo.

Dari hasil percobaan yang di dapat, grafik menunjukan bahwa pada putaran rata- rata dinamo mengalami peningkatan yang signifikan, terlihat pada putaran rata – rata dinammo 5383 rpm dan debit 0,00034 Q=m3/s. jika putaran rata – rata dynamo meningkat seperti pada putaran 5417,25 terjadi penurunan pada debit aliran air yaitu 0,00025, apabila putaran rata – rata dinamo meningkat maka debit aliran air akan mengalami penurunan.

IV. Kesimpulan dan saran. 4.1 Kesimpulan.

Dari hasil percobaan turbin pelton type FM 32 disimpulkan sebagai berikut:

(13)

 Semakin tinggi putaran rata – rata turbin 3299 rpm membuat debit aliran semakin menurun,begitu juga pada momen puntir.

 Setiap pergantian putaran poros rpm maka daya poros mengalami perubahan daya .

 Efisiensi turbin mengalami perubahan pada saat putaran poros semakin tinggi.

 Semakin tinggi putaran poros maka terjadi penurunan daya air.

5.2.Saran

Dari pengujian turbin pelton type FM 32 daya arus yang dihasilkan masih belum mendapatkan hasil yang maksimal ,karena generator yang di gunakan yaitu generator arus searah (DC) 12 volt.Untuk mendapatkan hasil yang lebih maksimal generator yang digunakan harus generator voltase yang lebih besar.

DAFTAR PUSTAKA

Buku Penuntun Praktikum Prestasi Mesin,Jurusan Teknik Mesin,Fakultas Teknologi Industri,Universitas Bung Hatta,Padang 2005 air.htmlhttp://www.academia.edu/74 20789/PRINSIP_KERJA_GENERA TOR_SINKRON http://elektronika- dasar.web.id/instrument/ampere-meter-arus-searah-dc/ Sumber http://eprints.undip.ac.id/26342/ Sumber http://kurniabudiharjo.blogspot.com/ 2014/03/turbin-

Sumber :Turbin Pompa dan

Kompresor. Fritz Dietzel 1980.

Sumber :

http://aliefworkshop.com/category/ic t-for-all/page/2/

Sumber :Pedoman Study Kelayakan Sipil Dirjen ESDM 2009

Gambar

Grafik 4.1. Grafik terhadap debit  dengan putaran.
Grafik 4.5. hubungan antara  daya air dengan putaran.

Referensi

Dokumen terkait

Sementara dalam konteks slam, pendidikan secara bahasa lughatan/ ada tiga kata yang digunakan. 3etiga kata tersebut memiliki makna yang saling  berkaitan saling cocok

“Penelitian normatif dapat diartikan sebagai penelitian yang dilakukan dengan cara meneliti bahan pustaka atau data sekunder yang terdiri dari bahan primer, bahan hukum

Dalam analisa proses bisnis pelaksanaan proyek akhir ini kita dapat mengidentifikasi bahwa ada kasus yang dapat dimodelkan dengan BPMN (Business Process Modelling &

dilakukan ada klien dengan masalah erilaku kekerasan adalah dengan dilakukan ada klien dengan masalah erilaku kekerasan adalah dengan mengajarkan teknik naas dalam atau

D KIMIA 1 YOSANDI CALIMANTO SMA TARUNA NUSANTARA MAGELANG JAWA TENGAH 54,91 PERUNGGU 2 SAMUEL LEONARDO PUTRA

Sebenarnya, jumlah neutron hasil reaksi fisi pada suatu generasi sebanding dengan jumlah reaksi fisi yang terjadi pada generasi tersebut, sehingga kita dapat mendefinisikan

Penggunaan faktor produksi benih, tenaga kerja, dan pakan dalam penggunaannya melebihi tingkat optimalnya, sedangkan faktor produksi kapur dan pupuk TSP penggunaannya

Pada pemeriksaan darah dapat dilakukan tes langsung terhadap virus HIV atau secara tidak langsung dengan menentukan anti bodi, yang telah dan lebih mudah dilaksanakan.. Saat ini